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Background: Early detection of antimicrobial resistance in pathogens and prescription
of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput
sequencing technology, such as whole genome sequencing (WGS), may have the
capacity to rapidly guide the clinical decision-making process. The prediction of
antimicrobial resistance in Gram-negative bacteria, often the cause of serious systemic
infections, is more challenging as genotype-to-phenotype (drug resistance) relationship
is more complex than for most Gram-positive organisms.

Methods and Findings: We have used NCBI BioSample database to train and cross-
validate eight XGBoost-based machine learning models to predict drug resistance to
cefepime, cefotaxime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem,
and tobramycin tested in Acinetobacter baumannii, Escherichia coli, Enterobacter
cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. The input is the WGS
data in terms of the coverage of known antibiotic resistance genes by shotgun
sequencing reads. Models demonstrate high performance and robustness to class
imbalanced datasets.

Conclusion: Whole genome sequencing enables the prediction of antimicrobial
resistance in Gram-negative bacteria. We present a tool that provides an in silico
antibiogram for eight drugs. Predictions are accompanied with a reliability index that
may further facilitate the decision making process. The demo version of the tool
with pre-processed samples is available at https://vancampn.shinyapps.io/wgs2amr/.
The stand-alone version of the predictor is available at https://github.com/pieterjanvc/
wgs2amr/.

Keywords: antimicrobial resistance, antibiotic resistance, whole-genome sequencing, machine learning,
prediction, genotype-phenotype relationship

Abbreviations: AB, antibiotic; ABR, antibiotic resistance; ARG, antibiotic resistance gene; ARGC, antibiotic resistance gene
cluster; MCC, Matthew’s correlation coefficient; MIC, minimum inhibitory concentration; WGS, whole genome sequencing.
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INTRODUCTION

Since the discovery and widespread use of antibiotics (AB)
in the early 20th century, resistance to those same AB has
generally developed rapidly; often even within the first years
of introduction (Marston et al., 2016). As a consequence,
many bacteria have developed antibiotic resistance (ABR) to
most of the major classes of AB, often seen in the Gram-
negatives (Centers for Disease Control and Prevention, 2018).
Effective treatment of these infections requires knowledge of the
organism’s susceptibility to the various AB, currently obtained
by culturing bacteria in the clinical laboratory and subsequent
testing for commonly used AB. Depending on the pathogen,
this process may require 72 h or more. Drug susceptibility is
usually reported to the clinician as either resistant or susceptible
(sometimes intermediate is also used) with cut-offs based on
the minimum inhibitory concentration (MIC) of an AB needed
to halt growth or kill the pathogen in the lab. In serious
systemic infections, early treatment with an effective antibiotic
is paramount as unexpected resistance may lead to treatment
failure, while fear of inadequate therapy may drive overly broad
antibiotic use which contributes to extensively resistant and
potentially untreatable bacteria (Marston et al., 2016).

With decreasing cost and increasing speed of high-throughput
sequencing technology such as whole genome sequencing
(WGS), in-depth analysis of pathogens is increasingly used in
clinical decision-making. Studies already showed the potential
of these techniques in ABR prediction in single, Gram-positive
pathogens like Staphylococcus aureus and Mycobacterium
tuberculosis. An example is the Mykrobe predictor that maps
DNA sequencing data to a reference genome and a set of
plasmid genes conferring ABR (Bradley et al., 2015). The
model also accounts for polymorphism in select loci when
predicting drug resistance. Data analysis and prediction is
rapid, enabling it as a practical tool for clinical care during the
decision-making process. PhyResSE is another tool that follows
a similar strategy but may process data in minutes to a few days,
attributing such time extension to more careful variant calling
(Feuerriegel et al., 2015). Both tools report high accuracy of ABR
prediction. However, their application to other pathogens like
Gram-negative bacteria has not been described.

The prediction of ABR in Gram-negative bacteria, often
the cause of serious systemic infections, is more challenging
as the source of drug resistance is more complicated. For
example, Gram-negative pathogens may possess one or more β-
lactamases with similar amino acid sequences but various activity
against β-lactam-based AB (Livermore, 1998). They are also
more likely to develop mutations that result in lower membrane
permeability, or increase the expression of a variety of genes
for excreting xenobiotics (efflux pumps) and for inactivating
β-lactam-targeting drugs (Marston et al., 2016). There have
been a few clinical predictors reported for assessing the risk
of infection with resistant Gram-negative bacteria but they
solely rely on data from the electronic health record and just
predict the likelihood of infection with a resistant strain rather
than individual drug resistance (Martin et al., 2013; Vasudevan
et al., 2014). Thus far, only a handful of studies were published

on the prediction of Gram-negative resistance using WGS
data. These models were built for individual species, such as
Neisseria gonorrhoeae or Klebsiella pneumonia, and were based
on small sample sizes resulting in poor predictive accuracy
(Eyre et al., 2017; Nguyen et al., 2018). A more extensive study
recently published by Drouin et al. (2019) utilizes 107 machine-
learning-based models, trained on WGS data, to predict ABR
in 12 bacterial species, including six Gram-negatives, against a
variety of AB with generally high accuracy. These models were
trained without incorporating prior ABR knowledge as they
were based on nucleotide k-mers from sequenced genomes of
these pathogens, thus utilizing information from non-coding
regions and polymorphism. Furthermore, their methodology
produced small, human-interpretable decision trees, when
the k-mers are mapped back to the respective genomes to
make decisions interpretable (provided that k-mers belong to
annotated genomic regions). However, the study was performed
on heavily imbalanced datasets, while reporting only two-class
accuracy, which could overestimate the real performance. Finally,
isolates with intermediate resistance were excluded from the final
predictors making the performance estimates on such samples
uncertain. For more details on the bioinformatics approaches to
the AMR analysis and prediction, the reader can refer to a recent
review (Van Camp et al., 2020).

In this work, we present a machine learning-based method
for the fast estimation of ABR in 5 Gram-negative species for
8 AB. The models were trained on WGS data and laboratory
confirmed drug susceptibility. All isolates were assigned to either
of two classes (susceptible or resistant) and subsequently used in
the training and validation of binary predictors. Each model was
evaluated using multiple performance measures. The presented
workflow could inform early clinical decision-making on the
choice of AB therapy (within a day) while waiting for the final
antibiogram (typically 2–4 days) thereby decreasing the time to
start effective therapy. A web-based demo application to show
the potential clinical implementation is publicly available at
https://vancampn.shinyapps.io/wgs2amr/. The stand-alone tool
can be freely downloaded from https://github.com/pieterjanvc/
wgs2amr/.

MATERIALS AND METHODS

Pathogens and Antibiotics of Interest
This study focused on five common nosocomial Gram-negative
organisms that can cause sepsis (Vincent, 2003; Couto et al.,
2007): Acinetobacter baumannii, Escherichia coli, Enterobacter
cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. These
specific Gram-negative pathogens were chosen because, in
addition to clinical relevance, they are the most represented
in terms of DNA-sequenced and AMR annotated samples
available at NCBI. For machine learning, the larger the dataset
to train on, the more accurate and generalized model can be
achieved. E. cloacae is the major representative of Enterobacter
species and therefore part of ESKAPE pathogens. Their
antibiotic susceptibility was evaluated for cefepime, cefotaxime,
ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem,
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and tobramycin. This panel of AB covers those most commonly
used to treat Gram-negative bacterial infections. Consequently,
these AB are most frequently tested for susceptibility against
bacterial isolates.

Public Data Collection
Meta-data for 6564 bacterial samples (isolates) were retrieved
from the NCBI BioSample database using the “antibiogram”
keyword filter. Of these, 4933 samples had the required
information, such as bacterium name, antibiogram, and
sequencing data accession number. For this work, all
“intermediate” ABR levels were converted to “resistant” to
project data to a binary classification problem (i.e., resistant
versus susceptible). The list was subsequently refined to only
include the bacteria and AB of interest (see section “Pathogens
and antibiotics of interest”) resulting in 2516 samples. Given
the resistance to AB was highly imbalanced in the data (mostly
skewed toward resistant phenotype), the samples were randomly
chosen so that the number of susceptible, and resistant isolates
for each antibiotic was as equal as possible in order to balance
the input for machine learning models. This resulted in a final
total of 946 samples (Supplementary Table S1). Of these, 3% of
samples available for each species (total n = 31) were set aside
to create a demo dataset to showcase the online application (see
section “Preliminary pipeline implementation and evaluation”
for details). The remaining 915 samples were used to build
and evaluate eight XGBoost-based models, where available
data for each antibiotic were randomly split in 70% training
and 30% testing subsets. The overall flow of data collection is
summarized in Figure 1. The counts of samples per species
include: A. baumannii – 256; E. cloacae – 67; E. coli – 330;
K. aerogenes – 51; and K. pneumoniae – 211. Of note, we did not
stratify samples by different bacterial species during the model
training as we intended our models to be species independent.
Table 1 shows the distribution of the 915 samples through
the AB of interest.

Whole genome sequencing data for all samples were retrieved
from the NCBI Sequence Read Archive (SRA) using the SRA
toolkit (SRA Toolkit Development Team, 2019). In case multiple
runs (SRR) of a sample (SRS) were available (e.g., sample was run
through different sequencers or with different settings), the file

TABLE 1 | Summary of the 915 samples used to build and evaluate antimicrobial
resistance prediction models.

Antibiotic Resistant Susceptible Total

Cefepime 442 275 717

Cefotaxime 437 50 487

Ceftriaxone 671 133 804

Ciprofloxacin 577 335 912

Gentamicin 351 542 893

Levofloxacin 471 258 729

Meropenem 332 420 752

Tobramycin 354 320 674

*Note that not all samples were tested for every antibiotic, thus the counts per AB
do not add up to 915.

with the smallest size was selected. Smaller file size may frequently
be attributed to lower sequencing depth and/or shorter shotgun
reads. We reasoned that, if a model is able to make predictions on
smaller sequence files, it will most likely be applicable to larger
files with better gene coverage. List of all samples used can be
found in Supplementary Table S1.

In-House Dataset of Samples
Gram-negative bacterial pathogens were collected from blood
or urine of patients hospitalized at Cincinnati Children’s
Hospital Medical Center (CCHMC), 19 samples total.
Organisms were identified to the species level and antimicrobial
susceptibility testing was performed using the VITEK R© 2
machine (Biomerieux) in the Diagnostic Infectious Diseases
Testing Laboratory at CCHMC. Samples represent A. baumannii
(n = 1), E. coli (n = 11), K. aerogenes (n = 2), and K. pneumoniae
(n = 3). No in-house samples are available with E. cloacae.
Two available samples of Klebsiella oxytoca are included. DNA
was extracted from overnight liquid broth cultures using the
QIAamp PowerFecal DNA Kit (Qiagen Inc, Germantown,
MD, United States). Sequencing libraries were generated using
the Nextera XT kit (Illumina Corporation, San Diego, CA,
United States). Pooled libraries were sequenced on a NextSeq
500 (Illumina Corporation, San Diego, CA, United States)
in the Microbial Genomics and Metagenomics Laboratory at

FIGURE 1 | Data collection of public samples from NCBI. The numbers of samples represent total samples remaining in the dataset after a given data processing
step.
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CCHMC using paired 150 bp reads to a depth of approximately
5 million reads per sample. Sample collection was approved by
the Institutional Review Board (IRB) at CCHMC (IRB approval #
2016–9424: Molecular Epidemiology of Bacterial Infections). The
in-house samples are available at the NCBI BioSample database
(BioProject ID: PRJNA587095), where detailed metadata can
be found (see Supplementary Table S1 for sample IDs). Of
note, the antimicrobial susceptibility testing with VITEK takes
at least 72 h and generally requires a pure isolate, whereas
sequencing preparation followed by the WGS data analysis can
be completed under 48 h and does need to not rely on a pure
colony (Scaggs Huang et al., 2019).

Analysis of WGS Data
The sequencing files in the FASTQ format were aligned to
4579 antibiotic resistance genes (ARG) found in the NCBI
Bacterial Antimicrobial Resistance Reference Gene Database
(NCBI Accession: PRJNA313047, version as of September 26,
2018) using DIAMOND (Buchfink et al., 2015), a greatly
improved version of BLASTx (Altschul et al., 1990) with regards
to speed, and on par sensitivity. Given the same ARG can be
present in multiple species (e.g., plasmid DNA), no filtering was
performed based on original bacterium in which the ARG was
sequenced. The default settings of DIAMOND were used to map
shotgun reads to ARGs.

Antibiotic resistance genes coverage (C) within a sample was
quantified as follows. First, reads aligned by DIAMOND were
discarded if the alignment to the gene covered <90% of the read’s
length or yielded <90% sequence identity. Second, a gene was
discarded if all aligned reads covered <90% of its length (i.e.,
protein sequence). The cutoff was chosen as being suboptimal
after probing 70, 80, 90, and 100% coverage (Supplementary
Table S2). If a gene was retained in the hit list, the number of
alignments (n) was adjusted for gene length (i.e., the number of
amino acids, L), and sequencing depth (i.e., total number of reads
in the file divided by 107, D). Such scaled data (Eq. 1) are better
suitable for the machine learning.

C =
n

L × D
(1)

Clustering Similar Antibiotic Resistance
Genes
Many of the ARG in the NCBI database have a high sequence
similarity (e.g., polymorphism in strains or sequences derived
from closely related species) that cannot be discriminated
by the alignment techniques used in this study. Therefore,
antibiotic resistance gene clusters (ARGC) were created using
the cluster_fast module of the USEARCH algorithm (Edgar,
2010) to group genes with ≥90% sequence identity together,
naming them after the most representative gene as defined by
USEARCH (i.e., cluster centroid). This threshold for grouping
was chosen as a suboptimal compromise between balancing
the number of genes per cluster, performance of the model,
and the biological relevance of the genes grouped together
(Supplementary Table S3). For cutoffs lower 85%, genes from
different ABR classes started to group together, hence such cutoffs

were excluded from consideration. The clustering resulted in the
reduction of the potential input space for the machine learning
models from 4579 ARG to 1027 ARGC, with 410 clusters (40%)
consisting of just a single gene. To represent the coverage of each
ARGC, the average coverage (Eq. 1) of all ARG detected in this
ARGC was taken. Finally, of the 1027 ARGC, only 152 were found
in our data and thereby used for subsequent machine learning.

Building and Evaluating Machine
Learning Models
Regression models are less stable on datasets where the input
space is large, sparse, and the features are correlated (e.g., in
the context of this work, drug resistance may be exerted by
multiple ARGC; Farrar and Glauber, 1967; Devika et al., 2016).
Using penalized regression (e.g., LASSO and Ridge regression)
to reduce both the input space and select most important
features can help increase performance of the model, but it still
operates on the premise that input features are uncorrelated.
In correlated datasets, feature selection will be distorted in this
process resulting in less reliable model interpretation. Decision
trees, on the other hand, inherently perform better in such
cases as correlation does not influence the feature selection
process (Piramuthu, 2008). In random forest models, hundreds
to thousands of these trees are built, each with different subset
of the input space, resulting in a more robust reporting of
important features. Neural networks (NN), especially their
currently popular application to deep learning, and require
much larger training data-sets (tens of thousands to millions of
input vectors/samples) than currently available for antimicrobial
resistance (hundreds of samples) in order to demonstrate benefits
of deep learning. Moreover, the resulting NN-based models
represent a black box that would be difficult to dissect in order to
see the decision making rules and factors influencing the decision
(Van Camp et al., 2020).

XGBoost is an extreme gradient booster for decision trees that
is capable of handling correlated inputs. It has innate support
for sparse datasets (in our case, only a handful of ARGC are
present in each sample) and can extract important features
to provide additional insights in the decision-making process
(Chen and Guestrin, 2016). Although XGBoost supports multi-
class classification (i.e., model can choose between more than
two classes), our samples can have resistance to multiple AB at
the same time (i.e., multi-labeling classification), which is not
supported and thus a separate, independent binomial model
(resistance versus susceptible) was created for each antibiotic of
interest (8 models total).

The input for each model was the list of ARGC and their
presence (C > 0) or absence (C = 0) in each sample (Eq. 1).
The output was binomial with label resistant (= 1) or susceptible
(= 0) to the antibiotic of interest. The XGBoost models were
trained with a learning rate of 0.1, maximum tree depth of 2,
training subsampling of 0.8, and column subsampling of 0.8. All
other parameters were kept default. The algorithm was run for a
maximum of 300 iterations, but early stopping was done when no
improvement was seen in 50 consecutive iterations using 10-fold
cross-validation.
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Despite the efforts to balance the number of samples
with susceptible and resistant phenotypes per drug the final
distributions on individual AB remained unbalanced (Table 1)
because each sample was not tested for all drugs of interest.
For two most imbalanced drugs, cefotaxime and ceftriaxone, an
under-sampling was performed to reach 3:1 ratio and prevent
the model overfitting toward the over-represented class. For
heavily class-imbalanced data, standard performance measures
like sensitivity or 2-class accuracy could overestimate the true
performance. The Matthew’s correlation coefficient (MCC) was
therefore used as a more stringent performance statistic (Eq. 2).
MCC measures binary classification in unbalanced datasets
with range from -1 (inverse prediction) through 0 (random
prediction) to 1 (perfect prediction).

MCC =
TP∗TN − FP∗FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

where TP, TN, FP, and FN are true positive, true negative, false
positive, and false negative instances, respectively.

For complete performance evaluation, two-class accuracy
(Acc, Eq. 3), sensitivity (recall, R), precision (P), specificity (Sp),
areas under ROC (AUC), and precision-recall (PR-AUC) curves
are also provided.

Acc =
TP + TN

TP + FP + TN + FN
(3)

where Acc is a two-class accuracy; TP, TN, FP, and FN are the
same as in Eq. 2.

Reliability Index
To provide an additional assessment how certain the prediction
is by a given model, we introduce a reliability index (RI). The
RI is based on the observation that in classification models
values closer to extremes (0 or 1) are more likely to yield a
correct prediction compared to values hovering around 0.5.
Using adjusted model output (AMO, Eq. 4), we computed a
misclassification rate (MR, Eq. 5) for every AMO in the test subset
of each model, defined as the percentage of incorrect predictions
in test cases with AMO equal or higher than a given cutoff (Eq. 5).
A regression model was fit to this MR distribution for each drug
and then was used to calculate the MR for new model outputs
(Supplementary Figure S1). The RI is the inverse of the MR and
simply defined as 1 – MR.

AMO (x) =
{

x , x ≥ 0.5
1− x , x < 0.5

}
(4)

MR (c) =
fp+ fn

tp+ fp+ tn+ fn
(5)

where tp, fp, tn, and fp are the number of true positive, false
positive, true negative, and false negative instances, respectively,
predicted with AMO ≥ c.

Feature Importance
XGBoost, being a random forest-based algorithm, can provide
important features from the model once it has been built in order

to evaluate the individual feature impact in the decision-making
process. In our case, XGBoost lists the most important ARGC for
each model. By design, random-forest-based algorithms ignore
strongly correlated features while using only one in the model, as
adding redundant features will not provide extra discrimination
capabilities (see section “Building and evaluating machine
learning models”). From a biology standpoint, however, it is
interesting to know all the ARGC that occur in high frequency.
Thus, when the most important features are extracted from the
models, we reviewed the correlated features ARGC as well.

In consideration that organism(s)/strain(s) composition in
the sample should not be known a priori, whereas de
novo genome assembly may be inefficient and inaccurate, no
genome assembly from WGS data is conducted in this work.
Therefore, the prediction model is agnostic to the source of
the detected antimicrobial gene, as to whether it is inherent to
an organism or acquired via mobile genetic element (plasmid).
Hence, no weighting scheme for plasmid-derived genes was
considered for the model.

Preliminary Pipeline Implementation and
Evaluation
The long term goal of this project is to build a platform where
prediction models like the ones presented here can be used in
research or clinical practice to quickly estimate a bacterium’s
antibiogram from WGS data with sufficient accuracy, in order to
inform early decisions about the correct AB use while awaiting
the final antibiogram.

For illustration of developed models, an R-Shiny web-based
application was developed where pre-processed samples from
two datasets unseen in training (31 public, demo dataset, and
19 in-house samples, sections “Public data collection” and “In-
house dataset of samples”) can be individually submitted to the
prediction models and subsequently compared to their actual
ABR status. Furthermore, the application allows the user to
explore the performance of the current ABR models in more
detail, and review the important genes used in the decision-
making process.

RESULTS

Data Collection and Pre-processing
After the processing and filtering (sections “Analysis of WGS
data” and “Clustering similar antibiotic resistance genes”), of the
4579 ARG in the NCBI database 2605 (57%) were detected in at
least one of the 946 samples. When clustered, only 152 ARGC
(15%) were detected in the whole dataset. The median number
of ARGC present in any sample is 10 resulting in a very sparse
dataset. Table 2 lists the most frequently found ARGC per species.

To review correlation between the 152 ARGC, a hierarchical
clustering using Ward’s algorithm (Ward, 1963) was performed
(Figure 2A). An example of the strong correlation between
several specific ARGC can be seen in Figure 2B. Even though
some of the clusters have similar names, they represent
different subtypes of the same gene (i.e., different enough in
sequence to be placed in separate clusters, section “Clustering
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TABLE 2 | Most common antibiotic resistance gene clusters per species detected
from the WGS data.

Species (Total
samples)

Most common gene
(% occurrence)

Second most common
gene (% occurrence)

A. baumannii (264) Class C beta-lactamase
ADC-98 (98.5)

OXA-51 family
carbapenem-hydrolyzing
class D beta-lactamase
OXA-561 (98.5)

E. coli (341) Class C
extended-spectrum
beta-lactamase EC-18
(99.4)

Aminoglycoside
O-phosphotransferase
APH(3′′)-Ib (51.3)

E. cloacae (70) Multidrug efflux RND
transporter permease
subunit OqxB21 (92.2)

Fosfomycin resistance
glutathione transferase
FosA2 (78.6)

K. aerogenes (53) Multidrug efflux RND
transporter permease
subunit OqxB21 (100.0)

FosA family fosfomycin
resistance glutathione
transferase (100.0)

K. pneumoniae
(218)

FosA family fosfomycin
resistance glutathione
transferase (100.0)

Class A beta-lactamase
SHV-200 (96.3)

*The occurrence refers to the percentage of samples, stratified by species, where
a given ARGC is found in the WGS data.

similar antibiotic resistance genes”). The full table with all
ARGC pairwise correlation values can be found in supplements
(Supplementary Table S4).

XGBoost Model Training and Testing
Since sparse input in machine learning models can bias
performance (both under- or overestimating) depending on the
split in training and testing data (Wu et al., 2013), we trained
51 independent models for each antibiotic (polling isolates of
all species together). Each model was trained and validated with
a different split in order to see the performance distribution
(refer to Supplementary Figure S2 for the overall flow of model
training). Figure 3 shows the distribution of AUC based on
the testing subset for each individual split. The model with
the median performance over all 51 splits for each antibiotic
(represented by the thick line in the boxplots) is assumed to be
the closest to real-life performance (i.e., the least biased) and was
chosen as the final model. The performance of these final models
are detailed in Table 3 and Figure 4 (see Supplementary Table S5
for the performance of all other models).

Feature Importance
Regardless of fluctuations in model performance based on
split in training and testing, the important features ARGC
extracted from the models appeared to be largely the same
per antibiotic prediction. Table 4 shows the 5 most important
ARGC (on average over the 51 models) for each ABR prediction
model. The full table can be found in the supplements
(Supplementary Table S6).

As mentioned in section “Feature importance”, once a feature
is chosen for the use in the decision-making, random forest-based
methods often ignore other highly correlated features as they do
not contribute to class discrimination. However, in the context of
this study, when unused ARGC may provide additional biological

TABLE 3 | Performance of final ABR prediction models.

Antibiotic Acc R P Sp MCC AUC PR-AUC

Cefepime 0.82 0.86 0.86 0.77 0.62 0.89 0.92

Cefotaxime 0.83 0.93 0.86 0.53 0.52 0.80 0.92

Ceftriaxone 0.84 0.93 0.87 0.56 0.55 0.88 0.96

Ciprofloxacin 0.81 0.86 0.85 0.73 0.60 0.89 0.94

Gentamicin 0.91 0.90 0.89 0.93 0.82 0.96 0.95

Levofloxacin 0.81 0.87 0.84 0.70 0.58 0.89 0.94

Meropenem 0.89 0.82 0.92 0.94 0.78 0.94 0.94

Tobramycin 0.95 0.92 0.98 0.98 0.90 0.97 0.98

insights, we list all ARGC, chosen by the models and those
correlated, in supplemental materials (Supplementary Table S4).

Comparison With Other Algorithms
XGBoost models were compared with those based on LASSO
and Ridge regression, which also can deal with data sparsity
and have built-in feature selection (Supplementary Table S7).
In 6–7 (depending on the metric to compare) out of 8
AB, XGBoost models appear to be slightly better than linear
regression models. The real advantage of XGBoost over the
linear regression algorithms is the robustness in the important
feature selection. Table 5 in conjunction with Supplementary
Table S6 demonstrate that XGBoost yields the best consistency in
selecting top informative features compared to LASSO and Ridge
regression models.

Reliability Indexes
Figure 5 shows distributions of the RI for each final model based
on the corresponding testing set. While there is no unified cut-
off for RI across all models, there is a clear trend that correct
predictions tend to have a higher RI.

Practical Implementation of Models
Demo dataset (section “Preliminary pipeline implementation and
evaluation”) is used to illustrate how new unseen samples could
be run through the pipeline of preprocessing and subsequent
prediction by the 8 models (Figure 6). For a given sample,
each antibiotic is assigned a binary resistance prediction with
a confidence (reliability index). For demonstration purposes,
current implementation retrieves meta-data information for a
given sample, such as species name (a header of the table), and
known drug resistance status (last colored column).

Figure 6 shows how prediction results on novel samples could
be presented to the clinician in the format of an antibiogram. The
online application provides a more intuitive way to explore the
results and use of this pipeline. The predicted antibiograms from
all extra samples (the Demo set based on public samples and the
In-house dataset) can be explored in detail, and an additional tab
(not shown) provides more information about the models and
the important features. The summary of all predictions for Demo
and In-house datasets can be found in Figure 7. The web-based
demonstration and stand-alone versions of the application can
be found at https://vancampn.shinyapps.io/wgs2amr/ and https:
//github.com/pieterjanvc/wgs2amr/, respectively.
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DISCUSSION

This work provides a framework wherein bacterial samples can
be tested quickly to obtain a preliminary antibiogram to guide
initial antibiotic selection for treatment. Culturing bacteria and
getting a full antibiogram can take 2–4 days, whereas WGS and
the computational pipeline presented here only takes around a
day. At present, sequencing is taking up the majority of time
but is likely to decrease significantly with the improvements in
sequencing technologies.

Presenting the results as an early antibiogram estimate
(Figure 6) instead of just individual predictions, provides
clinicians with a clear and intuitive way to inform the choice of
the otherwise empiric initial AB. The general resistance pattern
of the whole antibiogram can be informative in itself, even if
there may still be errors in individual predictions. The latter
is further aided by the addition of the RI that indicates how
certain the models are on individual predictions. While there is
not a single clear cut for the RI, Figures 5, 7 suggest that the
majority of samples assessed with a high RI appear to have correct
predictions. All of this helps early, informed AB choice that can
decrease the time to start effective AB therapy while limiting the
use of empiric broad-spectrum AB and slowing the development
of new resistant strains. The predictions could become especially
helpful in settings where resources do not permit the use of a
full microbiology lab (e.g., in developing countries). Upcoming
technologies, like the Nanopore MinION, (Z) (2019), will allow
clinicians in the near future to sequence pathogens with smaller

portable devices. This, coupled with analytical pipelines like
the one presented here, could provide valuable information
on pathogen resistance that would otherwise not be available.
Regardless, the results will require clinical judgment.

All pathogens have several ARGC that are found in nearly
every sample, regardless of its resistance status to the tested AB
(e.g., class C extended-spectrum beta-lactamase EC-18 cluster was
detected in 99% of E. coli isolates, Table 2). This underlines that
Gram-negatives have no easy one-to-one genotype-phenotype
relationship for some ARG as their presence does not equal
resistance per se. A well-studied example of this is theAmpC gene,
which is expressed in many species or strains, even those fully
susceptible to AB (Bajaj et al., 2016). The complex relationships
between the ARG and phenotype dictated the application of more
complex machine learning algorithms, such as random forest
(the basis of XGBoost). An additional advantage of XGBoost
is that it provides a glimpse into its decision-making process
by reporting the list of features ARGC most often used when
building the model as a proxy for key decisions. The downside of
this simplification is that caution is warranted when interpreting
these features. Finally, given that the datasets are sparse, models
are prone to having to rely on different features depending on
the split in training and testing. The higher the consistency in
selecting important features across different independent models,
the more robust the final model is anticipated to be (Table 5).

An intuitive example is the class A extended-spectrum beta-
lactamase cluster as an important feature in the cephalosporin
prediction models (Table 4). Other ARGCs seem less relevant

FIGURE 2 | Correlation between the 152 ARGC found in the analyzed samples. (A) Overall pairwise correlation plot. (B) A zoom-in example of a highly correlated
group of ARGC. Numbers in parentheses are the same serial numbers as in columns provided for easy matching.
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FIGURE 3 | Performance of XGBoost models based on 51 different splits of the data. Boxplots represent distribution of AUC for the corresponding testing subsets,
with thick lines indicating the median performance.

FIGURE 4 | ROC curves with confidence intervals of the final models based on the predictions of test subsets.

at first glance but might make more sense when interpreted
in a broader context. AAC(6′)-Ib family aminoglycoside 6′-
N-acetyltransferase is an aminoglycoside resistance gene, but
apart from being important in the tobramycin model (an
aminoglycoside), it is also found to be important in the models
predicting cephalosporin and levofloxacin resistance. This is
where a more careful interpretation of important features is

warranted as the non-linearity of XGBoost models is starting
to provide less intuitive connections. For example, this gene
is found in a variety of Gram-negative species and is known
to be present in many different plasmids, genomic islands and
integrons that carry other genetic resistance genes. It could be
that this gene is a proxy for other, more relevant genes or even
other genetic factors in the genome associated with resistance
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TABLE 4 | Top 5 most important features for each antibiotic model.

ARGC Gain

Cefepime

AAC(6′)-Ib family aminoglycoside 6′-N-acetyltransferase 18.90 ± 3.27

Class A extended-spectrum beta-lactamase CTX-M-222 7.84 ± 1.07

Aminoglycoside O-phosphotransferase APH(3′′)-Ib 6.44 ± 1.91

Class C extended-spectrum beta-lactamase EC-18 5.49 ± 1.30

Carbapenem-hydrolyzing class A beta-lactamase KPC-33 5.14 ± 1.32

Cefotaxime

Aminoglycoside nucleotidyltransferase ANT(3′′)-IIa 17.09 ± 7.27

AAC(6′)-Ib family aminoglycoside 6′-N-acetyltransferase 13.75 ± 7.65

Class C extended-spectrum beta-lactamase EC-18 13.16 ± 4.84

Multidrug efflux RND transporter permease subunit OqxB21 9.74 ± 4.27

OXA-51 family carbapenem-hydrolyzing class D
beta-lactamase OXA-561

8.26 ± 3.86

Ceftriaxone

AAC(6′)-Ib family aminoglycoside 6′-N-acetyltransferase 15.52 ± 4.35

Class C beta-lactamase CMY-163 8.76 ± 1.79

Class A extended-spectrum beta-lactamase CTX-M-222 8.37 ± 2.17

Class C extended-spectrum beta-lactamase EC-18 8.10 ± 1.99

Multidrug efflux RND transporter permease subunit OqxB21 7.00 ± 3.20

Ciprofloxacin

AAC(6′)-Ib family aminoglycoside 6′-N-acetyltransferase 23.44 ± 4.94

Sulfonamide-resistant dihydropteroate synthase Sul1 10.29 ± 3.20

Tetracycline efflux MFS transporter Tet(B) 4.99 ± 1.71

Class A beta-lactamase TEM-219 4.93 ± 1.14

Aminoglycoside O-phosphotransferase APH(3′′)-Ib 4.47 ± 1.63

Gentamicin

Aminoglycoside N-acetyltransferase AAC(3)-IIc 28.79 ± 3.10

ANT(3′′)-Ia family aminoglycoside nucleotidyltransferase
AadA1

20.98 ± 2.52

Aminoglycoside nucleotidyltransferase ANT(2”)-Ia 17.79 ± 2.03

OXA-24 family carbapenem-hydrolyzing class D
beta-lactamase OXA-25

4.15 ± 1.59

Mph(E) family macrolide 2’-phosphotransferase 2.07 ± 1.10

Levofloxacin

AAC(6′)-Ib family aminoglycoside 6′-N-acetyltransferase 25.11 ± 6.17

Sulfonamide-resistant dihydropteroate synthase Sul1 7.72 ± 3.73

Tetracycline efflux MFS transporter Tet(B) 5.92 ± 1.67

Class A beta-lactamase TEM-219 5.89 ± 1.74

Class C extended-spectrum beta-lactamase EC-18 4.97 ± 1.73

Meropenem

Carbapenem-hydrolyzing class A beta-lactamase KPC-33 30.09 ± 5.21

Bleomycin binding protein Ble-MBL 9.55 ± 2.02

OXA-23 family carbapenem-hydrolyzing class D
beta-lactamase OXA-483

8.58 ± 3.25

Class C extended-spectrum beta-lactamase EC-18 5.79 ± 2.05

Class A beta-lactamase SHV-200 5.59 ± 2.74

Tobramycin

AAC(6′)-Ib family aminoglycoside 6′-N-acetyltransferase 60.50 ± 5.02

Aminoglycoside nucleotidyltransferase ANT(2”)-Ia 17.91 ± 1.98

Aminoglycoside N-acetyltransferase AAC(3)-IIc 6.54 ± 1.24

Aminoglycoside 6′-N-acetyltransferase AAC(6′)-Iq 4.62 ± 1.51

ArmA family 16S rRNA [guanine(1405)-N(7)]-methyltransferase 1.89 ± 0.97

*Gain is the relative importance of the ARGC in a prediction model, reported
here as mean with standard deviation computed over 51 independent models
for the same AB.

TABLE 5 | Counts of unique features found among top 5 across 51 independent
models for each AB.

Antibiotic model LASSO Ridge XGBoost

Cefepime 28 13 11

Cefotaxime 38 38 12

Ceftriaxone 25 29 12

Ciprofloxacin 30 16 13

Gentamicin 16 12 18

Levofloxacin 24 17 11

Meropenem 25 18 11

Tobramycin 14 16 14

*The lower number signifies the more consistent feature selection across
data resampling.

(Wilson et al., 2016; Lehtinen et al., 2017). Furthermore, this
gene is prominent in Klebsiella species which could be used
during decision-making to take advantage of innate differences
in resistance between species. The fact that our prediction models
are species independent could make them more powerful when
focusing on resistance patterns in contaminated, mixed, and
metagenomic samples. The latter is part of the future goals of this
work. To show that the presence of ARG only could easily predict
species, a model with the same input, but trained on predicting
species instead of ABR, was built and had a near perfect accuracy
(Supplementary Table S8).

The most striking discordance between an antibiotic and its
model’s important ARGC features was observed for levofloxacin.
None of the most important ARGC picked up by the model are
directly related to quinolone resistance. This is likely because
levofloxacin resistance is largely based on mutations or small
variations (e.g., gyrase gene; Chen and Lo, 2003). Given our
models do not incorporate such information (section “Clustering
similar antibiotic resistance genes”), all important ARGC in the
levofloxacin resistance model appear to be proxies for these
mutations. This illustrates both the strength and limitations of
models like XGBoost. It can make accurate predictions (Table 3)
on correlated and complex data by using non-linear logic, but
the interpretation of such models can be obscure and could limit
biological understanding of the underlying processes.

As any other previous work in this early-stage field of
predicting ABR based on the WGS data, our study has several
limitations. One of the main challenges was the sparsity of
the model input, which may result in biased performance
depending on the split in training and testing data. Even after
clustering highly similar ARG in ARGC (hence no account
for polymorphism), we still ended up with some ARGC only
seen once in the whole dataset (median presence of 10 out of
152 clusters per sample). The sparsity is likely because some
genes are rare, or the dataset is not fully representative of all
evaluated resistances (limitation of using publicly available data).
If we would only have used the genes originally sequenced
in the bacteria of interest, we might have had less sparsity,
but would likely be underestimating the presence of resistance
as many species have developed similar resistance genes or
exchanged them in processes like horizontal gene transfer. The
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FIGURE 5 | Distribution of reliability indexes (RI). Density plots are based on the predictions of the respective testing sets for each final model.

FIGURE 6 | Example of the predicted antibiogram. An illustration of the output from the R shiny app using the sample SAMN07450853 from the Demo set. Other
samples from the Demo and In-house datasets can be accessed through the app. The “reference” column compares the predicted resistance to the one confirmed
in the clinical laboratory. This would normally not be present at the time the models do their prediction for de novo samples. Color coding used: green – correct,
red – incorrect, and blue – unknown.

second reason performance suffered in some cases is the class
imbalance between available susceptible and resistant samples,
e.g., cefotaxime only has 50 susceptible samples (Table 1),
and also the lowest performance (Table 3). By creating many

independent models for each antibiotic and selecting the one
with median performance, we ensured that the final model would
be the closest estimate of the real-life performance (section
“XGBoost model training and testing”). This technique is not to

Frontiers in Microbiology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 1013

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01013 May 22, 2020 Time: 16:51 # 11

Van Camp et al. Prediction of Antimicrobial Resistance

FIGURE 7 | Prediction of samples from the (A) Demo and (B) In-house datasets. Predictions are grouped by antibiotic and ordered by reliability index. Incorrect
predictions encircled in red, predictions with no known resistance in the meta-data are not shown. In-house dataset was not tested for cefotaxime and levofloxacin,
hence these two ABs are not shown.

be confused with model cross-validation, where different splits
of data are used to enhance one final model, and additional
validation data is needed to estimate the performance.

Other limitations are that the models cannot predict the
level of resistance (i.e., as regression) as they were trained
on a binary data (resistant versus susceptible). Using the
MIC values as input could help in this case, but the data
is not always available or may be inconsistent. Also, the

current predictor accounts for presence or absence of
certain known drug resistance genes and hence cannot
detect the presence of previously unseen genes conferring
new drug resistance. In other words, the prediction of a
sample being resistant has higher confidence than being
susceptible. Furthermore, due to the nature of sequencing
data (DNA-seq), the models cannot incorporate resistance
originating from the over-expression of genes targeted
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by inhibitors. RNA-seq potentially could mitigate this problem
but presents additional challenges. (Meta-)transcriptomics data,
unfortunately, and remains mostly within research realm.
Complexity of reference database, inference of organisms/strains,
and their relative abundance data (Cox et al., 2017), dynamic
gene expression profile upon different drug treatments, and
overall complexity of data preparation/generation impede
the application of meta-transcriptomics data for real-time
predictions (Van Camp et al., 2020).

Finally, the models use sequencing data derived from
isolates, but it remains to be seen how they would perform
on contaminated or mixed (e.g., metagenomic) samples.
All limitations will be further addressed in future studies.
Nevertheless, this study has shown a great potential of sequencing
data as a basis for the prediction of antimicrobial resistance in
Gram-negative bacteria. We additionally focused on the more
practical implementation of resistance prediction models by
presenting the end-users (medical practitioners) with an easy to
use and interpret interface where novel predictions on different
AB are shown together as in a traditional antibiogram but with an
additional RI to further assist during the decision making process.

To summarize, this work demonstrates that whole-genome
sequencing coupled with modern machine-learning methods has
great potential to deliver early estimations of the antibiogram
for Gram-negative bacteria. The generated models, being
trained solely on the presence-absence of the clusters of ARG,
demonstrate promising performance and robustness to heavily
class-imbalanced data. RI are introduced to provide further
assessment of predictions and may be used in subsequent
machine learning models to improve accuracy further. By
presenting the results in the form of an antibiogram, we provide
an intuitive way for the clinician to interpret predictions and
guide the initial empiric antibiotic choice before the laboratory

results are available. This may help in shortening the time to start
effective AB treatment.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the NCBI
BioSample database (BioProject ID: PRJNA587095).

AUTHOR CONTRIBUTIONS

P-JV did the data collection and curation, model training and
validation, developed the R shiny app, and stand-alone analytical
pipeline. DH and AP conceived of the study, evaluated results,
and supervised the project. DH provided clinical samples for
the In-house dataset. AP provided computational resources. All
authors participated in writing the manuscript.

FUNDING

This work was supported by the Centers for Disease Control
(Contract Number OADS BAA 2016-N-17812) and funding
from the Academic Research Committee at Cincinnati Children’s
Hospital Medical Center.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2020.01013/full#supplementary-material

REFERENCES
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic

local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-
2836(05)80360-2

Bajaj, P., Singh, N. S., and Virdi, J. S. (2016). Escherichia coli β-Lactamases: what
really matters. Front. Microbiol. 7:417. doi: 10.3389/fmicb.2016.00417

Bradley, P., Gordon, N. C., Walker, T. M., Dunn, L., Heys, S., Huang, B., et al.
(2015). Rapid antibiotic-resistance predictions from genome sequence data for
Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6:10063.
doi: 10.1038/ncomms10063

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment
using DIAMOND. Nat. Methods 12, 59–60. doi: 10.1038/nmeth.3176

Centers for Disease Control and Prevention (2018). Antibiotic / Antimicrobial
Resistance. Available online at: https://www.cdc.gov/drugresistance/index.html
(accessed March 20, 2019).

Chen, F.-J., and Lo, H.-J. (2003). Molecular mechanisms of fluoroquinolone
resistance. J. Microbiol. Immunol. Infect. 36, 1–9.

Chen, T., and Guestrin, C. (2016). XGBoost: a scalable tree boosting system. Proc.
Int. Conf. Knowl. Discov. DataMin. 16, 785–794. doi: 10.1145/2939672.2939785

Couto, R. C., Carvalho, E. A. A., Pedrosa, T. M. G., Pedroso, E. R., Neto, M. C.,
and Biscione, F. M. (2007). A 10-year prospective surveillance of nosocomial
infections in neonatal intensive care units. Am. J. Infect. Control 35, 183–189.
doi: 10.1016/j.ajic.2006.06.013

Cox, J. W., Ballweg, R. A., Taft, D. H., Velayutham, P., Haslam, D. B., and Porollo,
A. (2017). A fast and robust protocol for metataxonomic analysis using RNAseq
data. Microbiome 5:7. doi: 10.1186/s40168-016-0219-5

Devika, S., Jeyaseelan, L., and Sebastian, G. (2016). Analysis of sparse data in
logistic regression in medical research: a newer approach. J. Postgrad. Med. 62,
26–31. doi: 10.4103/0022-3859.173193

Drouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J., and Laviolette,
F. (2019). Interpretable genotype-to-phenotype classifiers with performance
guarantees. Sci. Rep. 9:4071. doi: 10.1038/s41598-019-40561-2

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Eyre, D. W., De Silva, D., Cole, K., Peters, J., Cole, M. J., Grad, Y. H., et al. (2017).
WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J. Antimicrob.
Chemother. 72, 1937–1947. doi: 10.1093/jac/dkx067

Farrar, D. E., and Glauber, R. R. (1967). Multicollinearity in regression analysis: the
problem revisited. Rev. Econ. Stat. 49, 92–107. doi: 10.2307/1937887

Feuerriegel, S., Schleusener, V., Beckert, P., Kohl, T. A., Miotto, P., Cirillo, D. M.,
et al. (2015). PhyResSE: a web tool delineating Mycobacterium tuberculosis
antibiotic resistance and lineage from whole-genome sequencing data. J. Clin.
Microbiol. 53, 1908–1914. doi: 10.1128/JCM.00025-15

Lehtinen, S., Blanquart, F., Croucher, N. J., Turner, P., Lipsitch, M., and Fraser, C.
(2017). Evolution of antibiotic resistance is linked to any genetic mechanism
affecting bacterial duration of carriage. Proc. Natl. Acad. Sci. U.S.A. 114, 1075–
1080. doi: 10.1073/pnas.1617849114

Frontiers in Microbiology | www.frontiersin.org 12 May 2020 | Volume 11 | Article 1013

https://www.frontiersin.org/articles/10.3389/fmicb.2020.01013/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01013/full#supplementary-material
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.3389/fmicb.2016.00417
https://doi.org/10.1038/ncomms10063
https://doi.org/10.1038/nmeth.3176
https://www.cdc.gov/drugresistance/index.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.ajic.2006.06.013
https://doi.org/10.1186/s40168-016-0219-5
https://doi.org/10.4103/0022-3859.173193
https://doi.org/10.1038/s41598-019-40561-2
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/jac/dkx067
https://doi.org/10.2307/1937887
https://doi.org/10.1128/JCM.00025-15
https://doi.org/10.1073/pnas.1617849114
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01013 May 22, 2020 Time: 16:51 # 13

Van Camp et al. Prediction of Antimicrobial Resistance

Livermore, D. M. (1998). Beta-lactamase-mediated resistance and opportunities for
its control. J. Antimicrob. Chemother. 41(Suppl. D), 25–41. doi: 10.1093/jac/41.
suppl_4.25

Marston, H. D., Dixon, D. M., Knisely, J. M., Palmore, T. N., and Fauci, A. S. (2016).
Antimicrobial resistance. JAMA 316, 1193–1204. doi: 10.1001/jama.2016.11764

Martin, E. T., Tansek, R., Collins, V., Hayakawa, K., Abreu-Lanfranco, O., Chopra,
T., et al. (2013). The carbapenem-resistant Enterobacteriaceae score: a bedside
score to rule out infection with carbapenem-resistant Enterobacteriaceae among
hospitalized patients.Am. J. Infect. Control 41, 180–182. doi: 10.1016/j.ajic.2012.
02.036

MinION (2019). Oxford Nanopore Technologies. Available online at: http://
nanoporetech.com/products/minion (accessed May 16, 2019).

Nguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., et al.
(2018). Developing an in silico minimum inhibitory concentration panel test
for Klebsiella pneumoniae. Sci. Rep. 8, 1–11. doi: 10.1038/s41598-017-18972-w

Piramuthu, S. (2008). Input data for decision trees. Expert Syst. Appl. 34, 1220–
1226. doi: 10.1016/j.eswa.2006.12.030

Scaggs Huang, F. A., Mortensen, J., Skoch, J., Andersen, H., Staat, M. A., Schaffzin,
J. K., et al. (2019). Successful whole genome sequencing-guided treatment of
Mycoplasma hominis Ventriculitis in a preterm infant. Pediatr. Infect. Dis. J. 38,
749–751. doi: 10.1097/INF.0000000000002306

SRA Toolkit Development Team (2019). SRA Toolkit NCBI - National Center for
Biotechnology Information/NLM/NIH. Available online at: https://github.com/
ncbi/sra-tools (accessed March 15, 2019).

Van Camp, P.-J., Haslam, D. B., and Porollo, A. (2020). Bioinformatics approaches
to the understanding of molecular mechanisms in antimicrobial resistance. Int.
J. Mol. Sci. 21:1363. doi: 10.3390/ijms21041363

Vasudevan, A., Mukhopadhyay, A., Li, J., Yuen, E. G. Y., and Tambyah, P. A.
(2014). A prediction tool for nosocomial multi-drug resistant gram-negative
Bacilli infections in critically ill patients - prospective observational study. BMC
Infect. Dis. 14:615. doi: 10.1186/s12879-014-0615-z

Vincent, J.-L. (2003). Nosocomial infections in adult intensive-care units. Lancet
361, 2068–2077. doi: 10.1016/S0140-6736(03)13644-6

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. J. Am.
Stat. Assoc. 58, 236–244. doi: 10.2307/2282967

Wilson, B. A., Garud, N. R., Feder, A. F., Assaf, Z. J., and Pennings, P. S. (2016).
The population genetics of drug resistance evolution in natural populations of
viral, bacterial and eukaryotic pathogens. Mol. Ecol. 25, 42–66. doi: 10.1111/
mec.13474

Wu, W., May, R. J., Maier, H. R., and Dandy, G. C. (2013). A benchmarking
approach for comparing data splitting methods for modeling water resources
parameters using artificial neural networks. Water Resour. Res. 49, 7598–7614.
doi: 10.1002/2012WR012713

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Van Camp, Haslam and Porollo. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 13 May 2020 | Volume 11 | Article 1013

https://doi.org/10.1093/jac/41.suppl_4.25
https://doi.org/10.1093/jac/41.suppl_4.25
https://doi.org/10.1001/jama.2016.11764
https://doi.org/10.1016/j.ajic.2012.02.036
https://doi.org/10.1016/j.ajic.2012.02.036
http://nanoporetech.com/products/minion
http://nanoporetech.com/products/minion
https://doi.org/10.1038/s41598-017-18972-w
https://doi.org/10.1016/j.eswa.2006.12.030
https://doi.org/10.1097/INF.0000000000002306
https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
https://doi.org/10.3390/ijms21041363
https://doi.org/10.1186/s12879-014-0615-z
https://doi.org/10.1016/S0140-6736(03)13644-6
https://doi.org/10.2307/2282967
https://doi.org/10.1111/mec.13474
https://doi.org/10.1111/mec.13474
https://doi.org/10.1002/2012WR012713
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data
	Introduction
	Materials and Methods
	Pathogens and Antibiotics of Interest
	Public Data Collection
	In-House Dataset of Samples
	Analysis of WGS Data
	Clustering Similar Antibiotic Resistance Genes
	Building and Evaluating Machine Learning Models
	Reliability Index
	Feature Importance
	Preliminary Pipeline Implementation and Evaluation

	Results
	Data Collection and Pre-processing
	XGBoost Model Training and Testing
	Feature Importance
	Comparison With Other Algorithms
	Reliability Indexes
	Practical Implementation of Models

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


