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The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide, seriously endangering

human health. In addition to the typical symptoms of pulmonary infection, patients with

COVID-19 have been reported to have gastrointestinal symptoms and/or intestinal flora

dysbiosis. It is known that a healthy intestinal flora is closely related to the maintenance

of pulmonary and systemic health by regulating the host immune homeostasis. Role

of the “gut-lung axis” has also been well-articulated. This review provides a novel

suggestion that intestinal flora may be one of the mediators of the gastrointestinal

responses and abnormal immune responses in hosts caused by SARS-CoV-2; improving

the composition of intestinal flora and the proportion of its metabolites through probiotics,

and personalized diet could be a potential strategy to prevent and treat COVID-19. More

clinical and evidence-based medical trials may be initiated to determine the strategy.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), was first reported in December 2019 (Wu et al., 2020). Since then, the disease
has spread rapidly worldwide and has been declared a global pandemic by the World Health
Organization. As of 25 May 2020, there were 5,307,298 confirmed cases, including 342,070
deaths (WHO, 2020; Zhu et al., 2020). Considering its strong infectivity, poor prognosis, and
lack of effective/targeted drugs, potential prevention and treatment strategies for COVID-19
need to be urgently developed. The damage to host immune defense and the “cytokine storm,”
an excessive production of inflammatory cytokines, are believed to be the critical causes of
deteriorated health and even death of patients with COVID-19 (Zumla et al., 2016; Pedersen
and Ho, 2020; Ye et al., 2020). Given the crucial role played by intestinal flora and its
metabolites in regulating immune and inflammatory response of the host, the prospect of
modulating intestinal flora for preventing and treating COVID-19 and related illnesses (e.g., viral
and/or bacterial pneumonia, acute respiratory infections, or influenza) has attracted considerable
attention from the scientific community (Belkaid and Harrison, 2017; Dang and Marsland,
2019; Xu et al., 2020). In order to develop a potential strategy for COVID-19 prevention and
treatment by targeting the intestinal flora, we focused mainly on the effects of SARS-CoV-2 on
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the host intestinal microecology, as well as the possible
mechanisms through which intestinal flora regulate immune
and inflammatory responses in patients with COVID-19 and
related diseases. Particularly, the role of “gut-lung axis” and
some indirect evidence for the effect of intestinal flora
on the prevention and treatment of COVID-19 have been
highlighted here.

CLINICAL MANIFESTATIONS AND THE
POSSIBLE MECHANISM OF INTESTINAL
MICROECOLOGY DISORDERS IN
PATIENTS WITH COVID-19

The main clinical manifestations of COVID-19 are fever,
cough, and acute respiratory distress syndrome. However,
gastrointestinal symptoms, such as diarrhea, nausea and
vomiting, abdominal pain, and loss of appetite have been
reported in an increasing number of COVID-19 patients
(Cholankeril et al., 2020; Goyal et al., 2020; Guan et al.,
2020; Lin et al., 2020). Interestingly, the COVID-19 patients
with gastrointestinal symptoms had more severe disease and
these symptoms could be used to predict the development
of severe respiratory disorders (Gou et al., 2020; Wan
et al., 2020). It is noteworthy that some COVID-19 patients
also showed microbial dysbiosis with decreased levels of
Lactobacillus and Bifidobacterium (Xu et al., 2020); the
abundance of Clostridium hathewayi, Clostridium ramosum,
and Coprobacillus was positively correlated while that of
Faecalibacterium prausnitzii was inversely correlated with the
severity of the disease (Zuo et al., 2020).

SARS-CoV-2 can identify and invade human cells through the
interaction of spike proteins with human angiotensin-converting
enzyme 2 (ACE2) (Wu et al., 2020). ACE2 is expressed not only in
the lung tissue but also on esophageal and intestinal epithelium;
this is the basis of SARS-CoV-2 attacking the digestive tract of the
host and leading to intestinal flora dysbiosis and gastrointestinal
symptoms (Guan et al., 2020; Holshue et al., 2020; Li M. Y.
et al., 2020). Moreover, some studies have reported that SARS-
CoV-2 and its nucleic acid were isolated from stool samples of
patients with diarrhea (Lamers et al., 2020; Zhou et al., 2020; Zou
et al., 2020). These evidences suggest that SARS-CoV-2 may be
harbored in the digestive tract of patients and transmitted via the
fecal-oral route, affecting the health of the gastrointestinal tract
and intestinal flora.

ACE2 is a negative regulator of renin-angiotensin system and
is critical for maintaining the homeostasis of blood pressure
and the balance of salts and fluid; and ACE2 has local
regulatory effects in the pathological changes in several organs,
including the heart, kidneys, and lungs (Patel et al., 2017).
The association between intestinal flora and ACE2 has also
been reported previously: deficiency of ACE2 caused critical
impairment of local tryptophan homeostasis in a mouse model,
which could alter the intestinal microbiome and susceptibility
to inflammation (Hashimoto et al., 2012). ACE2 can also
regulate the absorption of nutrients by binding with amino
acid transporters on intestinal epithelial cells, which suggests

that SARS-CoV-2 might compete with protein nutrients and
interfere in their absorption through ACE2 on the intestinal
epithelium (Singer et al., 2012; Vuille-Dit-Bille et al., 2015;
Javed and Broer, 2019). Cole-Jeffrey et al. indicated that the
protective actions of ACE2 against cardiopulmonary disorders
could be mediated by its actions on the gastrointestinal tract
and intestinal flora (Cole-Jeffrey et al., 2015). A recent study
also reported that some specific intestinal microorganisms that
can downregulate ACE2 expression in murine gut, such as
Bacteroides thetaiotaomicron, Bacteroides dorei, and Bacteroides
massiliensis, correlated inversely with the SARS-CoV-2 load in
patient’s fecal samples (Zuo et al., 2020). It is known that a
healthy intestinal flora plays a vital role in maintaining immune
homeostasis and gastrointestinal tract health of the host (Lynch
and Pedersen, 2016; Shi et al., 2017). It could be speculated
that gastrointestinal symptoms and the changes in immune
homeostasis induced by SARS-CoV-2might be mediated, in part,
by the intestinal flora. There could be a potential strategy to fight
SARS-CoV-2 infection by targeting intestinal flora.

INTESTINAL FLORA AND THE GUT-LUNG
AXIS

Intestinal flora widely affects host health and is highly correlated
with a variety of illnesses, including metabolic, digestive system,
and even the respiratory diseases. As shown by 16S rRNA and
metagenomics sequencing, the human intestinal flora contains
more than 1,000 different microbial species, including bacteria,
fungi, and viruses (Grice and Segre, 2012; Sender et al., 2016). On
average, each host contains about 160 dominant bacterial species,
depending on genetics, environmental factors, and dietary habits
(Eckburg et al., 2005; Voreades et al., 2014; Zhernakova et al.,
2016). The human intestinal microbiome is a highly dynamic
microecosystem and interacts with the immune system. Immune
cells induced by a variety of antigens can move between
the gut and the lungs through the lymphatic system and/or
blood, resulting in the regulation of immune response of both
organs. The cross-talk between intestinal and pulmonary tissues
mediated by the microbiome and immune cells is called the “gut–
lung axis” (Mcghee and Fujihashi, 2012; Date et al., 2017; Ipci
et al., 2017).

Many studies have reported that disorders of the intestinal
flora were related to lung diseases and respiratory tract infections
(Hand et al., 2016; Belkaid and Harrison, 2017; Selber-Hnatiw
et al., 2017; Gong et al., 2018; Schirmer et al., 2018). In
the mouse model, the depletion of sensitive intestinal bacteria
(e.g., Bifidobacteria) after neomycin administration increased
the susceptibility of the mice to influenza virus infection
and pulmonary allergic inflammation (Dharmage et al., 2015;
Metsala et al., 2015; Pang et al., 2018); and a recent study
reported that the gut population of endogenous Bifidobacterium
increased to enhance the hosts’ resistance to influenza when a
lethal influenza infection occurred (Zhang et al., 2020). Bradley
et al. showed that the abundance of segmented filamentous
bacteria could stimulate the migration of Th17 cells to the
lung, augmenting the autoimmune response and aggravating
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pulmonary lesions (Bradley et al., 2017). Moreover, the intestinal
flora and its metabolites, such as short-chain fatty acids (SCFAs)
and lipopolysaccharides (LPS), are parts of the intestinal mucosal
immune barrier and maintain their normal functions during
respiratory tract infections (Leblanc et al., 2017; Sittipo et al.,
2019; Visconti et al., 2019). The mucosal immune barrier
provides protection against thousands of microorganisms and
environmental antigens, and is closely related to the systemic
and pulmonary immune function of the host (Abt et al., 2012;
Abrahamsson et al., 2014; Donaldson et al., 2016). If the intestinal
mucosal immune barrier is disrupted, invading organisms are
able to enter the blood or lungs and this could result in
septicaemia and acute respiratory distress syndrome (Dickson
et al., 2016).

Interestingly, Changes in the pulmonary microenvironment
(e.g., by influenza virus or SARS-CoV-2 infection) can also alter
the structure and function of intestinal flora (Budden et al.,
2017; Dang and Marsland, 2019). In the mouse model, influenza
virus infection of the respiratory tract increased the number of
Enterobacteria in the intestinal flora while decreasing the number
of Lactobacillus and Lactococcus (Looft and Allen, 2012; Tirone
et al., 2019). Similarly, LPS injection in mice lungs resulted in
an imbalance of pulmonary microbiota that was accompanied
by an intestinal microbiota disbalance, which was caused by
bacteria that entered the blood and intestinal mucosa coming
from the lung tissue (Sze et al., 2014; Hanada et al., 2018).
As mentioned above, many COVID-19 patients have also been
reported to present apparent microbial dysbiosis; and intestinal
flora alterations were associated with COVID-19 susceptibility
and severity (Xu et al., 2020; Zuo et al., 2020).

To summarize, interaction between the intestinal flora and
lungs and ways to promote optimum lung health should be
further investigated. Based on the current knowledge regarding
the “gut–lung axis,” it can be hypothesized that SARS-CoV-2 not
only directly invade human intestinal epithelium cells by being
transmitted via the fecal-oral route but also indirectly affect the
intestine and intestinal flora along the gut-lung axis, and lung
lesions caused by SARS-CoV-2 could potentially be prevented
and treated by targeting the intestinal flora (Figure 1A).

POSSIBLE MECHANISM OF THE
INTESTINAL FLORA REGULATION OF
IMMUNE AND INFLAMMATORY
RESPONSES OF THE HOST

Intestinal flora is supposed to significantly regulate the
development and function of the innate and adaptive immune
system, tune the immune cells for pro- and anti-inflammatory
responses, and maintain immune homeostasis thereby affecting
the host susceptibility to various diseases. In case of a
pathogenic SARS-CoV-2 infection, a healthy intestinal flora
could be essential in maintaining an optimal immune system
to prevent excessive inflammatory responses that eventually
become detrimental to lungs and vital organ systems. The
intestinal flora might regulate host’s immune and inflammatory
responses along the gut-lung axis, by means of microbial
metabolites and the mucosal immune system (Figure 1B).

Microbial Metabolites
In many microbial metabolites, SCFAs, including butyric acid,
acetic acid, and propionic acid, are the most critical metabolites
of the intestinal flora. They are extremely important in regulating
systemic and pulmonary immune and inflammatory responses
(Budden et al., 2017; Goncalves et al., 2018). The most direct
function of SCFAs is to reduce the intestinal pH and increase
mucin production, which reduces the growth and adhesion of
pathogenic microorganisms and improves epithelial integrity,
further enhancing the systemic immunity of the host (Fukuda
et al., 2011; Jung et al., 2015). SCFAs exert biological effects
mainly by inhibiting histone deacetylase (HDAC) and activating
G protein–coupled receptors (GPCRs) (Tan et al., 2014; Husted
et al., 2017; Li et al., 2018). More specifically, SCFAs can increase
the number and function of T regulatory (Treg) cells, T helper
(Th) 1 cells, and Th17 effector cells through HDAC inhibition,
thus impairing excessive inflammation and immune response
in airway diseases along the gut-lung axis (Meijer et al., 2010;
Furusawa et al., 2013; Hull et al., 2016; Li et al., 2018). Many
studies have shown that GPCRs, especially GPR43, GPR41, and
GPR109A, play important roles in the regulation of metabolism,
inflammation, and immunity (Den Besten et al., 2013; Kim et al.,
2013; Husted et al., 2017; Sun et al., 2017). SCFAs, especially
butyrate, have a wide range of anti-inflammatory functions,
which are mediated via activation of GPR43 and subsequent
activation of β-arrestin 2 by inhibition of the NF-κB pathway
(Meijer et al., 2010; Furusawa et al., 2013; Li et al., 2018). SCFAs
can also regulate Ly6c(–) patrolling monocyte haematopoiesis
and enhance the function of CD8+ T cells to confer protection
against influenza virus infection through GPR41 activation
(Trompette et al., 2018). Butyrate has been reported to induce
the differentiation of Treg cells and IL-10/18-producing T cells
through GPR109A activation (Singh et al., 2014).

Recent studies have shown that SCFAs represent a link
between the bone marrow, gut, and airways (Dang andMarsland,
2019). These molecules have been detected in very small
quantities in the lungs, indicating that the lung microbiome
does not produce them in large quantities and the circulating
SCFAs do not accumulate in the lung tissue. Thus, SCFAs may
have a negligible role in the respiratory tract. However, the
metabolized intestinal SCFAs can enter the peripheral blood
circulation and bone marrow and affect the development of
immune cells, which could then be recruited to the lungs and
promote lung homeostasis and immunity (Trompette et al., 2014,
2018; Kopf et al., 2015). SCFAs can also promote the generation
of progenitors of macrophages and dendritic cells (DCs) in the
bone marrow; phagocytic DCs compose the majority of cells that
enter the lungs, thus enhancing the function of the T cell subset
and triggering a protective mechanism against allergic airway
inflammation and respiratory tract infection (Liu et al., 2009;
Trompette et al., 2014; Kopf et al., 2015).

In addition to SCFAs, many metabolites of the symbiotic
intestinal flora have been reported to be related to host immunity
(Rooks and Garrett, 2016). Tryptophan can be used as an
energy source by Lactobacillus to produce ligands for an aryl
hydrocarbon receptor; this receptor is essential not only for
the organogenesis of intestinal lymphoid follicles but also
for maintaining the homeostasis of the epithelial barrier and

Frontiers in Microbiology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 1388

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


He et al. Intestinal Flora to Fight SARS-CoV-2

FIGURE 1 | (A) Adverse effects of SARS-CoV-2 on the human lungs and intestine. SARS-CoV-2 can be transmitted through the respiratory or digestive tract, directly

infecting the host by binding with the ACE2 receptor of pulmonary epithelial or intestinal epithelial cells. This leads to lung and/or intestinal tissue damage and a

systemic immune response. However, after initially infecting the lungs, SARS-CoV-2 can break through the mucosal immune barrier and indirectly affect the intestine

along the “gut-lung axis”, and vice versa. Intestinal tissue damage, an excessive inflammatory response, and a dysfunctional immune response can lead to intestinal

microecological disorder. However, some interventions (e.g., probiotics, beneficial metabolites, and eliminating harmful bacteria) can provide resistance against these

adverse effects. The “gut-lung axis” refers to the cross-talk between these two mucosal parts of the human body, which may take place via blood and lymphatic

circulation. The yellow arrows represent “increased barrier dysfunction.” The red arrows represent “adverse effects of SARS-CoV-2 infection.” (B) Possible model for

using probiotics and beneficial metabolites (e.g., short chain fatty acids; SCFAs) against lung infection and injury. Probiotics and metabolites such as SCFAs can be

taken up by M cells and presented to T cells as antigens via dendritic cells, leading to T/B cell proliferation and activation. Guided by immune mediators, immune cells

are then localized at the lung infection site, enhancing antiviral immunity, and providing protection to the lungs. The intestinal innate lymphoid cells (ILC2 and ILC3) can

migrate to the lungs to enhance antiviral immunity via lymphatic and blood circulations (purple arrows). Surface IgA can be produced and transported from

gut-associated lymphoid tissues to the surface of the pulmonary mucosa, which can prevent virus adhesion and consolidate the mucosal barrier. SCFAs produced by

intestinal flora can be transported to the lungs through the blood, where they can play an anti-inflammatory role and consolidate the lung mucosal barrier (green

arrows). SCFAs can also be transported to the bone marrow and enhance its hematopoietic function, further promoting the proliferation and activation of dendritic

cells and other immune cells. Overall, these phenomena can enhance the antiviral immunity of the host (red arrows).

intraepithelial lymphocytes (Kiss et al., 2011; Lee et al., 2011;
Wynn et al., 2013; Gao et al., 2018). Retinoic acid plays an
important role in maintaining intestinal immune homeostasis
as it promotes IgA production by B cells and Treg cells
development through transforming growth factor β (Kang et al.,
2007; Sun et al., 2007; Levy et al., 2016). Niacin has been
reported to promote anti-inflammatory properties of colonic
macrophages and DCs through GPR109A signaling and to
enable them to induce Treg cells and IL-10-producing T cells
(Singh et al., 2014). LPS can enhance the mucosal immune
response and provide improved resistance against infection by
respiratory influenza A virus (Ichinohe et al., 2011). Lactate
and pyruvate produced by intestinal bacteria can enhance the
immune response by inducing the dendrite protrusion of small
intestinal mononuclear cells that express CX3CR1+ via GPR31
signaling (Morita et al., 2019). Desaminotyrosine produced
by Clostridium orbiscindens has been reported to provide

protection against the influenza virus via type I interferon
(IFN-1) (Steed et al., 2017).

Common Mucosal Immune System
The common mucosal immune system (MIS) is an important
part of the systemic immunity and forms the first line of defense
against infections. It is mainly comprised of mucosa-associated
lymphoid tissue, such as gut-associated lymphoid tissues
(GALT) and bronchial-associated lymphoid tissue (Mcghee and
Fujihashi, 2012). The GALT consist of Peyer’s patches (PP),
mesenteric lymph nodes (MLN), and numerous lymphocytes
scattered in the lamina propria (LP) and intestinal epithelium.
The intestinal epithelium also has widely distributed microfold
(M) cells (Bekiaris et al., 2014; Brugman et al., 2015). M cells
take up antigens from the intestinal mucosa and present them
to T cells through DCs, which leads to the proliferation and
activation of the T cell subset (Cesta, 2006; Qi et al., 2006).
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Moreover, the GALT are rich in surface IgA (sIgA) (Mcghee and
Fujihashi, 2012). When pathogenic bacteria come in contact with
sIgA, they are eliminated, whereas non-pathogenic and beneficial
bacteria are not disturbed and remain on the mucosal surface
(Bunker et al., 2017; Bunker and Bendelac, 2018). Interestingly,
these immune cells and immune factors can be transferred from
the GALT to the bronchial-associated lymphoid tissue through
blood and lymph vessels (Qi et al., 2006; Samuelson et al., 2015),
providing and enhancing resistance to respiratory infections. In
a mouse model, activated intestinal group 2 innate lymphoid
cells (ILC2s) were found in lungs injected with IL-25, and lungs
with pneumonia were reported to have intestinal ILC3s, which
could help the body in resisting infection (Huang et al., 2018).
In addition, a healthy intestinal flora also plays an important role
in regulating Toll-like receptor 7 (a kind of pattern recognition
receptor) signal transduction after respiratory influenza virus
infection, which has been found to alleviate MIS damage caused
by antibiotic treatment in mice (Wu et al., 2013).

Altogether, understanding the possible mechanism of
intestinal flora regulating host immune and inflammatory
response may provide another preliminary theoretical basis
for the prevention and treatment of COVID-19 by targeting
intestinal flora. More trials need to be initiated to further study
the role played by intestinal microorganisms in regulating the
immunity of COVID-19 patients.

INTESTINAL FLORA-MEDIATED
ENHANCEMENT OF ANTIVIRAL IMMUNITY

Improving the intestinal microecology (e.g., by taking probiotics
and beneficial metabolites) (Table 1) may maintain an optimal
immune system and prevent an array of excessive inflammation
reactions, while also preventing secondary bacterial infections
(Levy et al., 2016; Hanada et al., 2018; Descamps et al., 2019).
A high-fiber diet was reported to change the proportion of
Firmicutes and Bacteroidetes that could increase the level of
SCFAs in the intestine and blood, which in turn reduced the
lung damage caused by a respiratory syncytial virus infection.
In the mouse model, the same effect was also observed by
supplementing acetic acid in drinking water (Meijer et al.,
2010; Den Besten et al., 2013; Trompette et al., 2014). The
probiotic bacteria of the genus Lactobacillus were shown to
stimulate respiratory immune responses in mice by increasing
inflammatory signals, thereby enhancing the host’s defense
against respiratory infections (Salva et al., 2010; Yoda et al., 2012).
Lactobacillus casei enhanced the phagocytic and killing activity
of alveolar macrophages and increased IgA, IFN-γ, and TNF-α
expression, assisting the host in the fight against influenza virus
(Hori et al., 2001). Interestingly, Bifidobacterium, Lactobacillus
paracasei, and Lactobacillus rhamnosus also presented an effect in
preventing respiratory infections (e.g., H1N1, H5N1, and H3N2)
by enhancing the vaccine response (Lei et al., 2010; Samuelson
et al., 2015). Recent studies have shown that traditional
Chinese medicine may have beneficial effects on the recovery of
patients with COVID-19, possibly by enhancing the intestinal
microecological balance to improve immunity (Xu et al., 2017,

TABLE 1 | Changes in the immune and inflammatory response upon

administration of different probiotics and products for pulmonary infectious

disease treatment.

Species or products Major physiological effect

Microbial metabolites

SCFAs Maintenance of mucosal barrier

Enhanced antiviral immune reaction

Anti-inflammatory effect

Retinoic acid Increased IgA level

Treg cell development

Niacin Anti-inflammatory effect

Increased activity of macrophages and DCs

Development of Treg cells and IL-10-producing T

cells

DAT Increased IFN-1

Probiotics

Lactobacillus acidophilus Enhanced inflammatory signals

Enhanced antiviral immune reaction

Lactobacillus rhamnosus Enhanced antiviral immune reaction

Enhanced vaccine immune efficacy

Lactobacillus casei Enhanced phagocytic and killing activity of alveolar

macrophages

Increased levels of IgA, IFN-γ, and TNF-α

Bifidobacterium Enhanced vaccine immune efficacy

Others

Vitamins A and D Enhanced intestinal barrier function and mucosal

immune response

Maintenance of the normal function of ILC3s and T

cells

High-fiber diet Increased level of SCFAs

SCFAs, short-chain fatty acids; Treg cells, T regulatory cells; ILC3s, group 3 innate

lymphoid cells; DCs, dendritic cells.

2020; Wang et al., 2019). Notably, a pre-published study (as
yet, not peer-reviewed) suggested that the risk of developing
severe COVID-19 among patients with vitamin D deficiency
was significantly higher than in patients with normal vitamin D
levels; moreover, vitamin D may reduce COVID-19 severity by
suppressing the cytokine storm displayed by COVID-19 patients
(Daneshkhah et al., 2020). However, whether this difference
is mediated by intestinal flora remains to be further studied.
Nonetheless, what we already know is that Vitamins A and D
can enhance the intestinal barrier function and mucosal immune
response by maintaining the normal function of ILC3s and T
cells (Cantorna et al., 2019). Overall, it is apparent that probiotics
and diet-mediated modulation of intestinal flora can influence
immunity. The administration of personalized probiotics and
diet may be thoughtfully considered for COVID-19 patients to
accelerate recovery and improve prognosis.

CONCLUSION AND PROSPECTS

The COVID-19 pandemic presents a significant social and
economic burden worldwide, and studies on the disease,
unfortunately, remain at a very preliminary stage. This review
provides a novel suggestion that the intestinal flora may
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partially mediate the effects of SARS-CoV-2 on the both local
gastrointestinal response and systemic immune response of
the host, and thus be a target for COVID-19 prevention
and treatment. This is consistent with emerging data, which
suggest that the gut microbiota plays a key role in predicting
the blood proteomic biomarkers that determine the abnormal
inflammatory state of individuals with severe COVID-19 (Gou
et al., 2020). Moreover, considering the fact that elderly
people have less diverse intestinal flora in which beneficial
microorganisms (e.g., Bifidobacterium) lose ground (Nagpal
et al., 2018), this is in line with the observation that older
individuals are more susceptible to SARS-CoV-2 and more
severe COVID-19 (Goyal et al., 2020; Lake, 2020). The
structure and function of the intestinal flora could be a
potential biological mechanism behind the diverse susceptibility
of different groups of people to SARS-CoV-2. However, the
specific mechanisms through which the SARS-CoV-2 infection
influences the intestinal microbial community among patients of
different ages, ethnic groups, and geographical locations remain
to be seen.

The prevention and treatment strategies for SARS-CoV-2
infection considering gastroenterology and intestinal microbiota
have received great attention (Gou et al., 2020; Li L. Y. et al.,
2020). In February 2020, China’s National Health Commission
and National Administration of Traditional Chinese Medicine
suggested the use of probiotics in patients with severe COVID-
19, which has shown good efficacy (National Health Committee
of the People’s Republic of China, 2020). As shown by
existing indirect evidences, there is a potential strategy to
prevent and treat COVID-19 through the improvement of
intestinal flora composition and of its metabolites. This could
be performed using probiotics, personalized diet, and traditional
Chinese medicine to balance the immune function and suppress
“cytokine storm.” Some specific intestinal microorganisms that

can downregulate intestinal ACE2 expression has also been
considered as the potential target to fight against SARS-CoV-
2 (Zuo et al., 2020). These insights will add new dimensions
to understanding SARS-CoV-2 and COVID-19, and can also
be helpful for designing a more reasonable and personalized
treatment plan for patients, which would be of great significance
for assigning medical resources.

It is worth noting that the rationale for using probiotics in
COVID-19 is derived from indirect evidence. Different kinds
of probiotics and/or different doses of probiotics usually have
different biological effects on the host. To further understand
the specific mechanism and elucidate the benefits of personalized
functional food including probiotics and metabolite products in
the prevention and treatment of COVID-19, more clinical trials
and evidence-based medical data are needed.
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