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THE PLANT GEMINIVIRUSES

Geminiviruses are insect-transmitted plant viruses with circular, single-stranded (ss)DNA genomes
that cause devastating diseases in major crops worldwide. The family Geminiviridae comprises
more than 450 species divided in nine genera, based on genome organization, host range, and
insect vector: Begomovirus, Mastrevirus, Curtovirus, Becurtovirus, Topocuvirus, Turncurtovirus,
Capulavirus, Gablovirus, and Eragrovirus (Zerbini et al., 2017). The most diverse genus in this
family is Begomovirus, which to date includes 409 different species (reviewed in Zhao et al.,
2019). Begomoviruses can be further subdivided in monopartite, with one-molecule genomes,
and bipartite, with two-molecule genomes (Figure 1A). Regardless of whether they are mono- or
bi-partite, the size of each genomic DNA molecule is∼3 kb.

Apart from the obvious economic and practical interest propelling the study of geminiviruses,
this virus family is an excellent model system to gain insight into plant processes. Geminiviruses
replicate their DNA genomes in the nucleus by using the plant DNA replication machinery;
the geminivirus genome forms minichromosomes that are subjected to epigenetic modifications;
geminiviruses are both activators and suppressors of plant defense responses, and modulate plant
developmental processes (reviewed in Hanley-Bowdoin et al., 2013). Therefore, geminiviruses can
be used as probes to deepen our understanding not only of plant-virus interactions, but also of
different aspects of plant biology.

GEMINIVIRUS-ENCODED PROTEINS

As intracellular parasites, geminiviruses have to effectively manipulate plant cell functions to
replicate, suppress anti-viral defense, and move throughout the plant, ultimately establishing
a systemic infection; their evolved capacity to co-opt and modulate processes in a given host
plant will determine the outcome of the plant-virus interaction. In order to hijack the host
cell molecular machinery, geminiviruses produce a limited number (between 4 and 8) of small,
fast-evolving, multifunctional proteins, encoded by bidirectional and partially overlapping open
reading frames (ORFs) (Figure 1A). Monopartite begomoviruses encode six proteins, namely
C1/Rep, C2/TrAP, C3/REn, C4, V2, and V1/CP. Homologs are encoded in one of the genomic
component of bipartite begomoviruses, DNA A (in this case, named AC1/Rep, AC2/TrAP,
AC3/REn, AC4, AV2, and AV1/CP); the other component in bipartite species, termed DNA B,
encodes two additional proteins: the nuclear shuttle protein (NSP) and the movement protein
(MP) (Figure 1A). Curiously, monopartite begomoviruses are often found in nature associated
with satellite molecules, known as α- and β-satellites, which contribute to or even enable viral
pathogenicity through the action of their encoded proteins (α-Rep and β-C1, respectively)
(reviewed in Zhou, 2013).
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FIGURE 1 | (A) Geminivirus (begomovirus) genome structure in monopartite and bipartite species. Arrows represent open reading frames (ORFs). ORFs in the virion

strand are in red; ORFs in the complementary strand are in blue. See text for details. (B) Comparison of the C4 proteins from different geminivirus species across

genera. The presence of a predicted myristoylation site (Myr) or chloroplast transit peptide (cTP) in the protein sequence is indicated.

In view of the fast pace of evolution of geminivirus genomes

(reviewed in Zhao et al., 2019), it is expected that all proteins

therein encoded are essential for the viral infection—since
otherwise their coding sequence would be eventually lost. This

idea is supported by the results obtained in the laboratory
with artificially mutated viruses, which generally present a

dramatically decreased virulence in their natural hosts and a

high rate of reversion. Our current knowledge of the specific
molecular function of individual geminivirus-encoded proteins

derives from an ever-growing body of work, carried out by
multiple research groups worldwide during the past few decades
and resulting from the combination of molecular biology, cell
biology, virology, and biochemistry.

Considering the biological properties and life cycle of
geminiviruses and plant viruses in general, a series of functions

that are conditio sine qua non for a successful viral infection can
be inferred: these include manipulation of the cell cycle, DNA
replication, intra- and inter-cellular movement, and suppression
of gene silencing and other anti-viral defenses, such as the
response to defense-related hormones. Virus-encoded proteins
exerting these functions have indeed been identified in different
geminivirus species, although in some cases the exact underlying
molecular mechanisms remain to be unraveled (reviewed in
Hanley-Bowdoin et al., 2013; Yang et al., 2016).

POSITIONAL HOMOLOGS IN
GEMINIVIRUSES

Genome structure is conserved among geminiviral species
within the same genus, and in some cases even among species
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TABLE 1 | Different C2/AC2 functions described in several geminiviral species.

Virus Function References

Tomato golden mosaic virus (TGMV); Mungbean

yellow mosaic virus (MYMV)

Transcriptional activator for viral and some plant

host genes

Sunter and Bisaro, 1992, 1997; Trinks et al., 2005

Tomato golden mosaic virus (TGMV) and Beet curly

top virus (BCTV)

Inactivation of SNF1-related kinase (Arabidopsis

protein kinase 11 [AKIN11])

Hao et al., 2003; Wang et al., 2003

African cassava mosaic virus (ACMV); Tomato

yellow leaf curl virus (TYLCV); Tomato golden

mosaic virus (TGMV); Beet curly top virus (BCTV);

Indian cassava mosaic virus (ICMV) and East African

cassava mosaic Cameroon virus (EACMCV)

Posttranscriptional gene silencing (PTGS)

suppression

Voinnet et al., 1999; Vanitharani et al., 2004; Wang

et al., 2005; Luna et al., 2012

Tomato golden mosaic virus (TGMV); Cabbage leaf

curl virus (CaLCuV), and Beet curly top virus (BCTV)

Transcriptional gene silencing (TGS) suppression by

interfering with the methyl cycle through inhibition of

adenosine kinase (ADK)

Buchmann et al., 2009; Jackel et al., 2015

Beet severe curly top virus (BSCTV) TGS suppression by interfering with the methyl

cycle through attenuation of the

proteasome-mediated degradation of

S-adenosyl-methionine decarboxylase 1 (SAMDC1)

Zhang et al., 2011

Tomato golden mosaic virus (TGMV); Cabbage leaf

curl virus (CaLCuV) and Indian cassava mosaic virus

(strains: ICMV-Dha and ICMV-SG)

TGS suppression by inhibiting the H3K9 histone

methyltransferase SUVH4/KYP

Castillo-González et al., 2015; Sun et al., 2015

Beet curly top virus (BCTV) Creation of a cellular environment permissive to

DNA replication

Caracuel et al., 2012; Lozano-Duran et al., 2012

in different genera: genes in the same strand (virion or
complementary) and position in different geminivirus species
are therefore referred to as positional homologs, have the same
name, and the resulting proteins show sequence similarity at
the amino acid level (Figure 1). Given these shared properties,
together with the observation that the biological requirements for
a successful geminivirus infection are most likely common to all
family members, positional homologs are frequently considered
equivalent, and the properties identified for an individual gene
are often extrapolated to others. This notion assumes that
positional homologs are invariably and necessarily functional
homologs; nonetheless, this is at odds with the idea of functional
diversification that could result from the fast adaptation of
different virus species to their hosts. Without the intention to be
exhaustive, some specific examples are briefly discussed below.

Some functions of positional homologs seem indeed to be
conserved across geminivirus species and genera: this is the
case of Rep, which facilitates replication of the viral genome
in all known species by reprogramming the cell cycle and
mediating initiation, elongation, and termination of viral DNA
replication (reviewed in Hanley-Bowdoin et al., 2013; Ruhel and
Chakraborty, 2019); or that of V2, which acts as a suppressor
of post-transcriptional gene silencing (PTGS) in all geminivirus
species tested to date (Zrachya et al., 2007; Sharma and Ikegami,
2010; Amin et al., 2011; Zhang et al., 2012; Luna et al., 2017; Yang
et al., 2018; Zhan et al., 2018; Mubin et al., 2019). Nevertheless,
it has to be considered that geminivirus-encoded proteins are
multifunctional: Rep, for example, promotes viral transcription
(Kushwaha et al., 2017) and works as a suppressor of either
transcriptional gene silencing (TGS) or PTGS in certain species
(Rodríguez-Negrete et al., 2013; Liu et al., 2014); some V2
proteins act as suppressors of TGS (Wang et al., 2014, 2018, 2020;

Mubin et al., 2019), and inhibit a host protease (Bar-Ziv et al.,
2015). Therefore, at this point, whether functional homology
among Rep or V2 proteins is complete or only partial is unclear.

On the other hand, examples of geminiviral positional
homologs with proven partial functional homology are available
in the literature. Perhaps the most illustrative case to date
is that of the C2/AC2 proteins: in begomoviruses and
curtoviruses, C2/AC2 proteins have a conserved zinc-finger
motif, despite showing only limited similarity in the overall
amino acid sequence; but while AC2, but perhaps not C2, from
begomoviruses acts as a transcriptional activator for viral and
some plant host genes (Sunter and Bisaro, 1992, 1997; Wartig
et al., 1997; Trinks et al., 2005), C2 from curtoviruses lacks an
obvious transcriptional activation domain and transcriptional
activation activity (Sunter et al., 1994; Baliji et al., 2007). At
least in two species, C2/AC2 interacts with and inactivates SNF1-
related kinase (also known as Arabidopsis protein kinase 11
[AKIN11]), a global regulator of metabolism (Hao et al., 2003;
Wang et al., 2003). Some C2/AC2 proteins are suppressors of
PTGS (Voinnet et al., 1999; Vanitharani et al., 2004; Wang
et al., 2005; Luna et al., 2012), but not others (Vanitharani
et al., 2004; Luna et al., 2012). C2/AC2 has also been shown
to suppress TGS by interfering with the methyl cycle in several
species, but through at least two different mechanisms, namely
the inhibition of adenosine kinase (ADK) (Buchmann et al.,
2009; Jackel et al., 2015) and the attenuation of the proteasome-
mediated degradation of S-adenosyl-methionine decarboxylase 1
(SAMDC1) (Zhang et al., 2011). A third strategy to suppress TGS
is exhibited by the C2/AC2 protein encoded by at least two other
species, of which the C2/AC2 proteins interact with and inhibit
the H3K9 histone methyltransferase SUVH4/KYP (Castillo-
González et al., 2015; Sun et al., 2015). The C2 protein encoded
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by a curtovirus creates a cellular environment permissive to DNA
replication, but this function is not shared by the protein encoded
by the position homologue in begomoviruses (Caracuel et al.,
2012; Lozano-Duran et al., 2012) (Table 1).

The functions of the geminivirus-encoded C4/AC4 could be
at least as varied in different species as those of C2/AC2. Several
independent functions have been ascribed to C4/AC4 to date
(e.g. Piroux et al., 2007; Teng et al., 2010; Luna et al., 2012;
Sunitha et al., 2013; Ismayil et al., 2018; Li et al., 2018; Mei et al.,
2018, 2020; Rosas-Diaz et al., 2018), and transgenic Arabidopsis
thaliana plants expressing C4/AC4 from different geminiviruses
display distinct developmental phenotypes (Mills-Lujan and
Deom, 2010; Luna et al., 2012). Perhaps even more importantly,
the C4/AC4 proteins encoded by different geminivirus species
can have non-perfectly overlapping subcellular localizations,
depending on specific targeting signals, namely acylation sites
and a chloroplast transit peptide (e.g., Fondong et al., 2007;
Carluccio et al., 2018; Mei et al., 2018; Rosas-Diaz et al., 2018;
Zhan et al., 2018; Medina-Puche et al., 2019) (Figure 1B).
These differences in subcellular distribution of different C4/AC4
proteins, which can be found associated to membranes, in
the cytoplasm, in the nucleus, or in chloroplasts, will in all
likelihood have a strong impact on their functionality during
infection. Interestingly, C4 is seemingly under positive selection,
in stark contrast to other geminiviral proteins (Sanz et al., 1999;
Melgarejo et al., 2013; Yang et al., 2014).

In summary, a growing body of experimental data supports
the idea that, although positional homologs have a common
origin and frequently share functions, this functional overlap
is not necessarily complete, since novel roles will have most

likely been acquired during evolution. At the same time, not all
geminiviral ORFs have positional counterparts (e.g., those in the
DNA-B of bipartite geminiviruses), and therefore the essential
virulence functions provided by the proteins they encode must
be fulfilled by other, non-homologous geminiviral proteins.
Hence, caution must be taken when extrapolating functional
information to positional homologs, and uncovering the roles of
each geminivirus-encoded protein in individual species will in all
cases require experimental assessment.
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