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Antimicrobial resistance (AMR) poses a global human and animal health threat, and
predicting AMR persistence and transmission remains an intractable challenge. Shotgun
metagenomic sequencing can help overcome this by enabling characterization of AMR
genes within all bacterial taxa, most of which are uncultivatable in laboratory settings.
Shotgun sequencing, therefore, provides a more comprehensive glance at AMR
“potential” within samples, i.e., the “resistome.” However, the risk inherent within a given
resistome is predicated on the genomic context of various AMR genes, including their
presence within mobile genetic elements (MGEs). Therefore, resistome risk stratification
can be advanced if AMR profiles are considered in light of the flanking mobilizable
genomic milieu (e.g., plasmids, integrative conjugative elements (ICEs), phages, and
other MGEs). Because such mediators of horizontal gene transfer (HGT) are involved
in uptake by pathogens, investigators are increasingly interested in characterizing that
resistome fraction in genomic proximity to HGT mediators, i.e., the “mobilome”; we term
this “colocalization.” We explored the utility of common colocalization approaches using
alignment- and assembly-based techniques, on clinical (human) and agricultural (cattle)
fecal metagenomes, obtained from antimicrobial use trials. Ordination revealed that
tulathromycin-treated cattle experienced a shift in ICE and plasmid composition versus
untreated animals, though the resistome was unaffected during the monitoring period.
Contrarily, the human resistome and mobilome composition both shifted shortly after
antimicrobial administration, though this rebounded to pre-treatment status. Bayesian
networks revealed statistical AMR-MGE co-occurrence in 19 and 2% of edges from
the cattle and human networks, respectively, suggesting a putatively greater mobility
potential of AMR in cattle feces. Conversely, using Mobility Index (MI) and overlap
analysis, abundance of de novo-assembled contigs supporting resistomes flanked by
MGE increased shortly post-exposure within human metagenomes, though > 40 days
after peak dose such contigs were rare (∼2%). MI was not substantially altered by
antimicrobial exposure across all cattle metagenomes, ranging 0.5–4.0%. We highlight
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that current alignment- and assembly-based methods estimating resistome mobility
yield contradictory and incomplete results, likely constrained by approach-specific data
inputs, and bioinformatic limitations. We discuss recent laboratory and computational
advancements that may enhance resistome risk analysis in clinical, regulatory, and
commercial applications.

Keywords: antimicrobial resistance, mobile genetic elements, colocalization, assembly, network analysis

INTRODUCTION

Antimicrobial resistance (AMR) is currently among the most
urgent issues facing human and animal health (Roca et al., 2015;
de Kraker et al., 2016). AMR arises from the capacity of bacteria
to resist antimicrobial drugs through several genetic mechanisms.
These mechanisms are complex, and the means by which bacteria
acquire these mechanisms are correspondingly diverse. The
use of high-throughput sequencing (HTS) to analyze the basis
of AMR across bacterial taxa is generating an even deeper
appreciation for the microbial ecological complexity of AMR.
By taking a metagenomics approach, scientists can describe and
semi-quantitate the resistome, i.e., all detectable AMR genes
within a given sample. This approach has demonstrated that
resistomes are ubiquitous, even in samples with little direct
selective pressure (Hughes and Andersson, 2017). In some cases,
environments with low anthropogenic influence contain more
diverse resistomes than environments with antimicrobial drug
residues, for example. These results suggest a need to characterize
resistomes using more nuanced methods and metrics (Hu
et al., 2013; Martínez et al., 2015; Lanza et al., 2018). Under
this perspective, the resistome itself is a hazard, and different
resistome constellations confer various levels of risk to public,
human, or animal health. The need to discriminate the risk
level of various resistomes is especially salient for purposes of
food safety and public health risk assessment (Gillings, 2013;
Millan, 2018).

One component of evaluating resistome risk is the need to
understand the inherent risk level of a given AMR gene. In
some cases, these varying risk levels can be easy to discern by
most clinicians, regulatory agencies, and scientists. For example,
AMR genes that confer resistance to last-resort antimicrobial
drugs carry higher risk than AMR genes that confer resistance
to antimicrobial drugs that cannot be used in human patients.
But the inherent risk level of a given AMR gene is only a small
piece of the overall risk picture. In fact, the genomic context of
each AMR gene is often more important than the identity and
quantity of the AMR genes themselves. The criticality of genomic
context arises from the ability of bacteria to propagate AMR genes
via several genetic mechanisms, including asexual reproduction
and horizontal gene transfer (HGT). The latter mechanism plays
an especially important role in the microbial ecology of AMR
because it allows distantly related bacteria to exchange AMR
genes. Rates of HGT have been shown to increase under salient
environmental conditions, and HGT enables AMR gene transfer
between pathogens and non-pathogens (Forsberg et al., 2012; Qin
et al., 2015; von Wintersdorff et al., 2016). Furthermore, many
HGT mechanisms support the packaging and transfer of sets of

genes, meaning that bacteria can exchange several AMR genes in
a single transfer event. The specifics of HGT are highly variable
and difficult to predict due to their complexity. The propensity
for two bacteria to exchange AMR genes via HGT will depend on
several factors, including the identity and genomic composition
of the donor and recipient bacteria; the type of HGT mechanism
involved; and the environment surrounding the bacteria at
any given time. Due to this complexity, a comprehensive view
of HGT and AMR genes across all bacteria would be highly
relevant and indeed necessary to fully appreciate the clinical and
epidemiologic risks intrinsic to the mobilization and acquisition
of AMR genes in bacterial populations (Beceiro et al., 2013;
Partridge et al., 2018).

Recently, several studies have reported the results of resistome
and mobilome analysis, where mobilome is defined as all
detectable HGT elements within a given metagenomic dataset,
including plasmids, integrative conjugative elements (ICE),
transposons, and insertional repeat sequences. These studies have
yielded insights into potential connections between AMR ecology
and HGT potential (Pal et al., 2015; Che et al., 2019; Ju et al.,
2019; Li et al., 2019; Yin et al., 2019). The bioinformatics methods
needed to perform mobilome analysis are similar to those needed
for resistome analysis, and include a database of reference
sequences, a suitable bioinformatic approach, and appropriate
statistics. As with AMR genes, a myriad of databases exists for
mobile genetic elements (MGEs) involved in HGT (Siguier et al.,
2006; Leplae et al., 2010; Bi et al., 2012; Carattoli et al., 2014;
Arndt et al., 2016). There is also one dedicated bioinformatics
pipeline recently published to support resistome-mobilome
analysis (Oh et al., 2018). However, the usability and robustness
of these resources to support resistome-mobilome analysis
on short-read shotgun metagenomic data has not yet been
described. Furthermore, different bioinformatic and statistical
approaches may generate orthogonal or complementary insights
from the same metagenomic data. For example, one approach
may be better suited to identifying broad resistome-mobilome
patterns, while another may complement this high-level
information by identifying associations between specific AMR
genes and specific MGEs. On the other hand, if two approaches
yield conflicting information about the same data, this may
indicate that one or both methods have surpassed their limit
to accurately analyze the data. Improving our understanding
of the benefits, limitations, synergies, and inconsistencies
of these common approaches would advance resistome-
mobilome analysis while also highlighting gaps requiring further
methodological advancement.

The need to evaluate current resistome-mobilome
approaches has reached a critical threshold due to the
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combination of: increasing generation and availability of
short-read metagenomic data; expanding use of short-read
metagenomic data for regulatory and surveillance activities;
and increasing scientific awareness of the need for more
nuanced characterization of resistome risk. Therefore, the goal
of this study was to apply, compare and evaluate the most
common bioinformatic and statistical approaches for performing
resistome-mobilome analysis on shotgun metagenomic data.
To do this, we used two publicly available datasets, both
alignment- and assembly-based approaches, and several
common statistical techniques.

MATERIALS AND METHODS

Study Overview
Using a general framework described in Figure 1, we evaluated
the use of archetypal open-source alignment- and assembly-
based bioinformatic approaches, as well as data reduction and
network statistical methods to perform resistome-mobilome
colocalization analysis (Table 1). To reflect the most typical use
cases for colocalization analysis, where possible we performed all
procedures using default parameters. We also utilized thresholds
most reported in the resistome-mobilome literature (Table 1).

Test Data Overview
In the current work, co-occurrence analysis was performed
using data from two previously published studies that performed
metagenomic Illumina sequencing of DNA from fecal samples.
In both studies, feces were collected from healthy individuals
before and after antimicrobial drug exposure. Both studies
evaluated resistome dynamics over time. To represent a range of
metagenomic samples, we chose one study conducted in humans
(Palleja et al., 2018) and another conducted in U.S. feedlot
cattle (Doster et al., 2018) (referred to as “human” and “cattle,”
respectively). In the human trial, a 4-day combination course
of parenteral last-resort antimicrobials (meropenem, gentamicin,
and vancomycin) was given to 12 individuals who were sampled
at five time points (Day 0-pre-treatment, Day 4-last day of
treatment, and Days 8-, 42-, 180-post-treatment). The cattle trial
involved a single course of parenteral tulathromycin given to 15
individuals (treated) and another 15 individuals in a nearby pen
who were kept untreated. For both groups of cattle, fecal samples
from individual cattle were obtained at two time points (Day
0-“pre-treatment” and Day 11-“post-treatment”).

Nucleotide Sequence Data
Sequence and metadata for the samples used in this study
are publicly available under BioProject accessions PRJEB20800
(human; 2 × 100 bp, n = 55) and PRJNA309291 (cattle; 2 ×

125 bp, n = 60). Both studies reported formal comparison of
sequencing depth and other experimental metadata variables
between sample groups, and concluded that there was no
evidence of sequencing or experimental bias impacting the
comparison of resistomes across treatments or individuals. To
ensure equal treatment and filtering of reads for purposes of our
analysis, both datasets were processed using default parameters

of the AMRPlusPlus (v1.0.1) bioinformatic pipeline (Lakin et al.,
2017), which integrates sequence trimming and quality filtering
using Trimmomatic (Bolger et al., 2014); host subtraction after
aligning samples to either Bos taurus (UMD3.1) or Homo sapiens
(version hg19) reference genomes using the Burrows-Wheeler-
Aligner (BWA) software (Li, 2013); and delimitation of non-host
reads using SamTools (Li et al., 2009).

Databases Used in Analysis
Both alignment- and assembly-based approaches require the use
of databases for identification of target sequences. For resistome
analysis using alignment-based (referred to as “Alignment”) and
assembly-based (referred to as “Assembly+BLAST”) techniques,
we used MEGARes v 1.0.1 (Lakin et al., 2017) as the reference
database. Any MEGARes accessions that included the addendum
“RequiresSNPConfirmation” in the header were removed from
analysis, as additional confirmatory assessments would be needed
to ensure positive detection of these genes. Reference mobilome
genes used for “Alignment” and “Assembly+BLAST” were
derived from ICEberg v 2.0.0 (Liu M. et al., 2019), PlasmidFinder
v 2.0.2 (Carattoli et al., 2014), and ACLAME v 0.4 (Leplae
et al., 2010) databases; from PlasmidFinder, only the accessions
for gram-positive and Enterobacteriaceae were included. For the
“Alignment” and “Assembly+BLAST” approaches, all MEGARes
and MGE accessions were concatenated into a single FASTA file,
resulting in a database size of 129,355 AMR, plasmid, integrative
conjugative element, mobilizable element, prophage, and other
virion accessions.

For the second assembly-based technique using the risk-
oriented MetaCompare pipeline (Oh et al., 2018), we utilized the
reference databases included with the default implementation of
MetaCompare, i.e., CARD for AMR gene reference accessions
(McArthur et al., 2013) and ACLAME for MGE reference
accessions (Leplae et al., 2010). This pipeline also uses PATRIC
v 3.6.2 reference accessions (Wattam et al., 2014) to identify
potential pathogens within the metagenomic data in order
to generate its resistome risk score. To maintain fidelity
of the MetaCompare pipeline, we included only the CARD
and ACLAME reference databases in our analysis of the
MetaCompare assembly results, and databases were downloaded
as part of the default MetaCompare installation, which is
dated as 03.29.2018.

Resistome-Mobilome Colocalization
Using Alignment-Based Approaches
Metagenomic reads from the human and cattle samples were
analyzed for their resistome and mobilome content using the
AmrPlusPlus pipeline, which identifies alignments to a pre-
specified nucleotide database of accessions using BWA, and then
parses the resulting SAM file to count alignments and calculate
the gene fraction for each identified accession. Gene fraction is
defined as the proportion of nucleotides within a given reference
accession that are aligned by at least one sequence read. To avoid
false positive detection of AMR and MGE genes, we used the
default gene fraction value of AMRPlusPlus, i.e., 80% (Lakin
et al., 2017). This default parameter is consistently used by
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FIGURE 1 | Overview of study workflow involved in resistome-mobilome analysis of shotgun metagenomic datasets to characterize resistome mobility potential.
Short reads derived from shotgun metagenomic sequencing platforms can be assessed using two general approaches: alignment-based and assembly based.
Alignment-based (right division) approach involves mapping of sequencing reads to reference databases of antimicrobial resistance genes and mobile genetic
elements. Statistical colocalization can then be achieved by constructing predictive co-occurrence networks as well as non-parametric ordinations using count
matrices of positive gene alignments to resistance or mobility reference sequences. Assembly based approach (left division) involves de novo reconstruction of
contiguous sequences from short metagenomic read using existing assembler algorithms and computational pipelines. Resulting contigs can be mapped to both
resistance and mobile genetic element reference databases and those contigs supporting co-occurring sequences can be detected and quantified in samples.
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TABLE 1 | Overview and basic characteristics of AMR-MGE colocalization analysis using two general approaches: alignment and assembly.

Approach Alignment-based Assembly-based

Method Ordinatation Network analysis De novo assembly Resistome risk
pipeline

Operation NMDS • Biplot Analysis • Bayesian Network:
Directed Acyclic
Graph (DAG)

• Linear DNA
Metagenomic
Assembly

• Analysis Pipeline
using IDBA-UA
Assembly

Program Vegan v2.5-5 • BNLearn v4.4.1 • MetaSPAdes • MetaCompare

Input Data • AMR/MGE
accession count
matrix filtered for
sparse genes

• Normalized (CSS)
• Transformed

(Hellinger)

• AMR/MGE
accession
counts,
metadata
variables
(continuous or
categorical)

• Blacklisting
non-sensical
network
relationships
(arcs)

• Trimmed pair-end
FASTQ files

• Trimmed pair-end
FASTQ files

Database Pipeline:
AMRPlusPlus v 1.0.1
Plasmids:
PlasmidFinder v 2.1
Prophage and other
MGE :
ACLAME v 0.4

AMR: MEGARes v
1.0
ICE: ICEBerg v 2.0

MEGARes v 1.0,
PlasmidFinder v 2.1,
ICEBerg v 2.0,
ACLAME v 0.4

CARD, ACLAME v 0.4,
PATRIC v 3.6.2

Analytical
Parameters

• K (stress) < 0.2,
good 2D
representation in
reduced
dimensions

• Anosim R > 0.75,
well separated

• Anosim R = 0.5,
moderate overlap

• Anosim R < 0.25,
significant overlap

• M2 test statistic
• P < 0.05

• Learning algorithm:
Hill climb

• BN Classifier: Naive
Bayes

• Conditional
independence test:
hybrid modeling

• Arc blacklisting
• Bootstraps: 1000
• Empirical threshold

frequency: 0.70

• Default assembly
parameters

• BLAST to MGE or
AMR databases for
contigs >800 bp of
a continuous stretch
with >90%
sequence identity
and E-value < 1 ×

10−10

• Default assembly
parameters

• BLAST alignment to
MGE or AMR based
on defaults

Colocalization • 2D spatial
visualization of
AMR/MGE genes
(at any ontologic
level) according to
a metadata
variable

• Overlay of AMR
and MGE NMDS
plots showing
co-occurrence
according to a
metadata
variable

• Predictive network of
AMR and MGE gene
co-occurrence and
visualization of
transitivity and
centrality of critical
genes/groups

• Mobility index (MI):
Number of contigs
containing an AMR
gene type and MGE
gene divided by total
number of contigs
containing an AMR
gene type in a
sample

• Risk score
• 3D Risk visualization

Method Ref. • Ordination:
(Oksanen, 2019)

• CSS
Normalization:
(Paulson et al.,
2013)

• Hellinger
Transformation:
(Legendre and
Gallagher, 2001)

• Bayes network
analysis:
(Scutari, 2010)

• Assembly defaults:
(Nurk et al., 2017)

• Assembly defaults:
(Peng et al., 2012)

• Pipeline default: (Oh
et al., 2018)

Basic characteristics of metagenomic colocalization are described.
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recent studies deploying AMRPlusPlus (Rowe and Winn, 2018;
Berglund et al., 2019; Liu J. et al., 2019; Rovira et al., 2019).
The output of AMRPlusPlus is a matrix containing counts of
aligned reads for each accession identified with at least 80%
gene fraction. For resistance genes, AMRPlusPlus also integrates
an ontology, and each MEGARes accession is classified within
this ontology at the group, mechanism and class levels (Lakin
et al., 2017). Therefore, we aggregated accession-level counts to
each of these levels within the ontology (see Supplementary
Datasheets 1, 2 for a per-sample summary of alignment counts
to AMR gene groups).

To broadly compare the resistome and mobilome between
the two sample sets (“human” versus “cattle”), we visualized
the raw abundance of AMR genes and MGEs at various levels
of ontology and classification (i.e., gene, group, mechanism,
and class), using KronaTools (Ondov et al., 2011). Then,
prior to performing alignment-based statistical analyses, sparse
features were removed from all samples (i.e., features present
in fewer than 2 samples and with fewer than 2 hits). Due
to differences in sequencing depth across samples within a
study, all counts were normalized using cumulative sum scaling
(CSS) as implemented in the package “metagenomeSeq” (Paulson
et al., 2013). Numerous normalization techniques have been
deployed in gene-abundance analysis, and all have variable
performance in terms of false-positive rate and discovery
of differentially abundant genes (Gloor et al., 2017; Weiss
et al., 2017). Previous systematic evaluations demonstrate that
CSS performs well in appropriately sampled metagenomes
(Pereira et al., 2018). After CSS normalization, counts were
aggregated at each level of hierarchical organization (i.e., group,
mechanism, class, trait). Normalized count matrices for each
dataset (i.e., human and cattle) were then used for ordination and
network analysis.

Ordination methods have been applied to count matrices
derived from shotgun sequence data of microbiomes and
resistomes (McMurdie and Holmes, 2013; Noyes et al., 2016;
Quince et al., 2017; Tessler et al., 2017; Li et al., 2019). We
deployed this approach in the simultaneous exploration of
resistome and mobilome compositional changes, especially as
a function of specific metadata variables. Ordination of the
resistome and mobilome was performed for human and cattle
datasets based on Euclidean dissimilarity indices computed
from Hellinger-transformed (Legendre and Gallagher, 2001)
cumulative sum scaling-normalized (Paulson et al., 2013)
counts using the vegdist and decostand function in “Vegan”
(Oksanen, 2019). metaMDS was used to perform non-metric
multidimensional scaling (NMDS) to arrive at a stable ordination
solution. If necessary, the number of ordination dimensions
were iteratively increased until a stress value < 0.05 was
achieved. Analysis of similarity (ANOSIM) was utilized as
an “omnibus” test (Clarke, 1993) to assess significance of
separation between sample groups over sampling timepoints,
at the mechanism level for AMR genes, and for plasmid,
ICE, and prophage genes in both study sets. In a similar
fashion, to further investigate any differences in resistome
and mobilome composition over time in the human and
cattle datasets, we employed permutational multivariate analysis

of variance (PERMANOVA) on Euclidean distance matrices,
according to (Anderson and Walsh, 2013), using the adonis
function in “Vegan.” As both ANOSIM and PERMANOVA
tests are susceptible to dispersion heterogeneity and therefore
may confound between-group variation with within-group
variation, we calculated beta-dispersion associated with all group
centroids using the betadisper function, and we explored the
multivariate homogeneity of group dispersion using permutest.
All permutive methods used 999 permutations and P < 0.05
was used as the significance threshold for all test statistics.
To measure the degree of correlation between the resistome
and mobilome (i.e., the correlation between AMR genes and
MGEs) in each dataset over time, Procrustes analysis was used
to maximize similarity between NMDS ordinations of AMR
and MGE features, and the protest function in “Vegan” was
used to obtain a correlation value and significance test statistic
(M2). For the human study, Procrustes analysis of the co-
occurring resistome and mobilome was performed across all
samples for pre-treatment, peak treatment, and post treatment
time points. Procrustes analysis for samples in the cattle study
were performed by treatment group, and by time within
each treatment group. Procrustes analysis has been previously
applied in a number of studies including the characterization
of resistomes and colocalization of resistant determinants and
MGEs (Noyes et al., 2016; Wu et al., 2017, 2018; Zhu et al., 2017;
Liao et al., 2019).

While ordination techniques can uncover temporally dynamic
correlation between the overall composition of AMR genes and
MGEs in a set of samples, network analysis can be used to
identify associations between specific genomic features (Barberán
et al., 2012; Li et al., 2015, 2016; Liu et al., 2015; Tung et al.,
2015; Feng et al., 2018; Noyes et al., 2018; Yin et al., 2019).
Because of their flexibility, networks have recently been used
to identify associations between AMR genes and MGEs (Pal
et al., 2015; Hu et al., 2016; McGeachie et al., 2016; Yin
et al., 2019). These studies used both non-random co-occurrence
networks and Bayesian networks, the latter of which are flexible
enough to incorporate diverse data including sample metadata,
environmental, microbial, and host factors (Nagarajan et al.,
2013; Shafiei et al., 2014; Noyes et al., 2018). Using as inputs the
gene taxonomy information, sample metadata, and alignment-
derived counts, we constructed Bayesian Networks (BNs) for
each dataset to identify edges between AMR genes and MGEs,
all aggregated to the mechanism level of genomic ontology.
The resulting consensus graphs were displayed using a force-
directed visualization algorithm (Jacomy et al., 2014) using
GEPHI v 0.9.2 (Bastian et al., 2009). Community structure of the
resulting consensus network was discovered using the Louvain
modularity class algorithm of Blondel et al. (2008). Input to
network analysis consisted of normalized MGE and AMR counts,
as well as metadata variables including time and treatment
status. Non-sensical temporal associations between samples were
blacklisted from the network. The structure of the directed acyclic
graph (DAG) was developed using the hill-climbing algorithm
as implemented in “bnlearn” within R (Scutari, 2010; Package
“bnlearn”, 2019). MGE and AMR counts were modeled with
a Gaussian distribution and metadata factors were modeled as
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binomial variables, using the hybrid model within “bnlearn.” To
obtain a stable network, 1000 bootstraps of the input data were
specified. The averaged.network function was used to construct
a consensus network, with an empirical threshold frequency for
consensus edges set at 0.70 or more. The resulting DAG was used
in maximum likelihood estimation parameter fitting through the
bn.fit function, as well as network analysis (Scutari, 2010).

Resistome-Mobilome Colocalization
Using Assembly-Based Approaches
MetaCompare utilizes the IDBA-UD assembler, which
implements a metagenomic-specific assembly algorithm (Peng
et al., 2012). MetaSPAdes is another widely used metagenomic-
specific assembler (Nurk et al., 2017). To evaluate the impact of
assembler choice, we assembled a subset of samples from each
dataset using both IDBA-UD (as implemented in MetaCompare)
and metaSPAdes. MetaSPAdes was run using default parameters,
and IDBA-UD was run as implemented in the MetaCompare
pipeline. Resulting assemblies were evaluated using QUAST v
5.0.2 (Gurevich et al., 2013) with default parameters. Metrics
evaluated included N50 and number of contigs > 500 bp.
Comparisons were made using a linear mixed model with dataset
specified as the random effect with random slope. Statistical
significance was evaluated using the anova function in R package
“lmerTest.”

To parse the metaSPAdes assemblies for resistome-mobilome
content, contigs were aligned against the combined MEGARes
and MGE database BLAST (Table 1). An e-value threshold (<1
× 10−10), and sequence identity (>90%) on contigs > 800
bps were used based on common cut-offs described in the
literature (Kristiansson et al., 2011; Elbehery et al., 2016; McCall
and Xagoraraki, 2018). IDBA-UD contigs were analyzed using
the MetaCompare pipeline, which aligns PRODIGAL-annotated
contigs against CARD, ACLAME and PATRIC using BLAST.
MetaCompare includes several default cut-offs for parsing BLAST
outputs which are applied differently to AMR genes and MGEs.
These default settings were used in our analysis to reflect the
typical use-case for MetaCompare (Oh et al., 2018). AMR genes
were identified via BLAST(X) using e-value < 1 × 10−10, > 60%
identity, and minimum alignment length > 25 amino acids,
while identification of MGE sequences via BLAST(N) was based
on e-value < 1 × 10−10, > 60% identity, and accessions were
to be included if these were associated with > 90% reference
sequence coverage.

Once AMR genes and MGEs are identified within assembled
contigs, the next step is to identify which contigs contain both
an AMR gene and an MGE; co-occurring placement within
a single contig is considered evidence for putative genomic
colocalization (Ng et al., 2017; Sáenz et al., 2019; Verma
et al., 2019). The MetaCompare pipeline performs this type
of colocalization and then uses the resultant information to
calculate a “risk score” based on the following criteria (in
increasing order of risk): Proportion of contigs that contain AMR
genes and no MGEs or pathogen-specific sequences; proportion
of contigs with both AMR genes and MGEs; proportion of
contigs with AMR genes, MGEs and pathogen sequences. We

ran MetaCompare with default settings and reported the resulting
risk score for each sample. To perform comparable analysis
with the metaSPAdes-generated contigs, we parsed the BLAST
outputs to identify contigs that mapped to at least one AMR
gene and one MGE (bioinformatic repository of parsing scripts)1;
such contigs were considered to contain colocalizations. To
confirm the accuracy of this colocalization, we parsed such
contigs using BLAST alignment start and stop information.
Specifically, we compared the start and stop position of each
AMR gene and each MGE within a single contig, and if
these positions overlapped, we flagged the contig as containing
“overlapping” AMR-MGE alignments. Finally, we calculated a
theoretical “mobility index” (MI) for each sample, defined as
the fraction of all AMR-harboring contigs that also contained
at least one MGE. To evaluate the impact of filtering for AMR-
MGE overlap, we reported the raw and overlap-adjusted MIs
for each sample.

Comparison of All Methods
The number of unique AMR gene groups and MGE accessions
identified in each sample by each of the three methods was
compared after initially filtering for sparseness. The relative
abundance of AMR and MGE gene groups identified for
all methods and across both datasets were summarized with
Venn diagrams constructed in InteractiVenn (Heberle et al.,
2015). From each dataset, using the resistome which has
a clear ontological hierarchy, we explored in greater depth
how each bioinformatic approach (Alignment, MetaCompare,
and metaSPAdes+BLAST) impacts the total complement of
specific genes identified, and therefore would impact resistome-
mobilome colocalization. To do this we constructed binary
heatmaps using the heatmap.2 function in the package “gplots”
(Warnes et al., 2020).

RESULTS AND DISCUSSION

After removal of low-quality and host-associated reads, the
human and cattle datasets contained ∼1.73 and ∼2.26 billion
paired reads [per sample median (range): 31.98 (11.03–69.65)
and 38.31 (9.47–68.07) million paired reads], respectively. To
characterize the relative abundance of resistome and mobilome
features across both datasets, we used raw counts of alignments to
reference AMR and MGE databases. These counts indicated that
the mobilome comprised a larger proportion of sequence reads
than the resistome, in both sample sets (11% of all alignments
in the cattle dataset and 7% in the human dataset, Figure 2).
However, the mobilome composition of the datasets differed
substantially; almost all mobilome alignments in the cattle
dataset originated from plasmids, while the human mobilome
alignments were distributed relatively evenly between plasmids
and ICE (Figure 2). The cattle plasmidome was dominated by
alignments to pBM400, a high-molecular-weight plasmid first
associated with Bacillus megaterium QM B1551 (Scholle et al.,
2003). These high-level differences in mobilome abundance and

1https://doi.org/10.13020/jw1t-8n48
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FIGURE 2 | Fecal metagenomes collected from (A) human (n = 60) and (B) beef cattle (n = 60) who were parenterally exposed to therapeutic or metaphylactic levels
of antimicrobial drugs in controlled trials, were imported from ENA (EMBL-EBI) ERP022986 (Palleja et al., 2018) and SRA (NCBI) PRJNA309391 (Doster et al., 2018),
and raw abundance of AMR or MGE accessions were displayed using Krona. Counts are aggregated to taxonomic hierarchies that are shown at the highest level in
the center (AMR or MGE) and progress outwardly to lower levels of hierarchy for all MGEs. A hue gradient of red to green is applied to represent a range of raw count
frequency, indicating that while human and cattle metagenomes contained similar proportions of AMR accessions, the two metagenomes differed significantly in the
constellation of mobile elements (i.e., “mobilomes”) of fecal metagenomes.

distribution likely impact the intra-microbial mobility dynamics
of AMR genes (Gibson et al., 2015; Bengtsson-Palme et al., 2018).

Resistome and Mobilome Compositions
Differ by Bioinformatic Approach
A comparison of resistome and mobilome richness revealed that
alignment identified fewer unique AMR groups compared to
assembly (Figure 3), in both human and cattle fecal samples.
Notably, each assembly method was able to identify 100%
of the AMR groups identified by alignment, while alignment
did not identify any AMR groups not also detected by the
assembly-based approaches. Amongst assembly results, the
MetaCompare pipeline consistently revealed a greater number
of unique AMR groups (human = 374; cattle = 363) relative to
metaSPAdes+BLAST (human = 141; cattle = 181). Moreover, of
the total number of AMR gene groups identified by each assembly
method, 72% (human) and 79% (cattle) of AMR genes identified
by MetaCompare were not identified by metaSPAdes+BLAST,
while 18% (human) and 21% (cattle) of genes identified
by metaSPAdes+BLAST were not identified by MetaCompare.
A similar pattern was observed for the mobilome (Figure 3), with
alignment identifying two to fourfold fewer unique gene groups
relative to the assembly methods. Notably, a much more notable
overlap existed in the capacity of all techniques to identify similar
MGE genes, however, metaSPAdes identified more unique MGEs
in the human and cattle datasets, while also detecting a majority
of MGE groups detected by the other methods.

Several variables likely contributed to the gene richness
disparity observed in the data. First, the process of aligning
sequence data to reference sequences involves some level of
“matching stringency.” While aligners like BWA and BLAST
have built-in or default alignment criteria, they are not always
suited to metagenomic data and therefore can lead to false-
positive identification of AMR genes or MGEs (Haft et al.,
2018). Metagenomicists attempt to ameliorate this possibility by
employing additional thresholds such as “% sequence identity,”
“% length coverage,” statistical measures of homology (e.g.,
E-value), or some combination thereof. However, identity
standards or cut-offs are not consistently applied, especially
for metagenomic analyses. For example, MetaCompare sets
gene mapping thresholds for AMR genes at > 60% identity
with minimum alignment length of 25 amino acids, and an
E-value < 1 × 10−10. Though metaSPAdes has not been formally
benchmarked for AMR genes, previous work utilized a > 90%
identity threshold and > 800 bp minimum alignment length to
evaluate gene prediction from assemblies (Nurk et al., 2017).
A further complication arises when comparing assembly results
to alignment results, as tools such as BWA typically utilize a
stringent alignment criterion as default, but do not apply a
“minimum match length” beyond that of a single read. Because
this can create many false positive identifications in metagenomic
data, the AMRPlusPlus pipeline applies a gene coverage threshold
(i.e., gene fraction) of > 80%, in addition to the default alignment
parameters of BWA-MEM. Alignment-based approaches like
AMRPlusPlus therefore reduce rates of false-positive inflation,
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FIGURE 3 | Venn diagrams depicting frequency of overlapping and differing unique gene groups identified in the (A) human and (B) cattle metagenomic datasets for
either (I) MGE or (II) AMR accessions, using common approaches to colocalize resistomes and mobilomes: Sequence alignment (yellow); direct metagenomic
assembly-metaSPAdes (red); and assembly based risk pipeline-MetaCompare. Numbers in parenthesis represent the total number of unique gene groups identified
by a given approach.

though this is done at the risk of missing divergent, low-
abundance, under-characterized, or novel genes (Arango-Argoty
et al., 2018). We hypothesize that this strict filtering approach
implemented in the alignment-based pipeline likely resulted
in loss of detected AMR and MGE group diversity compared
to assembly-based results. However, conversely, the assembly-
based results may also contain false-positive identifications.
It should also be pointed out that applying a gene fraction
may inadvertently treat AMR or MGE genes of varying
lengths, unequally, thus making within-resistome or -mobilome
comparisons difficult. However, this systematic bias is difficult to
overcome in current metagenomic practice.

In addition and related to the issue of gene fraction
thresholds in alignment, we note that alignment-based methods
disproportionately penalize mapping of gene groups that
are characterized by numerous reference database accessions
with significant sequence similarity or capacity for cross-
resistance to multiple or non-specific compounds. Within the
AMR field, this occurs most apparently for resistance to

glycopeptide antimicrobials whose resistance sequences have
extensive homology (Zeng et al., 2016), betalactamase class of
AMR genes (Xavier et al., 2016) for which a single amino acid
difference is sufficient to constitute a new “gene” within public
databases (Bush, 2018), or general resistance genes which encode
molecular machinery connoting resistance to a broad range of
substrates (e.g., metals, biocides, etc.) (Pal et al., 2015). For
such genes, alignments to short reads are less likely to meet
the coverage threshold to be considered as “present” within a
given sample. On the other hand, assembly-based methods are
more likely to detect these genes, as there is a greater probability
that longer stretches of DNA (contigs) facilitate discerned and
accurately mapped accessions. The impact of this on resistome
analysis, and therefore, any subsequent efforts to establish
resistome-mobilome co-occurrence is highly consequential.
We demonstrate the unintended effect of these bioinformatic
approaches on gene finding by reporting presence/absence
distributions for resistance genes at the class and mechanism level
using either Alignment, MetaCompare, or metaSPAdes+BLAST
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FIGURE 4 | Binary heatmap showing presence (red) or absence (gray) of resistance mechanisms and classes identified in fecal samples of (A) human and (B) cattle
metagenomic datasets, using either alignment, MetaCompare, or metaSPAdes bioinformatic approaches. (*Supplementary Datasheet 5 contains a listing of
specific resistance mechanism names corresponding to the rows of resistance gene classes).

applied to both the human and cattle datasets (Figure 4). For
example, Figure 4 indicates a notable difference in the number
of betalactamase resistance mechanisms identified between
alignment and assembly-based methods. Within the human and
cattle studies, respectively, alignment identified 9 and 8 unique
β-lactamase gene groups, whereas MetaCompare identified 85
and 67, and metaSPAdes found 23 and 24. Among those
gene groups not identified by alignment, the assembly-based
approaches identified blaTEM, blaIMP, blaVIM and blaOXA and
blaPER, blaVEB, blaCMY. The fact that disparity in discovery rates
of these gene groups exists is problematic for several reasons.
First, genes including blaTEM, blaOXA, and blaCMY connote
extended-spectrum betalactamase (ESBL) and AmpC resistance.
These genes have emerged as a major global source of AMR
in gram-negative pathogens, and have been linked to increased
mortality, hospitalization length, healthcare cost, and multi-drug
resistance (Schwaber et al., 2006). Second, treatment options
for ESBL-containing pathogens are limited and often withheld
from common use. Last resort carbapenems are frequently

applied to ESBL producing pathogens. It is therefore noteworthy
that carbapenemase gene groups, including blaIMP, blaVIM, and
blaOXA were identified by assembly-based methods, but not by
alignment in the human and cattle fecal samples. Third, it is well-
established that the ESBL genes are frequently disseminated and
mobilizable via MGEs, including plasmids, insertional sequences,
integrons, and transposons (Singh et al., 2018). Consequently,
downstream colocalization efforts using inputs from alignment
data may lead to group-by-group bias within results, relative to
the other methods.

Lastly, it is important to note that the bioinformatic
approaches evaluated in this study rely on different AMR
gene databases. While the metaSPAdes+BLAST and Alignment
approaches utilized the MEGARes database to identify AMR
genes, MetaCompare utilized CARD. Across both datasets,
MetaCompare generated much higher AMR gene richness across
all samples relative to metaSPAdes, and this result may be
explained by database difference. In addition, MetaCompare
includes a 25-aa minimum length cut-off for alignments

Frontiers in Microbiology | www.frontiersin.org 10 June 2020 | Volume 11 | Article 1376

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01376 June 26, 2020 Time: 20:51 # 11

Slizovskiy et al. Colocalization Analysis of Resistomes-Mobilomes

between contigs and AMR accessions in CARD, while the
metaSPAdes+BLAST approach applied a minimum length of 800
bp based on previous literature (Nurk et al., 2017). This difference
could also account for the greater number of AMR gene groups
identified by MetaCompare versus metaSPAdes.

As with AMR richness, we identified differences in richness
of MGEs across all samples depending on bioinformatic
technique. It is likely that the same factors that resulted in
disparity in the resistome results (discussed above) also impacted
divergences in mobilome results. However, the stark disparity
in unique MGE accessions discovered by the two assembly-
based methods (Figure 3) can largely be explained by the
differences in the associated reference databases used to find
genes via each technique. MGEs in IDBA assemblies were
identified using ACLAME only (as part of the MetaCompare
pipeline), while MGEs in metaSPAdes assemblies were identified
using ICEberg, PlasmidFinder, and ACLAME. In addition,
MetaCompare applies a 90% gene fraction cutoff in identifying
MGEs, which likely results in dramatic filtering of alignments,
especially given that many MGEs are several kilobases (or
even megabases) in length and the majority of contigs are
<2,000 bp. By contrast, most BLAST parsing approaches in
the metagenomic literature do not include a gene fraction
cutoff, and therefore the metaSPAdes+BLAST results did not
include this criterion.

These results demonstrate that even when using default
parameters, current bioinformatic approaches generate different
resistome and mobilome profiles for the same source data.
As with many bioinformatic applications, choice of reference
database and filtering criteria greatly influence the number
and diversity of features detected in the metagenomic data.
Because colocalization analysis follows basic resistome and
mobilome characterization, the differences in detected resistome
and mobilome richness likely lead to differences in colocalization
results between the approaches.

Alignment: Temporal Interactions
Between Mobilome and Resistome
Based on Ordination Analysis
To assess systematic changes in resistome and mobilome
composition before and after antimicrobial exposures in the
human and cattle trials, NMDS ordination was performed
using Hellinger-adjusted Euclidean distances obtained from the
transformation of normalized counts of genes at the class and
mechanism levels. For the human trial, ordination revealed
a markedly altered Days 4 and 8 post-treatment resistome
relative to pre-treatment (Day 0), while the resistome reverted
closer to its original state by Days 42 (Figure 5, ANOSIM
R = 0.51, P < 0.001; PERMANOVA F = 13.78, P < 0.001).
These results were consistent with the major findings of the
original publication. These differences were not significantly
impacted by dispersion heterogeneity between groups (P = 0.07)
at each time point. In the analysis of the mobilome, we detected
that ICE (ANOSIM R = 0.21, P < 0.001; PERMANOVA
F = 3.50, P < 0.001), plasmids (ANOSIM R = 0.26, P < 0.001;
PERMANOVA F = 1.68, P < 0.01), and prophages (ANOSIM

R = 0.27, P < 0.001; PERMANOVA F = 1.52, P = 0.02)
displayed a concomitant shift in their composition at Days
4 and 8, and reverted to original (Day 0) composition by
Day 42. Though beta-dispersion between groups were not
significant for plasmids and ICE (P > 0.1), differences between
timepoints were significantly affected by dispersion for prophage
genes (P = 0.02). The prophage component therefore is likely
explained by both the temporal variation before after antibiotic
administration, as well as by inter-group differences in the human
fecal samples. Procrustes analysis was performed to assess the
degree of correlation between the mobilome and resistome in
human fecal samples by superimposing metaMDS ordinations
of each. Procrustes revealed strong correlation (P < 0.001 for
all comparisons) in the resistome and mobilome [Pre-treatment:
M2 = 0.32; Peak-treatment (Day 4): M2 = 0.28; Post-treatment
(Day 8–180): M2 = 0.31] over time.

A similar exploration of the resistome and mobilome
composition was undertaken for the cattle dataset. At the
mechanism and class levels we detected no differences in the
composition of the resistome between feedlot cattle receiving a
single dose of tulathromycin and control groups at Day 0 (pre-
treatment) and Day 11 (P > 0.05). While the ICE component
of Day 0 samples was too sparse to analyze, by Day 11, the ICE
composition had changed between treated and control groups
(ANOSIM R = 0.14, P = 0.01; PERMANOVA F = 1.21, P = 0.03).
The plasmidome composition differed between treatment and
control groups at Day 0 (ANOSIM R = 0.11, P = 0.02) and
Day 11 (ANOSIM R = 0.08, P = 0.02). The prophage and
other MGE components, however, did not differ significantly by
treatment group. For comparison between treated and untreated
groups there was significant heterogeneity in dispersion for all
analyzable components of the resistome (P < 0.05), Though the
resistome did not differ between treated and control cattle, it
shifted significantly over time in both groups of cattle (Treated:
ANOSIM R = 0.34, P < 0.01; PERMANOVA F = 8.10, P < 0.01;
Untreated: ANOSIM R = 0.14, P = 0.01; PERMANOVA F = 6.88,
P = 0.01), as did the plasmidome (Treated: ANOSIM R = 0.26,
P < 0.001; PERMANOVA F = 4.08, P < 0.001) Untreated:
ANOSIM R = 0.17, P < 0.01; PERMANOVA F = 3.89, P < 0.01)
(Figure 5). Dispersion was not statistically significantly different
(P > 0.05). All other components of the mobilome remained
unchanged over time in both groups. As with the human dataset,
Procrustes analysis was performed on superimposed ordinations
of the cattle mobilome and resistome, revealing significant
correlation (P < 0.001 for all treatment comparisons and P < 0.01
for all time comparisons) between treatment groups (Treated
M2 = 0.50; Untreated M2 = 0.49) and across time [Treated (Day
0): M2 = 0.30; Treated (Day 11): M2 = 0.39; Untreated (Day 0):
M2 = 0.19; Untreated (Day 11): M2 = 0.26].

Based on our Procrustes test results, mobilomes and
resistomes are closely correlated, and remain so during
antimicrobial exposures. This finding is consistent with previous
work on MGEs in microbial genomes in cattle and humans. For
instance, evolution of pathogenic Staphylococcus aureus has been
directly linked to accumulation of MGEs encoding methicillin
resistance and virulence (Lindsay, 2010), and MGEs including
plasmids, prophages, and integrons have played a pivotal role
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FIGURE 5 | Continued
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FIGURE 5 | Ordination plots comparing (I) resistome composition and (II–IV) mobilome composition using non-metric multidimensional scaling (NMDS) for (A)
human and (B) cattle metagenomic datasets. All ordinations were based on Euclidean distances derived from Hellinger-transformed normalized counts of positive
alignments. Results of resistome and mobilome ordinations are reported at the class level of ontology, though these results remained consistent when analyzed at
the mechanism level (data not shown). For the human dataset (A) where patients were parenterally administered a cocktail of antimicrobial drugs for 4 days, the
resistome and all studied components of the mobilome (i.e., ICE, plasmids, and prophages) demonstrated a concomitant shift in composition after peak
antimicrobial administration (Day 4) which persisted 4 days after peak exposure (Day 8) (ANOSIM P < 0.001) and reverted closer to the original composition seen at
baseline by Days 42 and 180. In the U.S. beef cattle dataset (B) where cohorts of cattle were either given metaphylactic tulathromycin upon arrival or remained
untreated, there was no detectable difference in resistome composition between treatment and control groups at baseline and after 11 days of monitoring (ANOSIM
P > 0.05). On the other hand, the ICE (II) and plasmid (III) components of the mobilome differed between treated and untreated animals (ANOSIM P < 0.05).
However, all cattle demonstrated a significant alteration in resistome composition over time, regardless of treatment status (ANOSIM P < 0.01). While there was a
shift in the plasmidome among all groups over time (ANOSIM P < 0.05), the remaining components of the mobilome remained unchanged.

FIGURE 6 | Bayesian networks of (A) human and (B) cattle metagenomes, depicting nodes corresponding to counts of aligned AMR or MGE accessions at the
mechanism level of ontology, and edges (arrows) representing co-occurrence with >70% bootstrap support. Node size and label is proportional to betweenness
centrality, and node hue depicts optimal modularity groupings revealed using the Louvain modularity algorithm (Blondel et al., 2008).

in the rise of community- and livestock-specific clones with
host-adapted AMR profiles (Lindsay et al., 2012).

Alignment: Interactions Between AMR
Genes and MGEs Based on Network
Analysis
Network analysis of alignment-based count data revealed
relatively sparse networks for both the human and cattle datasets,
which consisted of 113 nodes/86 edges and 102 nodes/95
edges, respectively, with most nodes containing between one
and six connections (Figure 6). Both dataset’s networks were
dominated by a large density of intra-mobilome edges as a
proportion of all edges (human: 74% plasmid-plasmid, 10%
ICE-ICE, 6% plasmid-ICE; cattle: 57% plasmid-plasmid, 4%
ICE-ICE, 2% plasmid-ICE) (Supplementary Datasheets 3, 4).
Edges between AMR groups and MGEs comprised ∼19%
of total edges in the cattle network, and only ∼2% of
the human network. Within bovine fecal samples, the ICE
family of CTnGERM1, transposon TcrEmr7853, and conjugative

transposon family CTnDOT, tended to co-occur with AMR
mechanisms involving macrolide efflux systems, erythromycin-
related methyltransferase systems, and tetracycline ribosomal
protection proteins, respectively. These findings are consistent
with previous genomic and functional characterizations of
these MGE families, which have confirmed the presence
of modular regions containing accessory cassettes encoding
resistance to macrolides (Cooper et al., 1996; Whittle et al.,
2001; Wang et al., 2003, 2005) and tetracyclines (Wang
et al., 2003; Wozniak and Waldor, 2010; Toleman and Walsh,
2011; Waters et al., 2013), respectively. The fact that network
analysis revealed these ICE-AMR connections is especially
noteworthy given that ICE alignments were such a small
proportion of all mobilome alignments within the cattle
dataset (Figure 2); this suggests that network analysis can
uncover potentially meaningful biological relationships even for
relatively low-abundance metagenomic features. Furthermore,
while network edges between AMR mechanisms and MGE
families represent putative and largely correlative associations, it
is potentially noteworthy that the AMR mechanisms identified
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as sharing edges with MGEs correspond to antimicrobials that
are most commonly administered in beef cattle, especially
in feedlot settings (USDA, 2011). The presence of these
resistance mechanisms on MGEs, therefore, may be an
evolutionary response of feedlot-associated bacterial populations
to extant evolutionary pressures. On the other hand, the
cattle fecal samples also contained apparent linkages between
aminoglycoside and glycopeptide AMR mechanisms and a
variety of plasmids including pKPN3 and pSC138 (Figure 6). The
potential mobilization of these AMR mechanisms is not easily
explained by either common cattle production antimicrobial
drug practices or the specific study population analyzed, as
glycopeptide antimicrobials are prohibited from use in North
American cattle (CFR 21, 1997), and aminoglycosides are rarely
used due to prolonged withdrawal periods (Gehring et al.,
2005). Given the preponderance of plasmidome alignments in
the cattle dataset (Figure 2), these edges may represent an
important component of cattle-adapted microbiomes in the
absence of specific antimicrobial drug pressures. Interestingly,
resistance mechanisms to glycopeptides were sparsely identified
using the alignment approach (Figure 4). In the cattle dataset,
38 and 20 unique gene groups were identified by MetaCompare
and metaSPAdes+BLAST, respectively, whereas only a single
unique gene group was identified by alignment. However, a
recent study systematically profiling AMR genes of beef and
dairy cow rumens, identified that glycopeptide resistance genes
are among the most common components of the ruminal
resistome (Sabino et al., 2019). Therefore, it is likely that
the network based on alignment underestimates glycopeptide-
MGE connections.

Contrarily, in the human study, where patients were
administered meropenem (carbapenem), gentamycin
(aminoglycoside), and vancomycin (glycopeptide), there
was little evidence of co-occurrence of MGEs with resistance
mechanisms for these classes of drugs. Instead, an edge was
identified between a macrolide-lincosamide-streptogramin
(MLS) mechanism and the CTnGERM1 ICE family. This was the
only predicted AMR-MGE edge identified in the human dataset.
This association may have been incidental given that macrolide
resistance genes are among the most relatively abundant genes
in the human gut resistome (van Schaik, 2015), and some (e.g.,
ermB/F/G) are considered among the most promiscuous in the
human resistome (Salyers et al., 2004). The lack of AMR-MGE
edges within the human fecal samples is difficult to explain,
particularly given the multi-drug treatment administered, which
theoretically should have placed intense selective pressure on the
bacteria to promote HGT of relevant AMR mechanisms.

Based on human clinical isolates, though MGE-mediated
transfer of AMR genes occurs more commonly among related
microbial taxa, resistance conjugation between distantly related
bacteria has been extensively documented (van Schaik, 2015).
Therefore, results of co-occurrence networks must be interpreted
with a great deal of caution, as “statistical colocalization” is likely
necessary but not sufficient to predict mobilization of genes,
and any hazard associated with identified co-occurrences must
be assessed in light of what is known regarding the history of
antimicrobial drug exposures, clinical history and disease status,

gut microbial ecology, genetic context of the mobile genes and
resistance genes, as well as host and environmental factors.

Assembly: AMR-MGE Co-occurrence
Results Differ Based on Assembly
Method
To identify potential genomic colocalizations between AMR
genes and MGEs, we undertook graph-based assembly of a
subset of samples in each dataset. Because assembler choice
can profoundly impact assembly statistics for metagenomic data
(Vollmers et al., 2017) we compared two common metagenomic
assemblers, IDBA-UD (as implemented in MetaCompare) and
metaSPAdes. On average across both datasets, metaSPAdes
produced 323,000 contigs per sample compared to 271,000 for
IDBA-UD assembler of the MetaCompare pipeline. The N50 for
metaSPAdes assemblies was significantly higher than for IDBA-
UD assemblies, even when controlling for dataset (mean 6,260
bp versus 1,702 bp, P = 0.02), suggesting that, on average,
metaSPAdes produced significantly longer contigs than IDBA-
UD (Supplementary Datasheet 6).

Strikingly, while MetaCompare revealed numerous contigs
containing either MGE or AMR gene accessions, none of these
contigs contained both (Supplementary Datasheet 7). Therefore,
the resulting risk score calculated by the MetaCompare pipeline
was not informative in terms of mobilization potential of the
identified AMR genes. On the other hand, metaSPAdes and
subsequent BLAST revealed numerous contigs containing at
least one each of AMR and MGE genes (Table 2). In the
human and cattle datasets, the number of AMR- and MGE-
containing contigs per sample ranged from 10 to 65 and 61 to
93, respectively. Therefore, the metaSPAdes+BLAST approach
identified more colocalizations than MetaCompare. This could
be explained partially by the fact that the metaSPAdes assemblies
produced significantly longer N50 than IDBA-UD. Indeed, the
mean N50 of metaSPAdes was long enough to easily contain
both a full-length AMR gene and either a partial or full-length
MGE; by comparison, the mean N50 of IDBA-UD was barely long
enough to contain the full length of most AMR genes.

Though a number of studies focusing on interrogating the
potential for components of microbial resistomes to be mobilized
in various contexts, there are currently no widely accepted
methods used to quantify mobility potential, HGT-likelihood,
or any objective measure of resistance transmission risk. This
is especially the case in the analysis of mobility based on
metagenomic assembly data. Based on similar approaches used
in this field, we reported the mobility index (MI) for each
sample which reflects the total fraction of contigs with at
least one AMR region that is also flanked by at least one
nearby MGE region, relative to all AMR-containing contigs
within the sample. In critically evaluating the colocalization
identified by metaSPAdes+BLAST, we noted many instances
in which the start and stop alignment positions for the AMR
gene overlapped substantially with the start and stop positions
of the MGE. Upon closer inspection, it became apparent that
the MGE reference databases contained MGE accessions that
included accessory or cargo sequences, including AMR genes.
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TABLE 2 | Summary of assembly results indicating the abundance of sample-level contigs, co-occurring and non-co-occurring resistome and mobilome accessions
identified on contigs, and results of assembly based colocalization analysis reported as a Mobility Index for human and cattle datasets (MI = proportion of all contigs
within a sample containing at least one resistance gene flanked by at least one locus with a MGE residue, relative to all contigs with resistance).

Dataset Sample Individual Treatment Time nContigs nAMR nMGE nAMR&MGE nAMR/
nContigs

nMGE/
nContigs

Mobility
index (MI)

Overlap
adjusted MI

Human

15 A Pre-MGV Day 0 3,730 209 11,889 12,098 0.06 3.19 0.25 0.02

18 A MGV Final Day 4 408 29 1,448 1,477 0.07 3.55 0.00 –

19 A Post-MGV Day 8 1,605 1,335 25,090 26,425 0.83 15.63 0.51 0.20

17 A Post-MGV Day 42 2,566 187 9,123 9,310 0.07 3.56 0.47 0.03

16 A Post-MGV Day 180 3,103 298 9,645 9,943 0.10 3.11 0.50 0.04

20 B Pre-MGV Day 0 2,758 650 12,877 13,527 0.24 4.67 0.21 0.02

23 B MGV Final Day 4 272 185 2,838 3,023 0.68 10.43 0.78 0.76

24 B Post-MGV Day 8 1,338 220 7,553 7,773 0.16 5.64 0.48 0.29

22 B Post-MGV Day 42 1,376 85 4,259 4,344 0.06 3.10 0.40 0.08

21 B Post-MGV Day 180 2,255 609 8,961 9,570 0.27 3.97 0.21 0.03

Cattle

11p2 A Tulathromycin Day 11 5,663 626 20,321 20,947 0.11 3.59 0.25 0.02

102p2 B Tulathromycin Day 11 5,858 478 16,955 17,433 0.08 2.89 0.43 0.03

103 C Tulathromycin Day 0 11,708 657 38,848 39,505 0.06 3.32 0.39 0.06

103p2 C Tulathromycin Day 11 7,169 632 21,326 21,958 0.09 2.97 0.41 0.01

130 D Tulathromycin Day 0 8,543 572 23,845 24,417 0.07 2.79 0.36 0.01

130p2 D Tulathromycin Day 11 7,816 782 21,129 21,911 0.10 2.70 0.32 0.01

155p2 E Tulathromycin Day 11 5,756 589 17,457 18,046 0.10 3.03 0.36 0.01

156 F Tulathromycin Day 0 6,264 544 20,440 20,984 0.09 3.26 0.32 0.04

156p2 F Tulathromycin Day 11 7,599 1,050 25,094 26,144 0.14 3.30 0.26 0.01

158 G Tulathromycin Day 0 10,779 802 35,010 35,812 0.07 3.25 0.28 0.02

164 H Tulathromycin Day 0 9,250 657 29,898 30,555 0.07 3.23 0.32 0.03

164p2 H Tulathromycin Day 11 5,643 542 17,191 17,733 0.10 3.05 0.38 0.02

208 I Untreated Day 0 6,488 484 20,762 21,246 0.07 3.20 0.31 0.01

208p2 I Untreated Day 11 9,377 784 26,870 27,654 0.08 2.87 0.31 0.01

216p2 J Untreated Day 11 6,757 752 23,309 24,061 0.11 3.45 0.28 0.01

220 K Untreated Day 0 6,637 491 22,856 23,347 0.07 3.44 0.30 0.01

MIs are used as a means to compare the relative abundance of the putatively “mobile” fraction of resistance genes in samples.

This “identity contamination” in current-day MGE reference
databases presents an inherent impediment to colocalization
analysis of assembled contigs, and additional work must be done
to correct for co-occurrence misclassification. For instance, a
region of a contig that maps to the TetM accession in an AMR
database might also map to the transcriptional regulator region of
the Tn916 conjugative element within an MGE database because
this region contains a TetM complex. Therefore, the contig would
be potentially erroneously classified as containing both TetM
and Tn916.

To avoid such examples of misclassification and obtain a more
accurate estimate of the number of contigs with colocalizations,
we performed overlap analysis and calculated both a raw and an
adjusted Mobility Index (MI), as described in section “Materials
and Methods.” The disparity between raw and overlap-adjusted
MIs reached 1–2 orders of magnitude (Table 2), highlighting
the extent of misclassification due to overlap. The MI results
also revealed patterns of mobilome-resistome dynamics that were
not detected using alignment-based or MetaCompare results. For
example, for one human subject, adjusted MI was at ∼2% prior
to antimicrobial exposures, but then increased ∼75% and in all
cases mobility potential remained elevated at > 20% at 4 days

after receiving the last dose. The overlap-adjusted MIs decreased
to roughly baseline by Days 42 and 180 of the total study period.
On the other hand, in the cattle dataset, mobility potential
among those animals exposed to tulathromycin metaphylaxis did
not significantly differ from control animals. Moreover, across
all animals, mobility potential did not significantly differ over
time. Though not a primary focus of the study, it is noteworthy
that human samples at Days 0 and 180 had a generally similar
adjusted MI as that seen across all cattle samples and that the
mean adjusted MI across all human samples associated with
recent antimicrobial exposure was 10-fold greater than adjusted
MIs of cattle samples (Student’s t = 2.405, P = 0.01). This
difference in mobility index among humans and animals when
exposed to antimicrobials should be further explored in future
work involving samples appropriately statistically powered for
such analyses. Though we are noting differences in MI between
human and animal trials to illustrate the way in which mobility
analysis of resistomes can lend itself to hazard stratification
and prioritization, it should be noted that a number of factors
hinder a valid comparison of resistome mobility potential
between the two datasets. Both studies collected a relatively
small number of samples from a limited population set; both
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populations were administered different antimicrobial regimens
to achieve different clinical endpoints; and metagenomes from
both studies were collected, processed, and sequenced using
different laboratory, instrumental, and computational protocols.
Therefore, a robust comparison of the resistomes in these two
datasets is not supported.

Discovery of AMR genes in genomic proximity to MGEs
within contigs is considered evidence of potential mobility
via HGT (Bengtsson-Palme et al., 2014; Oh et al., 2018)
and a number of studies have reported on the localization
of both AMR sequences and MGEs in close proximity on
the same stretch of contig. Our results demonstrate that
colocalization based on assembly and subsequent alignment to
existing databases is potentially fraught with both incompleteness
and inaccuracy. Incompleteness stems from the fact that
colocalization necessitates the reconstruction of contigs with
at least several thousand base-pairs. As demonstrated, even
metagenomic-specific assemblers produce relatively fragmented
assemblies with small N50 values; the likelihood of reconstructing
MGEs and AMR “cargo” genes, especially those in excess
of ∼1000 bp, is low given this fact. We demonstrated the
importance of high-quality assemblies by showing that, although
MetaCompare identified more unique AMR gene groups than
metaSPAdes+BLAST (Figure 3), it failed to identify a single
contig with both an AMR gene and an MGE. The strongest
hypothesis for this is that the assemblies produced by IDBA-
UD within MetaCompare contained a significantly shorter N50
than the assemblies produced by metaSPAdes. Our findings
are consistent with previous work comparing the metaSPAdes
assembler with other assemblers in gene identification (Nurk
et al., 2017; Vollmers et al., 2017). This difference in N50 is critical
for co-occurrence analysis, as longer stretches of DNA are more
likely to produce sufficient sequence space to identify multiple
genes, inherent to colocalization. While the metaSPAdes+BLAST
results did contain numerous contigs with both AMR genes
and MGEs, closer inspection of these colocalizations revealed
a major source of colocalization inaccuracy, namely sequence
homology between numerous accessions within the AMR and
MGE reference databases. Analysis of BLAST outputs of contigs
mapped to AMR and especially MGE databases, revealed many
high-confidence (e < 1 × 10−50) hits to multiple families of
ICE, plasmid, prophage and other MGEs to the same regions
of a given contig (Supplementary Datasheet 8). For example,
for the human dataset, metaSPAdes identified an average of
16 unique MGE groups per contig, and 5 AMR accessions
per contig. MetaCompare yielded a similarly large contig-level
richness, though because MetaCompare utilizes a “gene fraction”
cut-off for mapping contigs to ACLAME, the MGE contig-
level richness was smaller relative to that of metaSPAdes.
Nevertheless, the fact that multiple hits to genetically distinct
families of MGEs were found on the same contigs highlights
the fact that current AMR and MGE databases are plagued
by substantial intra-mobilome/-resistome sequence homology,
which likely precludes confident identification of AMR and MGE
features, particularly at resolved levels of the ontology. This
database problem was most starkly highlighted by our overlap
analysis, which showed that even AMR database accessions can

share large stretches of sequence homology with current MGE
database accessions.

CONCLUSION

Resistome-mobilome colocalization analysis is complex and still
in its infancy. While we attempted to review the advantages and
pitfalls of common colocalization approaches, it was not possible
to definitively identify which approach yielded the most accurate
answer. Such an analysis would require diverse metagenomic
samples with “known truth.” However, our results strongly
suggest that colocalization results should be extensively tested
for robustness in the face of changes in bioinformatic approach.
In other words, hypothesize that validity of conclusions is most
likely to be appreciable if findings of the various alignment-based
and assembly-based approaches are considered in tandem. For
example, for human fecal samples, ordination analysis seems
to reveal that in general, while resistomes and mobilomes are
both dynamic in the face of antimicrobial administration and
over time, the resistome-mobilome compartments respond in
a monotone fashion. Moreover, network analysis reveals that
overall, predictive co-occurrence of major resistance and mobile
element clusters are rare. Further, colocalization on the basis
of assembly suggests that though a greater fraction of contigs
containing both resistance and mobile genetic determinants are
found in samples collected shortly after parenteral administration
of antimicrobial drugs, and thus may be a source of greater
opportunity for resistance mobilization, this was not permanent,
as co-occurrence frequency returned to baseline after ∼11
weeks of last antibiotic course. For fecal samples collected
from cattle entering a beef feedlot and were exposed to
metaphylactic levels of a macrolide antimicrobial, ordination
reveals a rather static resistome and mobilome in the face of
antimicrobial exposure. Though Bayesian networks predicted
numerous significant clusters of resistance and mobile elements
across all samples, overall frequency of co-occurrence of AMR
genes and MGEs in assembled contigs did not change as a
function of antimicrobial exposure.

Many studies that characterize resistomes imply that the
identification of AMR genes is a putative indication of public
health risk or hazard, whereby resistance factors can be acquired
from their ecological context by pathogens and therefore become
more recalcitrant in the face of standard medical therapy or
antimicrobial intervention. However, de facto detection and
quantification of resistomes in a sample is not sufficient,
because AMR genes are not “risk-equal.” For example, the
presence of an AMR gene that confers resistance to a last-
resort antimicrobial being carried by a pathogen likely has
higher risk than the same AMR gene within a benign bacterium.
Likewise, an AMR gene located on a promiscuous plasmid likely
carries higher mobility and health risk than an AMR gene
located within a chromosome. These examples illustrate the
need to understand the metagenomic context of AMR genes.
In response to this realization, many researchers are pairing
resistome analyses with an analysis of the “mobilome.” As
resistome-mobilome analyses are relatively new, utilizing human
clinical and agricultural datasets, we critique the current state
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of commonly used bioinformatic and statistical approaches to
reveal co-occurrence of resistomes and mobilomes, as well as
current methods for estimating the mobilizability of AMR genes
within a microbiome. Our results demonstrate that colocalization
approaches are limited by technical challenges inherent in current
reference databases, analytical pipelines, and metagenomic
sequence data. Therefore, alignment-based and assembly-based
methodologies often yield insufficient, incomplete, inaccurate,
and/or conflicting information.

At this time, advancements are being made to address
some of these deficiencies. For example, in hopes of increasing
mobilome and resistome detection sensitivity, new laboratory
methods are being proposed, including the use of targeted
resistome and mobilome enrichment (Noyes et al., 2017; Guitor
et al., 2019). Long-read and hybrid sequencing techniques
may eventually accommodate the throughput required for
diverse, high bacterial-load metagenomic samples, in which case
bioinformatic techniques for detection of AMR genes and MGEs
would become much more straightforward (Arango-Argoty
et al., 2018), although we point out that database inconsistences
would remain a barrier. Additionally, computational approaches
are evolving in an effort to support more complete and
accurate resistome-mobilome colocalization from short-read
metagenomic data (Roodgar et al., 2019; Stalder et al., 2019).
Finally and most recently, new approaches have been proposed to
increase sensitivity of MGE and AMR discovery and classification
(Jiang et al., 2019; Durrant et al., 2020). Though we have expressly
highlighted the pervasive issue of cargo sequences in MGE
databases, a similar problem likely exists in AMR databases as
well. For example, within MEGARes, some accessions annotated
as AMR genes may actually contain accessory, cargo, or flanking
regions that are not specifically related to AMR genes themselves.
This study highlights the use of existing databases and tools
for resistome mobility analysis and is therefore not focused on
identifying and untangling discrepant sequences in AMR gene
and MGE accessions. Given the state of current databases and
the findings presented here, we strongly urge investigators to
integrate database validation tools as a standard component of
metagenomic analysis. For AMR databases in particular, recent
pipelines such as DeepARG (Arango-Argoty et al., 2018) and
ARGDIT (Chiu and Ong, 2019) have been developed to improve
accession validity, consensus, and accuracy. Use of such tools
may help to circumvent some of the challenges posed by the
structure and content of current reference databases. In addition
to these database validation tools, there is continued innovation
around statistical, bioinformatic, sequencing and technical tools
for improving the sensitivity and applicability of resistome-
mobilome analysis. Such advancements should be continuously
integrated into resistome-mobilome analyses.
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