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Spatial and temporal processes shaping microbial communities are inseparably linked
but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil
bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual
samplings in a rarely managed, temperate grassland. Using a multi-tiered approach,
we tested the extent to which stochastic or deterministic processes influenced the
composition of local communities. A combination of phylogenetic turnover analysis and
null modeling demonstrated that either homogenization by unlimited stochastic dispersal
or scenarios, in which neither stochastic processes nor deterministic forces dominated,
explained local assembly processes. Thus, the majority of all sampled communities
(82%) was rather homogeneous with no significant changes in abundance-weighted
composition. However, we detected strong and uniform taxonomic shifts within just
nine samples in early summer. Thus, community snapshots sampled from single points
in time or space do not necessarily reflect a representative community state. The
potential for change despite the overall homogeneity was further demonstrated when
the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness,
characterized abundance-independent β-diversity. Accordingly, boosted generalized
additive models encompassing spatial, temporal and environmental variables revealed
strong and highly diverse effects of space on OTU abundance, even within the
same genus. This pure spatial effect increased with decreasing OTU abundance and
frequency, whereas soil moisture – the most important environmental variable – had an
opposite effect by impacting abundant OTUs more than the rare ones. These results
indicate that – despite considerable oscillation in space and time – the abundant and
resident OTUs provide a community backbone that supports much higher β-diversity
of a dynamic rare biosphere. Our findings reveal complex interactions among space,
time, and environmental filters within bacterial communities in a long-established
temperate grassland.

Keywords: spatio-temporal analysis, soil bacteria communities, community assembly, variable selection,
generalized additive model
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INTRODUCTION

Microbial communities change with increasing spatial distance,
as demonstrated for many microbial taxa (Martiny et al., 2006;
Ramette and Tiedje, 2007); from the micro- (Raynaud and
Nunan, 2014) to landscape- and continental scales (Martiny
et al., 2011; Karimi et al., 2018). Likewise, temporal variability
is a regular feature of microbial communities, and, for instance,
is associated with seasonality (Buckley and Schmidt, 2003;
Docherty et al., 2015; Zifcakova et al., 2016) and is a characteristic
property of the rare biosphere (Shade et al., 2014; Shade and
Gilbert, 2015). The extent to which these changes in community
structure and composition are driven by deterministic (i.e.,
species filtering by environmental adaptation and inter-species
interactions) or stochastic processes (i.e., trait- and selection-
independent community assembly regulated by stochastic events,
such as random proliferation, death, and dispersal) (Stegen et al.,
2013; Zhou and Ning, 2017) remains unclear. Both types of
processes interact in the assembly of microbial communities
(Chase, 2014), but it appears that, in general, environmental
filtering dominates (Hanson et al., 2012; Wang et al., 2013;
Bahram et al., 2018). Nevertheless, stochastic assembly principles
are promoted under certain environmental (Bahram et al., 2016;
Wang et al., 2017; Tripathi et al., 2018) and biotic conditions,
e.g., increasing body size (Zinger et al., 2018) or community
cohesion (Danczak et al., 2018). The ratio between stochastic
and deterministic effects depends on the studied taxa (Székely
and Langenheder, 2014; Powell et al., 2015; Andam et al., 2016),
their abundance and relative frequency (Mo et al., 2018), the
spatial scales at which they are studied (Shi et al., 2018), and
the stage of microbial community assembly (Langenheder and
Székely, 2011; Ferrenberg et al., 2013; Dini-Andreote et al.,
2015; Veach et al., 2016). In other words, recent community
assembly studies report highly inconsistent results (Langenheder
and Lindström, 2019), possibly because they cover a wide array of
habitat types and experimental designs. However, disentangling
deterministic and stochastic community assembly in situ has
major implications: The interactions between these two process
types impact the biogeochemical functionality of microbial
communities (Pholchan et al., 2013; Graham and Stegen, 2017;
Zhang et al., 2019), e.g., in the case of strong dispersal of
maladapted species overriding local environmental selection.

The formation of spatially heterogeneous species distributions
obviously depends on time, as the pace and type of the
community assembly processes are likely not constant [e.g.,
past stochastic events, historical dispersal limitations, or fluxes
in environmental heterogeneity (Martiny, 2016)]. Consequently,
spatio-temporal sampling designs should be a major focus of
environmental microbiome studies. However, many experiments
that study spatial distributions of microbes do so at only
a single time point, leaving uncertainty about whether the
observed communities are in a temporally robust state, or
whether seasonal effects have changed the community before
or will change it thereafter. It is equally difficult to evaluate
the ecological importance of temporal community shifts without
knowing the spatial scale at which they operate. There is a rich
body of studies covering either spatial or temporal variability

of soil microbiomes, but investigations of both dimensions
simultaneously are rare, especially at the plot scale. Studies have
often explicitly selected sites with strong habitat and/or seasonal
turnover on small scales and found effects correlating with this
high environmental variability present in their sites (Mummey
and Stahl, 2003; Henneberger et al., 2015; Hill et al., 2015; Kivlin
and Hawkes, 2016; Albright et al., 2019b). Importantly, none of
these study designs were used to study assembly processes of
bacteria. Thus, several questions regarding the spatio-temporal
variability of microbial soil communities at medium scales (e.g.,
meter and months) remain unanswered, especially in scenarios
with less obvious habitat turnover. How temporally uniform are
spatial distributions of microorganisms across time and how
constant are those over several meters if the physical macro-
environment does not change? Is it possible to monitor the
interactions between stochastic and deterministic processes in
these cases?

To address these questions, the SCALEMIC experiment was
established (Regan et al., 2014), in which the top soil of a
temperate grassland was repeatedly sampled on a dense grid
within a single year. In the present paper, we used this sampling
experiment to disentangle assembly processes of soil bacterial
communities, using 16S rRNA as a phylogenetic marker of
transcriptional activity potential, which in many bacteria can also
correlate with cell growth (Kerkhof and Kemp, 1999; Worden
and Binder, 2003). Despite its limitations (Blazewicz et al.,
2013), rRNA is still the only marker that provides phylogenetic
resolution while enabling the detection of potentially active
bacteria, i.e., those being capable of protein biosynthesis, either in
resting or metabolically active, but in any case viable, cell states.
This is difficult to achieve with DNA, as the presence of relic
DNA may obscure patterns of spatial or – particularly – temporal
variability in soil microbiomes (Blagodatskaya and Kuzyakov,
2013; Carini et al., 2016; Fierer, 2017). The impact of important
environmental variables on microbial community composition
and the contribution of rare microbes to ecosystem functionality
may be underestimated when studying rRNA genes only
(Campbell et al., 2011; Baldrian et al., 2012; Barnard et al., 2015;
Jousset et al., 2017). Since our soils were characterized by highly
diverse nutrient sources (litter, rhizodeposition), we expected
high bacterial activity compared to typical bulk soils from lower
depths (Marhan et al., 2011; Eilers et al., 2012; Müller et al.,
2016). Rhizospheric soils contain large proportions of active
bacteria (Blagodatskaya and Kuzyakov, 2013; Li et al., 2014),
for which rRNA has been successfully used to analyze microbial
communities before (Vieira et al., 2019). Moreover, previous
studies of enzymatic potentials at our site demonstrated high and
dynamic microbial activity (Regan et al., 2017). We hypothesized
that ribosome maintaining communities in the topsoil of a
modestly managed, homogeneously appearing grassland are
environmentally regulated rather than stochastically structured,
even in the absence of obvious habitat turnover. This hypothesis
was extensively tested using spatio-temporal generalized additive
models, variance partitioning, and a combination of phylogenetic
and probabilistic null models.

The reader is invited to refer to the glossary and extended
experimental procedures in the Supplementary Material for
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further explanation of design choices and terminology. For better
readability, we use “community”, “abundance” and related terms
below, but are always referring to communities and abundances
of ribosomal reads.

MATERIALS AND METHODS

Sample Acquisition
Soil samples were acquired from the SCALEMIC experiment,
which was carried out within the frame of the ’German
Biodiversity Exploratories’ (Fischer et al., 2010), details of which
are described in Regan et al., 2014. The site represents a temperate
grassland soil, which is embedded in a larger homogeneous
grassland region and which has been managed at low intensity,
i.e., not fertilized, mown once per year, and grazed for only
1–2 weeks in late summer. At each of six sampling dates
(April, May, June, August, October, and November 2011), 60
soil cores from the A-horizon (average sampling depth 10 cm)
were taken from a 10 × 10 m physically homogeneous grassland
plot, located 728 m above sea level in the Swabian Alb region
(Germany). The site was subdivided into 30 equal subplots
with 12 regularly arranged sampling locations in each, and
with a minimum distance of 50 cm between each sampling
location (Supplementary Section A). At each sampling date, two
neighboring locations were sampled. No sampling location was
used twice through the year. The site was unmanaged except
for one mowing event (early August) and a brief period of
sheep grazing in September. Two samples were lost; one in April
and one in June, resulting in a total of 358 samples. Twenty-
four environmental soil-related variables were measured for each
sample, as described in Regan et al. (2014), for which PCA and
box plot visualization is available in Supplementary Section A,
and plant community coverage was determined in May, June, and
October (Klaus et al., 2016). Previous analyses showed that this
grassland plot features considerable spatio-temporal variability
in plant productivity and diversity (Klaus et al., 2016), complex
dependencies between general habitat properties and microbial
parameters such as phospholipid fatty acid (PLFA) profiles and
enzymatic activities (Regan et al., 2014, 2017), as well as between
ammonia- and nitrite-oxidizing microorganisms (Stempfhuber
et al., 2015). High turnover of arbuscular mycorrhizal fungi,
likely driven by stochastic processes (Goldmann et al., 2019),
and taxon-dependent influences of edaphic variables on protists
(Fiore-Donno et al., 2019) were previously described as well.

rRNA Extraction and cDNA Synthesis
RNA was extracted from frozen (−80◦C) samples using a
direct lysis protocol [modified after Lueders et al. (2004)]. For
each sample, 600 mg of soil was transferred to a reaction
tube, and cells were lysed by bead beating (45 s, 6.5 m/s).
Nucleic acids were extracted using phenol/chloroform/isoamyl
alcohol (c(v/v/v) = 25/24/1) and chloroform/isoamyl alcohol
(c(v/v) = 24/1) and were precipitated from aqueous supernatants
with two volumes of polyethylene glycol (30% w/v in 1.6 M
NaCl) during centrifugation (90 min, 4◦C). The nucleic acid
pellet was washed with ethanol and resuspended in 30 µl elution

buffer (Tris-HCl, 10 mM, pH 8.5). Nucleic acid concentration was
estimated using a NanoDrop 1000 spectrophotometer (Peqlab
Biotechnologie, Erlangen, Germany). DNA was removed from
extracts by DNase treatment [1 U DNase I (1 U ∗ µl−1) per
µg of nucleic acids, rounded up to the next multiple of 10;
Fermentas/Thermo Fisher Scientific, Waltham, Massachusetts,
United States)] RNA was precipitated with a 1/10 volume of
sodium acetate (3 M, pH 5.2), washed with ethanol, and stored
in RNAse-free water at −80◦C. After RNA quantification using
the Quant-iT RiboGreen assay (Life Technologies/Thermo Fisher
Scientific, Waltham, United States), RiboLock RNase inhibitor
(Fermentas/Thermo Fisher Scientific, Waltham, Massachusetts,
United States) was added to each sample. For each sample, RNA
was reversely transcribed into cDNA in two separate aliquots
using GoScript (Promega, Mannheim, Germany) according to
manufacturer’s instructions. RNA extracts were first mixed with
random nucleotide hexamers (c (w/v) = 0.5 g ∗ µl−1), incubated
for 5 min at 70◦C, then quickly chilled on ice. Freshly prepared
master-mix (consisting of reaction buffer, 25 mM MgCl2 10 mM
nucleotide mix, RNase free water, and reverse transcriptase (1 U
∗ µl−1) was then added to the sample. Samples were incubated
for 5 minutes at 25◦C, then 60 minutes at 42◦C to enable reverse
transcription, which was ended by increasing the temperature to
70◦C for 15 min.

Amplicon Library Construction,
Sequencing, and Data Processing
We used the hypervariable region 3 of the bacterial 16S
rRNA gene to create amplicon libraries for tagged sequencing
with the Illumina HiSeq II system (Bartram et al., 2011).
Briefly, primers contained the Illumina adapter sequence,
the binding site for sequencing primers, and sequences for
priming the target 16S rRNA region V3 [341f_wobble2;
modified from (Muyzer et al., 1993)] and 515R (Lane,
1991), respectively. Additionally, the reverse primer
included a barcode region of six nucleotides (represented
by NNNNNN), yielding the following sequences: V3_F (5′-
ATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTCCTACGGGWGGCWGCAG-3′)
and V3_nR (5′-CAAGCAGAAGACGGCATACGAGATNNNNN
NGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGC
GGCTGCTGGCAC-3′). The PCR was performed with the
Phusion High-Fidelity DNA Polymerase kit (New England
Biolabs, Ipswich, United Kingdom) following the manufacturer’s
instructions, using 15 cycles of 94◦C (15 s), 59◦C (15 s), 72◦C
(15 s), after an initial denaturation step (94◦C, 5 min), ended by a
final elongation step (72◦C, 7 min). Amplicons of the desired size
were purified from gel with The NucleoSpin Gel and PCR Clean-
up system (Macherey-Nagel, Düren, Germany). Sequencing was
performed on the Illumina HiSeq platform with paired 100-base
reads in three separate runs on multiple lanes each. Forward
and reverse reads were first trimmed to 100 bp and dimers
were filtered out based on detection methods implemented
in FastQC.1 Reads were joined using fastq-join (Aronesty,
2013) at a minimum overlap of six nucleotides and allowing 20

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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percent mismatch. Joined reads were checked for chimeras by
Uchime integrated in Usearch 5.2.3 (Edgar et al., 2011) applying
the GOLD database from ChimeraSlayer2 as reference. After
additional quality clean-up with CD-HIT [cd-hit-otu-filter.pl;
Fu et al. (2012)] to remove ambiguous base calls or low quality
sequences, the remaining reads were classified with the RDP-
Classifier (Wang et al., 2007) for a first taxonomic overview
covering the entire set of reads. From this dataset, operational
taxonomic units (OTUs) were defined by mapping reads to a
pre-clustered reference database [SILVA Ref NR 128 (Quast
et al., 2013)] at 99% identity between query read and reference
cluster with UCLUST within QIIME 1.9 (Caporaso et al., 2010).
The closed-reference OTU clustering was the most appropriate
choice, since the taxonomic resolution of the 16S rRNA is not
constant across its various hypervariable regions. Global single-
and doubletons, plastids, and mitochondria were removed from
the OTU table, which in its final form covered 102,000,000
observations with high sampling completeness with respect to
the assessed reference OTUs (Supplementary Section B).

Data Analysis
Statistical analyses were carried out in R 3.5 and higher
(R Development Core Team, 2018). Initial comparative
β-diversity (i.e., between-sample diversity) analysis showed
strong agreement between various data normalization and
transformation approaches. The dataset was then scaled to
total sample sums of all bacterial observations unless stated
otherwise. If P values were generated, we used a significance
level of 0.05, with adjustments for multiple tests according to
the false discovery rate (FDR) method unless stated otherwise
(Benjamini and Hochberg, 1995). In general, Mantel tests were
used to quantify similarities between two distance matrices (999
permutations, Spearman rank correlation).

PERMANOVA, ANOSIM, and MRPP (Multiple Response
Permutation Procedure) were calculated as initial omnibus tests
to account for the influence of sampling date on community
composition [package ’vegan’, Oksanen et al. (2018)]. β-diversity
was determined with abundance-weighted and unweighted
UniFrac distances (Lozupone and Knight, 2005) and with
Bray-Curtis dissimilarities in the framework of Legendre
and De Caceres (2013), which partitions β-diversity into
local contributions by site (“LCBD”). Significant LCBD
was detected using 999 permutations with default P value
adjustment [package ‘adespatial’, Dray et al. (2019)]. We also
calculated the multiple site Sørensen dissimilarity and its
nestedness and turnover components to account for abundance-
unweighted (i.e., presence/absence-based) OTU turnover
(package ‘betapart’, Baselga (2010)].

Variance partitioning with three separate distance-based
redundancy analyses (dbRDA) was performed to decompose the
explained community variance into its spatial, environmental,
temporal, and joint components in package ’vegan’. Spatial
and temporal filters were proxied by distance based Moran
Eigenmaps (dbMEMs) based on the sampling grid and sampling
dates (Dray et al., 2006). We used forward selection of significant

2http://drive5.com/otupipe/gold.tz

variables in the three dbRDAs (on Bray-Curtis dissimilarities)
with a double stopping criterion (Blanchet et al., 2008) after a
global significance test (Bauman et al., 2018). Function ’varpart’
in ’vegan’ was used with the Bray-Curtis dissimilarities of the
OTU table, and the three forwarded selected variable sets.

α-diversity (i.e., within-sample diversity) was estimated with
Hill-numbers 0D and 2D on the raw OTU table, which was
intra- or extrapolated to the reference of twice the smallest
sample size [package ’iNEXT’; Chao et al. (2014)]. 0D represents
species richness with equal weight attributed to all species,
whereas 2D is the linearized form of the Simpson diversity
index and emphasizes dominant species. Post hoc analyses to
determine significant differences between sampling dates were
performed by estimating marginal means (package ’emmeans’,
Lenth (2018)], with default P value adjustments and corrections
for heteroscedasticity and spatial autocorrelation as described
in Stempfhuber et al. (2015). The spatial variability within each
sampling date was calculated as a coefficient of variation (CoV:
standard deviation/mean), with global asymptotic and modified
signed likelihood tests to identify significant changes in spatial
variability throughout the year [package ’cvequality’, Marwick and
Krishnamoorthy (2019)].

Differential abundances of OTUs between specific groups
of sites were identified using a consensus approach of
different post hoc testing methods and test-specific data
normalization procedures (Supplementary Section C). This
was deemed necessary due to substantial differences between
existing methods.

Whether local communities were shaped by stochastic
and/or deterministic processes was assessed by first testing
for significant phylogenetic turnover between communities
(βMNTD; β mean nearest-taxon distance), from which the
βNTI (β nearest-taxa index) was derived from a null model
test of βMNTD (Stegen et al., 2013). This was followed
by calculating pairwise Raup-Crick dissimilarities (RCBray)
between sites (Chase and Myers, 2011), weighted by OTU
abundance (Stegen et al., 2013), after rarefying the OTU
table to equal sampling depths. To quantify deterministic and
stochastic influences on community assembly, we used the
framework developed in Stegen et al. (2015) as illustrated in
Feng et al. (2018). |βNTI| > 2 indicates that environmental
selection is the primary assembly force, partitioned into
heterogeneous (βNTI > + 2) and homogenizing selection
(βNTI < −2). For |βNTI| < 2, a primary influence of stochastic
effects was inferred. For this βNTI range, RCBray < −0.95
represents communities affected by homogenizing dispersal,
whereas dispersal limitation (along with drift) results in
RCBray > 0.95. For RCBray < |0.95|, moderate dispersal and
weak selection results in an “undominated” scenario. The
phylogenetic tree used for the βNTI/βMNTD estimation was
obtained from SILVA3 which contained OTUs at 99% sequence
similarity (“99_otus.tre”). The computing time necessary for the
calculation of > 69,000 pairwise βNTI -comparisons lead to
the decision to split the dataset by sampling date for the whole
communities, and by the most abundant phyla and classes for

3https://www.arb-silva.de/download/archive/qiime/

Frontiers in Microbiology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 1391

http://drive5.com/otupipe/gold.tz
https://www.arb-silva.de/download/archive/qiime/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01391 June 27, 2020 Time: 19:53 # 5

Richter-Heitmann et al. Plot-Scale Soil Bacterial Community Dynamics

calculations encompassing all 358 samples. For generation of
abundance-based Raup-Crick diversity assessments, we used a
re-implemented approach, which is much faster than previously
used scripts (Supplementary Section D). While the original
implementation in Stegen et al. (2013) calculated randomizations
for each pairwise sample and then calculated Bray-Curtis
distances,4 the new implementation achieves acceleration in two
ways: (i) parallelization of the iterations and (ii) combined
calculation of all pairwise samples using the faster vegdist
function (package ’vegan’) with underlying C+ + code. The new
implementation is available via GitHub5.

At the level of single OTUs, we fitted component-wise boosted
generalized additive models (GAMs), which can accommodate
the three effect classes present here in a single modeling
framework: smooth effects (for environmental variables), linear
effects (for sampling dates), and smooth spatial effects (including
time-specific smooth effects for spatial effect estimates by
sampling season). Only OTUs with at least 30 observations in
the raw dataset were considered (arbitrarily set). For OTUs
with > 40 zero observations, boosted GAMLSS (generalized
additive models for location, scale and shape (Rigby and
Stasinopoulos, 2005) were used under a zero-inflated negative-
binomial distribution [package ’gamboostLSS’, (Mayr et al.,
2012; Hofner et al., 2015b)]. Otherwise, a negative binomial
distribution was assumed, and boosted GAMs were fitted
[package ’mboost’, (Hofner et al., 2014; Hothorn et al., 2015)].
The choice of probability distribution was determined by initial
out-of-bag estimates of prediction accuracy (not shown). To
avoid overfitting, the optimal stopping criterion (number of
boosting steps) was calculated via cross-validation by 25-fold
bootstrapping. To obtain even sparser models, cross-validation
was complemented with stability selection using 100 random
subsamples (package ’stabs’, Hofner and Hothorn, 2015; Hofner
et al., 2015a). Variables were considered selected if they were
present in more than 83% of the 100 models fitted on the 100
subsamples (controlled by the chosen Per Family Error Rate of
2). To compare the impact of spatial covariates on OTUs, we
computed effect ranges (i.e., maximal – minimal effect) from
the estimated OTU-specific spatial model. A higher effect range
represents a larger impact on OTU counts. For more details on
boosted GAMs, see Supplementary Section E.

RESULTS

General Composition of the Potentially
Active Bacterial Communities
Based on the RDP-classification and aside from unclassifiable
bacteria (14.31% ± 1.27% SD, averaged across all samples),
Proteobacteria (28.51 ± 2.8% SD) and Actinobacteria
(24.48 ± 4.31% SD) together amounted to approximately
50% of an average community, followed by Acidobacteria
(12.67% ± 1.28% SD). Other abundant phyla were
Planctomycetes (8.34 ± 1.33% SD), Verrucomicrobia

4https://github.com/stegen/Stegen_etal_ISME_2013
5https://github.com/FranzKrah/raup_crick

(6.02% ± 1.21% SD), Bacteroidetes (2.45% ± 0.84% SD),
and Firmicutes (1.76% ± 0.54% SD). All other phyla contributed
less than 1% of all reads each. Acidobacteria Subgroup 6 and
Planctomycetaceae emerged as the most common families across
all samples. Twenty-two percent of all reads could be mapped
to reference taxonomy, yielding 16,944 reference OTUs, of
which 1398 resident OTUs were ubiquitously detected in all
samples. This group alone represented 89.8% of all reads in
this OTU dataset. Another 9133 transient OTUs occupied less
than 10% of all sites. A highly significant log-log relationship
between abundance and frequency was found at the OTU
level (P < 0.0005), which was conserved between phyla
(Supplementary Figure S1) and revealed a steady abundance
to frequency ratio of between 10 and 1 reads per sample.
In agreement with the RDP-classified dataset (encompassing
all reads), alphaproteobacterial and actinobacterial lineages
dominated within the 22 most abundant OTUs [minimum
mean relative abundance to total bacterial observations > 0.1%
(Supplementary Table S1)].

Spatio-Temporal Variability of Bacterial
α- and β-Diversity
A significant influence of sampling date on community
composition was attested by three omnibus tests (OTU level;
PERMANOVA, ANOSIM, MRPP, P < 0.001 in all cases).
Visualization of this influence with ordination techniques
(UniFrac/PCoA and Bray Curtis/NMDS) revealed a clustering
that was strongest for April and for a group of communities
sampled in June (Supplementary Figure S2). We calculated the
local contribution of each community to β-diversity (LCBD),
and found 66 of the 358 stations (18.4%) exhibiting significantly
differing community compositions, most of which occurred in
the April (n = 26), and June (n = 15) samplings (Supplementary
Figure S3). After the June sampling, the average LCBD per
sampling date did not fluctuate significantly (Table 1 and
Supplementary Figure S4). On the three dates for which plant
coverage data was available (May, June, October), no relationship
between plant and bacterial β-diversity was found (Mantel tests,
UniFrac and Bray Curtis distances for bacteria vs. Bray Curtis
and Hellinger distances for plant coverage, P > 0.05 in all cases).
We used the variance partitioning approach to disentangle the
single and joint effects of space, time, and environment. 35%
of the observed variance in β-diversity could be explained by
three separate, forward selected dbRDAs. We found pure effects
of space (9%), soil variables (9%) and time (2%). Soil variables
were interacting with space (Soil∩Space = 7%) and with time
(Soil∩Time = 5%), while space and time (Time∩Space) did not
interact. Another small fraction of the variance was explained
by all variable sets acting together (Soil∩Space∩Time = 2%).
Soil moisture and pH were the most significant environmental
variables (Supplementary Table S2), followed by EOC, Cmic,
Nmic, Clay content, phosphate and litter mass.

We then tested whether the emerged patterns of β-diversity
were caused by species turnover (i.e., replacement) or species
loss (i.e., nestedness). In contrast to other β-diversity measures,
this presence/absence based measurement of β-diversity
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TABLE 1 | Temporal and spatial variability of α- and β-diversity measures in the SCALEMIC plot.

Sampling Season Mean LCBD SD Significance Group (# divergent sites) CoV Global tests for CoV Significance:

April 0.0037 0.0016 a (26) 0.444 P < 0.001

May 0.0023 0.0016 b (7) 0.716

June 0.0040 0.0046 a (15) 1.156

August 0.0025 0.0010 b (8) 0.387

October 0.0021 0.0008 b (4) 0.367

November 0.0022 0.0010 b (6) 0.456

Sampling Season Mean 0D SD Significance Group CoV Global tests for CoV Significance:

April 4774.2 174.3 a 0.036 P < 0.001

May 4739.6 264.3 ab 0.055

June 4659.4 246.5 bc 0.052

August 4454.5 202.7 d 0.045

October 4613 166.3 c 0.036

November 4624 177.6 c 0.038

Sampling Season Mean 2D SD Significance Group CoV Global tests for CoV Significance:

April 351.4 58.9 a 0.168 P > 0.05, not significant

May 281.4 45.1 b 0.160

June 268.2 47.0 b 0.175

August 278.7 40.9 b 0.147

October 250.2 33.3 c 0.133

November 244.6 38.1 c 0.156

Shown are means and standard deviations of the local contribution to β-diversity (LCBD), of species richness (Hill number 0, 0D), and of the linearized Simpson diversity
(Hill number 2, 2D). Spatial variability is represented by the coefficient of variation (SD/mean). Global significance tests of spatial variability changes between sampling
seasons include asymptotic and modified signed likelihood tests. “# divergent sites” in the top table refers to the number of sites with statistically significant contribution
to overall β-diversity. A boxplot depiction of these values is found in Supplementary Figure S4.

was high, without significant changes between samplings
(0.84 < βSør < 0.87). Only turnover, but not nestedness,
contributed to respective multiple site dissimilarities. Partitioning
the OTU table by decreasing frequency showed that the detected
high species turnover was almost entirely attributable to the rare
biosphere, and that total β-diversity was low, while nestedness
and turnover were balanced when only resident and abundant
OTUs were considered (Supplementary Figure S5).

Moving from the community level to specific populations,
distinct temporal abundance profiles were detectable at all
taxonomic levels (Supplementary Figures S6–S8, for phylum
and subgroup level seasonality based on the RDP-classified data,
and for abundant OTUs). A strong replacement of Proteo-
by Actinobacteria between April and May dominated all other
observed population-level changes. This major turnover was
driven by a substantial decrease in beta- and delta-, but
not alphaproteobacterial abundance. Accordingly, abundant,
resident OTUs experienced a significant abundance change
between these two months. Other major groups featured mostly
homogeneous distributions across the year (e.g., Spartobacteria,
Gammaproteobacteria, Acidobacteria Subgroups 3 and 17). In
contrast, spatial variability exceeded the differences between
monthly abundance means for many other major groups, e.g.,
phyla Nitrospirae and Planctomycetes, and classes Spartobacteria,
Acidobacteria Subgroup 17, and Gammaproteobacteria.

The two α-diversity measures showed distinct temporal
patterns (Table 1 and Supplementary Figure S4). Compared to

the diversity of abundant species (expressed by the linearized
Simpson diversity), which strongly peaked in April and
significantly declined until winter, species richness slightly
decreased toward summer, when it reached an annual low in
August after which it increased again. The within-month spatial
variability (CoV) of the Simpson diversity was generally higher
than for species richness but did not change significantly between
sampling dates, in contrast to species richness, which had lower
but significantly oscillating values across time (Table 1). Species
richness was positively influenced by carbon pools (SOC and
EOC; selected in all 100 stability selected GAM subsamples,
but only after the time variable was removed from the model),
at moderate correlation strength (in a linear framework, the
obtained Pearson correlation coefficients ρ were 0.33 for EOC,
and 0.22 for SOC, respectively; P < 0.01 in both cases).
By contrast, Simpson diversity was strongly correlated to soil
moisture (100% of GAM subsamples, corresponding to Pearson’s
ρ+ 0.47, P < 0.001 in a linear framework).

Spatio-Temporally Isolated Community
Shifts
The sampling in June yielded several sites with community
compositions that significantly deviated from all other stations.
A Bray-Curtis based complete linkage clustering of the June
communities assigned nine sites to a group of irregular,
but similar communities (Figure 1A) in two loosely parallel
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FIGURE 1 | Continued
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FIGURE 1 | (A) Composition of bacterial communities at the family level during the June sampling campaign, clustered by complete linkage. Irregular, strongly
deviating communities are indicated in red. (B) Spatial bubble plots of three selected OTUs (from left: resident, but significantly less abundant in irregular
communities (red); resident, but highly stimulated in irregular communities; rare, and highly stimulated in irregular communities). Each circle represents one site in the
SCALEMIC experiment across the entire year. Circle size correlates with relative abundance. (C) Boxplots showing α-diversity in irregular (red) vs. regular sites
(black). Species Richness (Hill number 0, 0D) and the linearized Simpson diversity (Hill number 2, 2D) are depicted. Letters indicate groups of statistically significant
differences (estimated marginal means). (D) Relative shifts of abundance-unweighted OTU proportions between the two community types, with no change
represented by the dashed line. Families above this line feature significantly increased OTU frequencies in the irregular communities. Bubble sizes indicate the
absolute of the log10 fold change between the relative OTU frequencies in irregular vs. regular communities (and vice versa, below the dashed line).
UAF = Unassigned family within the given clade.

FIGURE 2 | (A) Assembly processes for nine major bacterial groups (left panel) across all 358 samples and for the six individual sampling dates (right panel),
encompassing between 59 or 60 samples. Gammaproteobacteria include Betaproteobacteria. (B) Assembly processes in defined scenarios: Temporal distance > 0
(“Between Months”), Temporal distance = 0 (“Within Months”), spatial distance < 2 m & temporal distance > 150 days, and spatial distance > 8 m & temporal
distance < 60 days. The latter two scenarios theoretically support homogenizing dispersal, and dispersal limitation, respectively. UQ/LQ = Upper/lower quartiles of
between-sample differences in soil moisture (SM) and pH. Depicted is the mean with its 95% confidence interval for values averaged over nine major bacterial
groups (see left panel of A). No pairwise comparison yielded a significant difference of distribution means.

bands across the plot (Figure 1B), indicating a uniform shift
toward an alternative community state. We classified 570
OTUs as differentially active (“DA”) in the irregular sites,
among which we found both (almost) unique OTUs and

intermediate forms (Figure 1B). DA OTUs were concomitantly
present with the common set of resident species, resulting
in significantly elevated 0D-richness levels (Figure 1C). By
contrast, 2D-richness differences were not altered, although DA
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FIGURE 3 | Spatial abundance models of selected OTUs. (A) Highly abundant OTUs. (B) Phylogenetically close OTUs within genus Bdellovibrio with decreasing
abundance from top left to bottom right. Each panel represents a map of the SCALEMIC experimental site with the top pointing to the north direction, and shows the
pure spatial model prediction for a single OTU. Blue areas represent areas in which the spatial effect predicts high local abundances. The maps encompass the
effects of all sampling dates after adjusting for temporal and environmental variables in the same model. For each model, abundance data from 358 sampling
locations were smoothed using bivariate P-splines with a grid of 24 × 24 knots. The partial effects of the models were individually centered and scaled (mean = 0,
SD = 1).
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FIGURE 4 | Boxplots showing the response range of partial effects assigned by GAMs to the four most frequently picked variables in a global model encompassing
space, season, and environmental variables. The dataset was separated by relative abundance and includes 2693 OTUs, which were modeled using negative
binomial GAMs; lower panel depicts temporal deviations from the main spatial effect found in a global model. Effect size values were not scaled.

OTUs were frequently among the most abundant OTUs in the
irregular sites. Thus, the elsewhere dominant, resident OTUs
were sometimes outcompeted [e.g., OTU 17028 (Figure 1B)].
Within the set of 570 DA OTUs, a strong taxonomical shift
toward distinct alphaproteo-, actino-, and acidobacterial families,
but also toward Armatimonadetes was found (Figure 1D). We
initially could not detect any environmental explanations for
the community shifts with multivariate and/or linear analyses.
However, GAMs fitting additional plant-derived data for the June
data set (Klaus et al., 2016) frequently reported a positive effect
of Dactylis glomerata subplot coverage at intermediate total plant
coverages and lower plant evenness (Supplementary Figure S9).

Quantifying Stochasticity and
Determinism in Local Community
Assembly
Due to heavy computational burden, we decided to split
the dataset in two different ways: i) by major taxonomic
groups (phylum or class, > 600 OTUs) for the entire set of
358 samples and ii) by sampling date (all OTUs, 59 or 60
samples each). In almost any case, undominated scenarios, e.g.,
the interaction between deterministic and stochastic processes
explained most of the assembly. However, we also found
evidence for strong stochastic assembly processes acting alone

(Figure 2A). At each time point, homogenizing dispersal
explained between 34% and 51% of the assembly mechanisms,
while undominated scenarios characterized between 19% and
47%. For individual populations, dispersal was never limited,
but acted as a homogenizing agent, as well, except for
Deltaproteobacteria. By contrast, if selection played a role,
it rather worked as a heterogenizing agent, as variable
selection dominated over homogenizing selection (except
for Firmicutes).

We also tested whether or not the process patterns were
influenced by spatial, temporal or important environmental
gradients. We split the dataset into several scenarios (“Within
Months”, “Between Months”, “High spatial and low temporal
distance” (conceptually facilitating dispersal limitation), and
“Low spatial and high temporal distance” (conceptually
supporting homogenizing dispersal), and low and high
differences in soil moisture and pH, respectively) to determine
whether process patterns changed within these scenarios.
However, we found no evidence for any scenario to influence
assembly processes (Figure 2B).

As previous analyses had pointed to a highly dynamic
rare biosphere, we finally looked for similar effects within
the βNTI/RCBray framework as well. To determine this, we
randomly drew 10 subsets of 500 OTUs (with 120 – 240
non-zero observations) belonging to the rare to intermediate
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biosphere and found that these subsets were largely controlled by
dispersal limitation (61.4 ± 1.1% SD) and undominated process
interactions (31.1%± 0.4% SD).

Spatio-Temporal and Environmental
Controls of OTU Abundance
By using boosted GAMs and GAMLSS, we decomposed
effects on OTU abundance into interpretable partial effects by
environmental, spatial, and temporal variables (Supplementary
Table S3). 9553 OTUs with more than 30 observations in
the entire data set were individually modeled and grouped
at the genus level if possible. Cross-validated models
selected significantly more candidate variables than the
very conservative stability selection. Both variable selection
methods agreed in assigning space (selected in 82% of all
9553 cross validated models, 69% when stability selected), pH
(60%/25%, respectively), time (57%/21%), and soil moisture
(57%/19%) as the most frequently selected variables. Relative
selection frequencies were low using the stability selection
approach, but even the least often selected predictors (e.g.,
protozoal PLFA) were picked with high confidence in no fewer
than 110 out of all models. Acidobacteria, Deltaproteobacteria,
Planctomycetes, and Chloroflexi clades responded to pH
most frequently, whereas many Bacteroidetes, Actinobacteria,
and especially Firmicutes affiliated groups did not. Soil
moisture was best fitted to several actinobacterial groups
(e.g., genera Iamia, Nocardioides, or Solirubrobacter). High
individual selection frequencies among groups with high
OTU numbers included nitrate (genera Massilia, 26.4%),
C/N ratio (genus Chthoniobacter, 25.4%), clay content
(order Tepidisphaerales, 28.1%), and bulk density (phylum
Latescibacteria, 34.1%).

Spatial models were used for abundance prediction (Figure 3),
and included pure effects of location decomposed from time
and environment. The effect size ranges of the spatial predictor
were comparable to the most effective edaphic parameters
(pH and soil moisture; Figure 4). Model complexity increased
with decreasing OTU abundance, and could vary significantly
within phylogenetically close relatives [exemplarily shown for
bacteriolytic Bdellovibrio (Figure 3B)].

We then checked whether or not pure spatial effects changed
if sampling dates were assessed individually, on a subset of 2693
resident OTUs (present in at least 320 samples), (Figure 4). The
22 most dominant OTUs (mean relative OTU abundance > 0.1%
each) showed the lowest seasonal deviations from the main
annual effect. Though decreasing OTU abundance increased the
likelihood of spatio-temporal variability (indicated by increasing
effect deviations, Figure 4), the main annual effect always had
the highest average range in general for all three subsets of
the resident OTUs (dominant, abundant, rare). High seasonal
variability of the spatial effect size was found for rare resident
OTUs during all months, but highest spatial variability overall
was evident in August. Soil moisture and pH effects yielded
opposite patterns on rare, abundant, and dominant resident
OTUs. Within the dominant OTUs, soil moisture was observed to
have the strongest effect, whereas pH and space better explained

profiles of less abundant residents. Pure seasonal effects did not
show rarity-specific effects.

DISCUSSION

General Dynamics and Assembly of
Local Communities
We monitored bacterial rRNA abundances at 358 stations on
a 10 m x 10 m plot, equally distributed across six inter-annual
sampling dates, and expected that those bacteria maintaining
transcriptional potential would be subjected to environmental
filtering rather than to stochasticity. In contrast, we found that
both process types together shaped the local communities, which
in total resulted in a strong community homogenization. Time
and space were both important predictors of diversity and
abundance of bacterial rRNA counts. Moreover, our analyses
pointed to a stable but oscillating community backbone of
resident OTUs beyond which a rare biosphere showed higher
spatio-temporal variability and turnover.

Three approaches were used to account for assembly
principles: i) βNTI/Raup Crick modeling revealed a high
proportion of stochasticity acting alone, which however also often
interacted with deterministic process. This was supported by ii)
variance partitioning, which found both space and environment
equally impacting the community. Finally, we could use iii)
spatial GAMs to map the OTU-level consequences of the
identified assembly processes and find a rarity-dependent effect
of space. Moreover, both variance partitioning and GAMs agreed
in finding the most important individual variables, filling a
conceptual gap of the βNTI/Raup Crick approach, which was not
designed to identify the environmental filters at work.

Almost 1400 OTUs (representing∼90% of all reads) in our site
were sufficiently adapted to the present environmental gradients
to maintain ribosomes at any time and in any location. This
conclusion is supported by the finding that substrate pools
(soil organic carbon, total nitrogen, EON/EOC) were of lesser
importance for OTU abundance and changes in β-diversity
in our most parsimonious models, compared to soil moisture
and pH. We also did not find strong evidence for correlations
between bacterial and plant β-diversity or of a strong influence
of plant-derived variables on OTU abundance. Feng et al. (2018)
explained that the transition to purely deterministic species
sorting happens when environmental changes occur outside
tolerated gradients. It seems likely that in our grassland those
thresholds were never exceeded, at least not for the resident
OTUs. Accordingly, spatial GAMs, and total site dissimilarity
analysis agreed in assigning the largest effect sizes to the rare
biosphere, which has been demonstrated in other habitats as well
(Gobet et al., 2012; Kim et al., 2013).

The finding that the assembly patterns for most tested
populations or time points were consistently dictated by either
homogenizing dispersal or a combination of (weak) deterministic
and neutral processes aligns well with the conceptual framework
of Langenheder and Lindström (2019) for small observational
scales, and contrasts with the detection of habitat-related
bacterial turnover at larger scales (Powell et al., 2015). We can
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also confirm recent results describing that stochasticity rather
than taxonomic composition facilitates variability of soil bacteria
(Albright et al., 2019a), and our results are consistent with
reports that grasslands promote dispersal of bacteria below-
and above-ground (Albright and Martiny, 2017; Goss-Souza
et al., 2017), possibly due to lack of pronounced spatial nutrient
variability (Curd et al., 2018). Two major bacterial groups differed
in their dispersal ability: Deltaproteobacteria, consisting mostly
of Myxococcales, faced significant limitations in their ability
to stochastically disperse, probably due to their multicellular,
biofilm-based lifestyle (Muñoz-Dorado et al., 2016.). Firmicutes,
however, were found to be homogenized by environmental
selection rather than dispersal, owing to the fact they were
often phylogenetically less diverse than predicted by chance
(βNTI < −2). Finally, the June communities experienced the
highest influence of variable selection, thanks to the presence
of the irregular communities. Besides, the relative contribution
of each process type remained remarkably constant across
phylum/class level populations and across individual time
points, with no evident impact of space, time or important
environmental gradients. Taken together, the detected assembly
principles at our site allow the interpretation that an apparent
absence of physical barriers in the soil resulted in homogenization
of an intact community that had been established long before the
experiment. Interestingly, a similar experiment with dryland soils
featuring a mosaic of crusts and plant cover contrastingly showed
high β-diversity on very small scales, driven by habitat turnover
(Albright et al., 2019b).

Interacting Processes Affect
Spatio-Temporal Variability
In general, soils are regarded as the habitat harboring the most
temporally invariant microbial communities (Shade et al., 2013),
likely resulting from the many micro-habitats present in soils at
very small scales (Tecon and Or, 2017), which in theory should
limit the rate and success of independent dispersal processes
(e.g., Yan et al., 2019). However, reports of soil microbial
communities with pronounced temporal variability related to
season, soil, and management type are accumulating (Lauber
et al., 2013; López-Mondéjar et al., 2015; Zifcakova et al., 2016;
Albright et al., 2019b; Landesman et al., 2019). In our case, the
sampling season significantly structured α- and – to a lesser
degree – β-diversity and resulted in specific abundance patterns
across all taxonomic levels. Unlike other natural grasslands
(Barboza et al., 2018), abundance-weighted β-diversity did not
show a strong clustering by time, as the clearest separation
in ordination was found between April and all other time
points (Supplementary Figure S2), which matched significant
environmental changes between April and May (Supplementary
Section A.3) and changes in nutritional limitation of plants
(Klaus et al., 2016). This environmental turnover drove huge
phylum-level abundance shifts (along with a significant drop
in Simpson diversity, overall β-diversity, and cell numbers),
similar to simulated wetting/desiccation experiments (Barnard
et al., 2013). After rewetting of the soils due to heavy rainfall
(in combination with the removal of plant biomass by mowing

and significant drops in EOC/EON pools) before the August
sampling, species richness was at a seasonal low at the same time
that many dominant OTUs exhibited a relative abundance peak.
Although soils had significantly dried out again by October, the
associated community changes were not nearly as drastic as those
between April and May, indicating different, possibly stabilizing
mechanisms at work later in the year. In fact, apart from the
irregular sites in June, no significant change in average LCBD per
month was detected at all after spring.

Our most conservative additive models predicted that
deterministic processes were mostly driven by pH – despite a
moderate range of 1.25 pH units (5.98 – 7.23) – and soil moisture,
which was confirmed by community level modeling (dbRDA).
Both variables have previously been identified as major factors
that directly or indirectly shape soil microbial communities
(Brockett et al., 2012; Cruz-Martínez et al., 2012; Maestre et al.,
2015; Lammel et al., 2018; Tripathi et al., 2018; Lupatini et al.,
2019). pH seems to play a mediating role in our grassland,
as on the one hand it has been shown in other systems to
facilitate stochastic processes at near neutral range (Tripathi
et al., 2018), while on the other hand it is the likely candidate
variable being responsible for the weak deterministic processes
at our site when assembly was undominated. Soil moisture may
rather act as an enabler of stochasticity. Water availability (and
soil structure) is a natural limitation to undirected dispersal
of microbes (Tecon and Or, 2017); however, by connecting
microhabitats, it also promotes biotic interaction, and therefore
may confound the detection of stochastic effects. Intriguingly,
we found the strongest dispersal limitation in April, when soil
moisture (among other variables, including total cell numbers)
peaked. This well demonstrates the ambiguous impact of water-
connected habitats, which not only enables movement but also
increases interaction, and thus competition among dispersers.
Likewise, many abundant OTUs were least dominant when soil
moisture was high, inducing a seasonal peak of Simpson diversity,
i.e., a diversification of dominant species. The probabilistic
framework used here addresses this possible caveat by assuming
that stochastic assembly is only possible if phylogenetic turnover
is not drastically different from chance alone, and thus not driven
by environmental gradients (including structuring variables,
e.g., moisture). Although soil moisture and bulk density values
showed seasonal fluctuations [and were in some cases correlated
with space itself (Supplementary Table S4)], our results do not
imply that these soil structure variables were strongly disturbing
or promoting stochastic assembly. To this end, rare OTUs were
most likely influenced by dispersal limitations, but soil moisture
exerted less control on them (Figure 4).

Spatial distributions of microbes at the plot scale have been
assessed in some other studies (Keil et al., 2011; Wang et al.,
2012; Mukherjee et al., 2014) but their temporal stability has
been less frequently examined (Regan et al., 2014, 2017). Here
we show that spatial variability depends on abundance, as well
demonstrated for Bdellovibrio. Moreover, a large proportion
of the most abundant OTUs had a remarkably consistent
spatial distribution, in complementary patterns (Actinobacteria
OTU 05857 vs. Planctomycetes OTU 13887) as well as in
congruence (Acidobacteria OTUs 00346 and 01645). In all but
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one case (Verrucomicrobia OTU 22883), the dominant OTUs
exhibited clear unidirectional spatial effect gradients. Our spatial
prediction models also show that pure spatial effects do not
act homogeneously across the plot, corroborating the varying
degree of undominated vs. stochastic assembly ratios. Moreover,
the relation between decreasing abundance and increasing
patchiness of the spatial models corroborates the finding that rare
populations were largely controlled by dispersal limitation and
experienced the largest effect sizes of space (Figure 4).

Finally, we also extracted additive models partitioned by
environmental variables and gained effect estimate profiles from
thousands of individual OTUs (Supplementary Figure S10,
for pH, soil moisture and litter). Although discussing them in
detail is beyond the scope of this study, our data provide the
opportunity to examine whether OTUs exhibit phylogenetically
regulated functional niche effects or instead form a redundant
web of ecologically similar organisms (Konopka et al., 2015;
Mandakovic et al., 2018). The similar shape and position of
many partial functions, especially in ranges of environmental
variables that support mesophiles, suggest overlapping niches
of co-existing OTUs. Interestingly, the obtained curve arrays
were remarkably conserved across phyla, except for partial effect
models for soil moisture of Acidobacteria. Accordingly, strong
taxonomic signals were also absent when assessing assembly
principles at the population level.

Isolated Local Community Shifts
The heterogeneous matrix of soil is known to harbor
heterogeneous communities at very small scales (O’Brien
et al., 2016), but our study shows that fine-scale heterogeneities
were undetectable with the size of cores and scales we used
for sampling. Still, the unexpected finding of very unusual
community composition during the June sampling is a main
highlight of our study.

Although our data did not provide a definite explanation
of the causes of the community shifts, several scenarios are
possible. The rise of the irregular communities could have been
triggered by priming effects caused by uncommon substrates
(e.g., by defecation of transient grazers) resulting in shifts in
nitrogen availability; this could have consequently favored either
stoichiometric growth by opportunists (if N-availability was
high) or nutrient mining K-strategists (if N-availability was low)
(Fierer et al., 2012; Di Lonardo et al., 2017). The C/N ratio was
on average higher in the irregular sites, although this difference
was not statistically significant. It also seems unlikely that we
coincidentally observed a short-lived invasion triggered by, e.g.,
undirected transport via animals. Differentially active OTUs
apparently were natural members of the metacommunity, as
they were evident in other sites and at other sampling dates
as well, either in traces or even ubiquitously (but not nearly
as abundant, which could indicate resting cell states). And
finally, given that cell counts in these communities were high
but not significantly different from bulk communities, it is
difficult to characterize these events as soil blooms, which have
been described in association with fertilization or contamination
(Udikovic-Kolic et al., 2014; Fuentes et al., 2016), but never in
unmanaged grasslands.

Instead, our models suggest that the community switches
were driven by above-ground vegetation parameters and possibly
influenced by the presence of the common grass Dactylis
glomerata. Stages of plant growth also influenced fluctuations in
soil nutrient concentrations, perhaps creating competition with
microbes for resources (Regan et al., 2014, 2017). Thus, their
classification as hot moments (Kuzyakov and Blagodatskaya,
2015) is tempting, as these events are often facilitated by labile
organic inputs from plants; and as our A-horizon soil was
strongly affected by the dense root system of its grassland
cover. Although the stimulated taxa have not been described as
rhizosphere-specific, copiotrophic, or as competitors (Ho et al.,
2017), e.g., capable of quickly responding to nutrient pulses,
recent research has revealed that, e.g., subgroup 1 Acidobacteria
(which were dominant in the irregular communities) support
feedbacks between distinct communities in the rhizosphere and
its surrounding soil (Kielak et al., 2016; Kalam et al., 2017).

It is clear that irregular communities soon returned to a state
representative for this grassland in previous (and succeeding)
sampling events. If we assume that external or internal
disturbances drove the switches, the observed full recovery
demonstrates a strong capacity of the studied communities to
return to a stable state (Shade et al., 2012; Faust et al., 2015). It
is possible that the overall lack of dispersal limits enabled the
resident OTUs to reestablish once the conditions leading to the
irregularities were gone. In our case, a strong external disturbance
(the almost complete removal of above ground plant biomass by
the August mowing) might even have terminated – not caused –
those conditions, which favored the alternative community states.
Nevertheless, it was not possible to infer how long the irregular
communities would have prevailed or if more sites would have
been affected under undisturbed conditions.

Future implications of these surprising findings for sampling
designs depend on a priori knowledge about sampling areas
and on available labor, but as sequencing costs are constantly
decreasing, the analysis of single cores (instead of the
often applied pooling of 3 – 5 cores per plot) may yield
surprising heterogeneity.

Limitations and Caveats
Phylogenetic uncertainties of the hypervariable region 3 of
the 16S rRNA required us to omit those reads which were
not 99% similar to already known sequences, which led to
a loss of the remaining signals. However, our dataset is still
extraordinarily large, and given the overall homogeneity of the
results, we believe that extrapolation to the entire community,
e.g., as identified with a 97% threshold for de novo OTU
clustering, is justified. Preliminary analysis with a dataset
comprising of non-clustered, RDP-classified reads found the
same trends of β-diversity as presented in this manuscript,
including the irregular communities during the June sampling
(Richter-Heitmann, 2016).

Two other limitations of our analysis should be considered.
First, “space” and “time” may be masking environmental
gradients we did not measure, and thus do not completely
represent stochastic processes. Most, if not all, studies of spatio-
temporal distribution patterns of microbes must deal with this
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issue. Hence, the now well-established framework of combining
βNTI and Raup-Crick null models is critical to our approach,
as it determines whether there is any indication of stochastic
assembly in the first place. In our case, we have good evidence
to assume that “space” and “time” are indeed proxies for
stochasticity, as environmental selection – as an independently
acting process – did not play an important role. We found
significant effects of space and time on OTU abundances, local
community composition, which increased for the rare biosphere.
Moreover, in both modeling approaches (boosted GAMs and
dbRDA) – although conceptually being very different – we
found strong evidence for the influence of the location on
OTU abundance and community composition. However, clear
quantification is still very difficult, and we feel that the effect
decomposition provided by GAM boosting is helpful in finding
“pure” effects, while dbRDA provides insight to the joint
variability which is best explained by spatially or temporally
dependent environmental gradients.

Another caveat of our study is that neither the analysis of
rRNA genes nor rRNA transcripts can exclude cells in (short-
termed) resting states. Regardless of the marker, dormant cells
could be problematic for assembly assessments insofar as they do
not proliferate (which can be deterministically or stochastically
regulated) or actively move (e.g., along nutrient gradients).
However, unlike DNA signals, which are often contaminated
with old relic residues (Carini et al., 2016), rRNA reflects past,
present, and future protein synthesis potential (Blazewicz et al.,
2013), and is therefore better suited than rDNA to reflect
the potential of populations to establish themselves within a
community. Since our analysis likely included cells in any
activity state, residency could theoretically be explained at least
in part by dormancy. However, it should be considered that i)
our soils represented rhizosphere or rhizosphere-affected soils,
which are characterized as activity hot spots (Blagodatskaya and
Kuzyakov, 2013), ii) previous experiments showed high microbial
activity in the same soil (Regan et al., 2017), iii) bacterial cell
counts and 16S rRNA gene copy numbers showed considerable
seasonal variability (Regan et al., 2014, 2017; Stempfhuber et al.,
2015). The studied site was specifically selected, as unfertilized
perennial grasslands with high plant diversity have been shown
to have higher soil organic carbon, total nitrogen, and microbial
carbon; greater food web complexity, more complex biological
communities (Grayston et al., 2001; Culman et al., 2010), and to
use nitrogen more efficiently than those with less plant diversity
or more intensive management such as croplands, especially in
nutrient-limited soils (Zak et al., 2003; Kleinebecker et al., 2014).
Moreover, our results show that homogenizing dispersal was
much more important than variable selection in the assembly of
the local communities, and passive dispersal of dormant cells can
easily be integrated in such a scenario.

CONCLUSION

We combined a unique spatio-temporal sampling design with
high-resolution molecular tools and sophisticated analysis to
identify the main drivers of the assembly of potentially active

bacteria at the plot scale. Our central questions asked whether
intra-annual changes in microbial activity potential can be
detected on small spatial scales with intensive sampling efforts
and whether they would follow stochastic or deterministic
principles. The emerging picture from this study was that of
many concomitantly present OTUs, whose individual small scale
biogeographies combined to create a dense system throughout
the A-horizon of this grassland.

Considering all our results, we conclude that spatio-temporal
variation can be partitioned into an oscillating core microbiome
and a dynamic rare biosphere which was more likely subjected
to species turnover and spatio-temporally explicit absence.
We found that neither stochastic nor deterministic processes
dominated over community assembly, but that in many cases
unlimited dispersal overpowered selection and acted as a
homogenizer of local communities, whereas the rare biosphere
rather experienced dispersal limitation.

Finally, even though the communities showed strong
spatio-temporal stability, there was the potential for short-lived
and spatially isolated community shifts. The observation
of bloom-like events at the plot-scale emphasizes the
importance of frequent sampling over space and time to
ensure that observed communities are representative of
composition states.
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FIGURE S1 | Log10 transformed frequencies (sampling locations, in which an
OTU was found) plotted against log10-transformed accumulated read counts (=
sum of all observations in all occupied sites), colored by their ratio (Counts/Sites;
non-log!). The OTU table was rarefied to even depths before plotting. Note that
the occupancy was not checked for site connectivity, so no abundance/area
relation can be assumed. Modified with permission from Regan et al. (2014).

FIGURE S2 | (A, B): Principal Coordinate Analysis (PCoA) ordination of weighted
(A) and unweighted (B) UniFrac distances on a rarefied dataset on three axes..
The emperor plot is turned to best reveal the nine irregular sites found in June.
(C): NMDS of Bray Curtis distances after the dataset was scaled to total sample
sums. The insert in the top-right corner exemplarily shows the clustering of April
and May samples.

FIGURE S3 | Local contribution to overall β-diversity (LCBD). Each panel
represents the sampling grid in each sampling month (see Supplementary
Figure S1). Each circle represents one sampling location/site. Circle size indicates
LCBD value. Red circles indicate a statistically significant LCBD (P < 0.05) after
adjustment for multiple tests.

FIGURE S4 | Visualization of Table 1. Temporal and spatial variability of α- and
β-diversity measures in the SCALEMIC plot. Depicted are means and standard
deviations of the local contribution to β-diversity (LCBD), derived from Bray-Curtis
dissimilarities of the total sum scaled OTU table species richness (Hill number 0,
0D), and of the linearized Simpson diversity (Hill number 2, 2D). Shared letters
represent groups of statistically insignificant pairwise comparisons (contrasts of
estimated marginal means (EMM) on generalized least squares models (GLS) after
correction for spatial autocorrelation).

FIGURE S5 | Abundance-independent β-diversity, expressed as multiple site
dissimilarities using the Sørensen-Index, partitioned into components of turnover
and nestedness (Baselga, 2010). The indices were calculated for increasing
number of OTUs after sorting by decreasing site frequency. 1398 OTUs were
present in all samples and composed a subset of resident OTUs, for which the
species turnover must be zero (βSør = 0). Labels inside the plot indicate the total
relative abundance, which was represented by the subset. “1” marks the result of
the total community.

FIGURE S6 | Changes in relative abundances on phylum level. Annotated by
RDP-Classifier on all reads (before OTU clustering). Count data scaled to all
bacterial observations. Red lines indicate the mean at each sampling date. Shared
letters represent groups of statistically insignificant pairwise comparisons
(contrasts of estimated marginal means (EMM) on generalized least squares
models (GLS) after correction for spatial autocorrelation).

FIGURE S7 | Changes in relative abundances for the 32 most abundant
sub-phylum groups (mostly class level), as annotated by RDP-Classifier on all
reads (before OTU clustering). Count data scaled to all bacterial observations.
Labels and colorization according to Supplementary Figure S6.

FIGURE S8 | Relative abundances of the 20 most abundant OTUs (total
fraction of all bacterial reads > 0.1%, in all cases). Annotation to the last known
rank ((g) = genus, (f) = family). Count data scaled to all bacterial observations.
Black lines follow the mean at each sampling date. Shared letters represent
groups of statistically insignificant pairwise comparisons (see
Supplementary Figure S7).

FIGURE S9 | Partial additive functions of OTUs, which were differentially active in
irregular sites and their environment interactions. In each panel, the partial
response functions of an OTUs to a given environmental parameter are overlaid.
The y-coordinate should be interpreted as the effect of the partial function after
adjusting for all other variables (on log(y), with y being the absolute read count of
the OTU, related to total bacterial read counts), centered around zero. Note the
individual scales of each panel. UAF = Unassigned family within the last known
taxon.

FIGURE S10 | Partial additive functions of selected bacteria-environment
interactions. In each panel, the partial response functions of single OTUs to a
given environmental parameter are overlaid. The y-coordinate should be
interpreted as the effect of the partial function after adjusting for all other variables
(on log(y), with y being the absolute read count of the OTU, related to total
bacterial read counts), centered around zero.

TABLE S1 | Taxonomic affiliation of the 22 most abundant OTUs in the
SCALEMIC dataset (SILVA NR 128). Each OTU represents at least 0.1% of all
reads across all samples. RA = Relative abundance accumulated over the entire
data set (all assigned reads/all eubacterial reads ∗ 100 = %).

TABLE S2 | Distance based redundancy analysis (using Bray Curtis dissimilarities)
of the full OTU table and environmental variables after forward selection with a
double stop criterion. The model was statistically significant (F(14,343) = 8.41, P =
0.001, adjusted R2 = 22.5). P values for model terms were obtained with function
anova.cca (by = “term”, package ’vegan’). DF = degrees of freedom. Significance
codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05.

TABLE S3 | Variable selection with boosted GAMs per taxon. Values (except for
’Total OTUs’) are given in % and should be read as the percentage of OTU per
taxon for which a variable was selected. Results are shown after cross-validation
(sheet 1) and after additional stability selection of the models (sheet 2). Colored
symbols reflects selection frequencies (red to black = decreasing selection
frequency). Abbreviations: C_mic/N_mic = Microbially bound carbon/nitrogen,
EOC/EON = Extractable organic carbon/nitrogen, SM = Soil moisture, SOC = Soil
Organic carbon. Fungi/Protozoa/PLFA.T = PLFA abundances of
Fungi/Protozoa/all other organisms.

TABLE S4 | Mantel correlation coefficients between environmental variables and
spatial distances (Spearman rank correlation, 999 permutations, FDR adjusted P
values < 0.05). Blank cells indicate non-significant correlations. Absent
environmental variables (c.f. Supplementary Figure A.2) did not show spatial
dependency at any time point.
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