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To determine the dynamic changes of pathogenic yeast prevalence and antifungal
susceptibility patterns in tertiary hospitals in China, we analyzed 527 yeast isolates
preserved in the Research Center for Medical Mycology at Peking University,
Beijing, China, between Jan 2010 and Dec 2019 and correctly identified 19 yeast
species by matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) and ribosomal DNA sequencing. Antifungal susceptibility testing
was performed following a Sensititre YeastOne colorimetric microdilution panel with
nine clinically available antifungals. The Clinical and Laboratory Standards Institute
(CLSI)-approved standard M27-A3 (S4) and newly revised clinical breakpoints or
species-specific and method-specific epidemiological cutoff values were used for the
interpretation of susceptibility test data. In this study, although Candida albicans was
the predominant single species, non-C. albicans species constituted >50% of isolates
in 6 out of 10 years, and more rare species were present in the recent 5 years. The
non-C. albicans species identified most frequently were Candida parapsilosis sensu
stricto, Candida tropicalis, and Candida glabrata. The prevalence of fluconazole and
voriconazole resistance in the C. parapsilosis sensu stricto population was <3%,
but C. tropicalis exhibited decreased susceptibility to fluconazole (42, 57.5%) and
voriconazole (31, 42.5%), and 22 (30.1%) C. tropicalis isolates exhibited wild-type
minimum inhibitory concentrations (MICs) to posaconazole. Furthermore, fluconazole
and voriconazole cross-resistance prevalence in C. tropicalis was 19 (26.1%). The
overall prevalence of fluconazole resistance in the C. glabrata population was 14
(26.9%), and prevalence of isolates exhibiting voriconazole non-wild-type MICs was 33
(63.5%). High-level echinocandin resistance was mainly observed in C. glabrata, and
the prevalence rates of isolate resistance to anidulafungin, micafungin, and caspofungin
were 5 (9.6%), 5 (9.6%), and 4 (7.7%), respectively. Moreover, one C. glabrata isolate
showed multidrug resistant to azoles, echinocandins, and flucytosine. Overall, the
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10-year surveillance study showed the increasing prevalence of non-C. albicans species
over time; the emergence of azole resistance in C. tropicalis and multidrug resistance
in C. glabrata over the years reinforced the need for epidemiological surveillance
and monitoring.

Keywords: yeast isolate, Candida spp., invasive fungal infection, candidemia, antifungal susceptibility, Sensititre
YeastOne, triazoles, echinocandins

INTRODUCTION

A growing population of immunocompromised patients has
resulted in frequent diagnoses of invasive fungal infections (IFIs),
including those caused by unusual yeasts (Dabas et al., 2017).
Invasive candidiasis is a growing concern worldwide with high
morbidity and mortality; it affects patients of all ages, including
patients with malignancies, HIV-negative immunocompromised
(IC) patients, and non-immunocompromised (NIC) patients
among those who are critically ill, often admitted to an
intensive care unit (ICU), or diagnosed with diabetes mellitus
or uncontrolled hyperglycemia requiring invasive mechanical
ventilation (Berdal et al., 2014; Bitar et al., 2014; Epelbaum and
Chasan, 2017; Alves et al., 2018; Ding et al., 2018; Mantadakis
et al., 2018). Although Candida albicans is still the leading cause
of fungemia, epidemiological switch and species distribution
have shifted toward non-C. albicans in recent decades, especially
in patients with severe health conditions (Canton et al., 2012;
Pfaller et al., 2015; Taei et al., 2019; Xiao et al., 2020). There
are considerable geographic and population variability in the
prevalence of pathogenic Candida species; for example, Candida
tropicalis is frequently isolated in Asia and South America, and
Candida glabrata has a high frequency in North and Central
Europe and the United States, specially among elderly people
(Castanheira et al., 2016; Pappas et al., 2018). C. glabrata is also
generally more common among individuals >60 years of age
and among recipients of solid organ transplant (Cleveland et al.,
2015; McCarty and Pappas, 2016). The growing number of non-
C. albicans species might be connected to former exposure to
polyenes and azoles, use of indwelling catheters, malignancies,
age, the improved biochemical and molecular diagnostic methods
in laboratories, and geographical regions (Diekema et al., 2012;
Pfaller et al., 2012; Kullberg and Arendrup, 2015; McCarty and
Pappas, 2016; Perlin et al., 2017; Pappas et al., 2018).

The incidence of non-C. albicans species infection is
increasing compared with that of C. albicans, and antifungal
resistance was generally uncommon; however, azole resistance
occurs in several species, such as C. glabrata, C. tropicalis, and
Candida krusei (Berdal et al., 2014; Chapman et al., 2017).
There have been reports of outbreaks of azole-resistant Candida
parapsilosis sensu stricto in adult ICUs in Brazil and in African
neonatal ICUs (NICUs) (Neji et al., 2017; Thomaz et al., 2018). In
addition, susceptibility to antifungals is variable among species
of the C. parapsilosis complex (Brilhante et al., 2018). Moreover,
in 2009, a new fluconazole-resistant species, Candida auris,
was identified in East Asia and has now been isolated on five
continents, showing high morbidity and mortality (Spivak and
Hanson, 2018). Echinocandins have been used as preferred

antifungals for most candidemia and invasive candidiasis (Mora-
Duarte et al., 2002; Andes et al., 2012; Pappas et al., 2016),
but echinocandin resistance among Candida species is rising.
C. glabrata shows cross-resistance to azoles, limiting therapeutic
options. The recent emergence of multidrug-resistant Candida
species further complicates the selection of antifungal therapy
owing to the lack of data that can guide therapy (Pfaller
et al., 2011a,b; Alexander et al., 2013; Lewis et al., 2013;
Castanheira et al., 2014). These findings highlight the importance
of epidemiological and laboratory studies of invasive candidiasis
in hospitals (Canela et al., 2018).

Rapid species identification and antifungal susceptibility tests
are essential for the treatment of IFIs. Matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-
TOF-MS) combined with nucleotide sequencing is a reliable
approach for identifying yeast isolates (Maldonado et al., 2018;
Kal Çakmaklıoğulları et al., 2019). The commercial Sensititre
YeastOne (SYO) test is widely used to determine the susceptibility
of Candida spp., and it provides an easy and affordable alternative
to the Clinical and Laboratory Standards Institute (CLSI) or
the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) standard broth microdilution methods (Cuenca-
Estrella and Rodriguez-Tudela, 2010; Pfaller, 2012; Posteraro and
Sanguinetti, 2014; Posteraro et al., 2015). For Candida spp., the
results of the SYO test are generally in agreement with those
obtained by EUCAST and CLSI reference methods, and some
method-dependent epidemiological cutoff values (ECVs) were
also defined following the criteria recently published by the
CLSI (Eschenauer et al., 2014; Espinel-Ingroff et al., 2015, 2019;
Posteraro et al., 2015; Perlin et al., 2017).

We believe that knowledge of invasive yeast infection
epidemiology in a tertiary hospital in China, including
geographical variability and dynamics of susceptibility to
the clinical available antifungal drugs, is essential for guiding
antifungal treatment protocol development. The objectives of
this study were to determine the species distribution and in vitro
antifungal susceptibility patterns of yeast species collected
successively for 10 years from a tertiary teaching hospital
at Beijing, China.

MATERIALS AND METHODS

Study Design
This study was a retrospective, laboratory-based study of invasive
yeast infections with its inception in Jan 2010 and end in Dec
2019. The 527 yeast isolates came from 514 patients, with more
than one episode of candidiasis in some patients. The isolates
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were preserved at the Research Center for Medical Mycology at
Peking University First Hospital, Beijing, China. It is a “rank-
A tertiary” hospital with 64 wards and has a total of 1,835 beds
and admits more than 86,000 patients per year and provides care
for different types of patients across the country. Surgical patients
account for approximately 51.2% of the hospital population.

For each episode of yeast isolation (see the criteria for
study inclusion below), the information collected included the
patient’s age and gender, the patient’s classification (inpatient or
outpatient), and the ward location [e.g., emergency department
(ED), surgical, medical, and ICU] of the patient at the time
of collection of the sample. The date of sample collection,
the specimen type, the body site of isolation, and the initial
species identification made by the referring laboratory were also
recorded. In this study, all isolates were isolated from normally
sterile clinical samples of inpatients.

Criteria for Study Inclusion
We collected all Candida, Cryptococcus, and other yeast isolates
recovered from blood; other sterile body fluids, including ascitic
fluid and peritoneal dialysate fluid, pus, and tissue from patients
with invasive yeast infections (De Pauw et al., 2008) were
included in this study. Yeast isolates from bronchoalveolar lavage
(BAL) fluid samples, central venous catheter (CVC) tips, and
the gastrointestinal tracts [e.g., biliary tract fluid (aseptically
collected)] of patients with invasive infections were tested;
however, yeast isolates from sputum, urine, and the genital tract
and others considered colonizers were excluded. Isolates of the
same species and of the same susceptible or resistant biotype
profile from the same site of a given patient isolated at a different
time were considered duplicates and also excluded.

Species Identification
All yeast isolates were reidentified to the species level by
MALDI-TOF-MS using the MALDI Biotyper RTC 4.0 software
(Bruker Daltonik) by rastering the target position. For any
isolate with no identification or uncertain identification (e.g., low
confidence value) results by MALDI-TOF-MS and for all isolates
identified within the C. parapsilosis complex (i.e., C. parapsilosis
sensu stricto, Candida metapsilosis, and Candida orthopsilosis)
and C. glabrata, sequencing of the internal transcribed spacer
(ITS) rDNA (ITS1/ITS4) region was performed for definitive
species identification.

Antifungal Susceptibility Testing
An SYO YO10 panel tray (Thermo Scientific, Cleveland, OH,
United States) was used for antifungal susceptibility tests.
The plate contains serial twofold dilutions of amphotericin B
(0.12–8 mg/L), flucytosine (0.06–64 mg/L), fluconazole (0.12–
256 mg/L), itraconazole (0.015–16 mg/L), voriconazole (0.008–
8 mg/L), posaconazole (0.008–8 mg/L), anidulafungin (0.015–
8 mg/L), micafungin (0.008–8 mg/L), and caspofungin (0.008–
8 mg/L).

Antifungal susceptibility testing was performed following the
manufacturer’s instructions. C. parapsilosis ATCC 22019 and
C. krusei ATCC 6258 from the American Type Culture Collection
were included as control isolates in all experiments. Minimum

inhibitory concentrations (MICs) were determined after 24 h of
incubation at 35◦C for Candida spp. and Trichosporon spp. and
after 72 h of incubation for Cryptococcus spp. MIC was defined
as the lowest concentration of an antifungal at which the color in
the well changed from red (positive, indicating growth) to blue
(negative, indicating no growth).

Interpretation of MIC Results
MIC data were determined using the CLSI-approved standard
M27-S4, and interpretation of susceptibility was performed
by applying the updated species-specific CLSI clinical
breakpoints (CBPs) (CLSI, 2017, Wayne, PA, United States),
or epidemiological cutoff values (ECVs) where CBPs were not
available (CLSI, 2018, Wayne, PA, United States; Canton et al.,
2012; Pfaller and Diekema, 2012; Espinel-Ingroff et al., 2019)
were applied (Supplementary Table 1). In the absence of CBPs,
isolates were defined as having a wild-type (WT) or a non-WT
(NWT) drug susceptibility phenotype according to the ECVs
as determined by the CLSI broth microdilution methods and
colorimetric SYO method.

Ethical Approval
This retrospective study was approved by the ethics committee of
Peking University First Hospital. The need for informed consent
was waived by the Clinical Research Ethics Committee.

Statistical Analysis
The data were analyzed using SPSS software version 22
for Windows (SPSS, Chicago, IL, United States). Categorical
variables were analyzed using the chi-square test or Fisher’s
exact test, and continuous variables were analyzed by the Mann–
Whitney U test. Data were processed using the Kruskal–Wallis
test to avoid random significance when comparing several
groups. Significance was set as a P value of <0.05 (two-
tailed). GraphPad Prism version 8.0 (GraphPad, San Diego, CA,
United States) was used to perform the analyses.

RESULTS

Patient Demographics
A total of 527 yeast isolates were isolated from inpatient wards
and preserved at the Research Center for Medical Mycology in a
tertiary teaching hospital at Beijing, China. Of the yeast isolates
investigated, 201 (38.1%) were isolated from female patients and
326 (61.9%) were from male patients. Patient age ranged from
1 h to 101 years (median, 66.0 years; interquartile range, 48.0–
78.0 years). More than half of isolates (400, 75.9%) were isolated
from ICU patients, of which 366 (69.4%) were detected in a
respiratory ICU, 24 (4.6%) were from a surgery ICU, and the
remaining were from a cardiothoracic ICU, a coronary ICU,
and a comprehensive ICU. Fifty-eight (11.0%) patients were
hospitalized in surgical wards, and four (0.8%) were bone marrow
transplant patients. The percentages of the different age groups
were as follows: 0–1 year, 39 (7.4%); 2–14 years, 28 (5.3%); 15–
49 years, 74 (14.0%); 50–65 years, 119 (22.6%); and over 65 years,
267 (50.7%). There was variation in species with age group.
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C. albicans was most common in patients 0–14 years of age (43,
63.6%), and there were 7 (10.4%)with C. parapsilosis complex
in this age group. In patients aged over 65 years, C. albicans
dominated, but the frequency rates of the C. parapsilosis complex
(53, 19.9%) and C. glabrata (30, 11.2%) were slightly higher
compared to the overall average (17.3%, 9.9%; P > 0.05). Among
these, 138 (51.7%) were from ICU patients.

Species Distribution Over 10 Years
A total of 19 yeast species were identified within the 527
isolates. Our study showed a decrease in the isolation of
C. albicans and an increasing prevalence of non-C. albicans
species over time. Although C. albicans remained the most
frequently recovered species, it comprised less than half of all
isolates (259, 49.2%). C. parapsilosis complex isolates were 92
(17.5%) (of which 91 were C. parapsilosis sensu stricto and 1
was C. metapsilosis). C. tropicalis (73, 13.9%) was the third most
common species, followed by C. glabrata (52, 9.9%), Cryptococcus
neoformans (14, 2.7%), C. krusei (12, 2.3%), Trichosporon asahii
(4, 0.8%), and Rhodotorula glutinis (4, 0.8%). The prevalence
rates of rare species, such as Candida lusitaniae, Candida
guilliermondii, Candida inconspicua, Pichia anomalus, Candida
carpophila, Candida utilis, Candida kefyr, Candida lipolytica,
Cryptococcus curvatus, and Trichosporon inkin, were collectively
<1% (Supplementary Table 2).

Overall, yeast species isolated varied across years. More rare
species were isolated in the recent 5 years; although C. albicans
was the predominant single species, non-C. albicans species
constituted >50% of isolates in 6 out of 10 years. The non-
C. albicans species identified most frequently were C. parapsilosis
sensu stricto, C. tropicalis, and C. glabrata (Figure 1).

Specimen Sources of Yeast Isolates
Concerning sample type, all yeast isolates were isolated from
clinical samples, of which blood culture isolates made up 184
(34.9%) and lower respiratory BAL fluid (BALF) accounted
for 143 (27.1%). Eighty (15.2%) were detected in ascitic fluid,
39 (7.4%) in pleural fluid, 22 (4.2%) in pus, 19 (3.6%) in
cerebrospinal fluid, and 16 (3.0%) in peritoneal dialysis. While
CVC tips, bile, tissue, hydrarthrosis, and bone marrow specimens
yielded yeast isolates uncommonly (<5%), blood, BALF, and
ascitic fluid were the top three most common specimens over
10 years, and yeast species isolated from blood were more
frequent than those from other specimens (χ2 = 527.000,
P = 0.000) (Supplementary Table 3).

Candida species isolates were broadly distributed and made
up the majority of the blood culture isolates (174, 94.6%).
Cryptococcus and non-Candida yeast isolates accounted for 5.4%
of the yeast isolates from blood cultures. The majority of the yeast
isolates from ascitic fluid (78, 97.5%) and pleural fluid (37, 94.9%)
were Candida spp., and Candida spp. were the only yeast isolates
from CVC, bile, hydrarthrosis, and tissue. Thirteen (68.4%) of the
yeast isolates from CSF samples were Candida spp. and exceeded
C. neoformans. There was a single isolate of T. asahii from an
ascitic fluid sample (Supplementary Table 3).

Thirteen yeast species were involved in fungemia, of which
C. albicans was 61 (33.2%). C. parapsilosis sensu stricto (48,

26.1%) was the leading species of non-C. albicans in candidemia
patients, followed by C. glabrata (31, 16.8%) and C. tropicalis
(26, 14.1%), and C. krusei (4, 2.2%). The frequency of R. glutinis,
C. neoformans, T. asahii, and P. anomalus was collectively <1%
(Supplementary Table 4).

In vitro Susceptibility to Azoles
The susceptibility of the 527 yeast isolates to antifungals is
presented in Table 1. Generally, C. albicans and C. parapsilosis
complex isolates were susceptible or exhibited WT MICs to
all four azoles (prevalence of isolates exhibiting resistance or
NWT MICs was <5%) during the 10 years. Azole susceptibility
was less common among C. tropicalis isolates, fluconazole and
voriconazole susceptibility was exhibited by only 42 (57.5%)
isolates and 31 (42.5%) isolates, respectively; furthermore,
19 (26.1%) isolates were cross-resistant to fluconazole and
voriconazole, and 51 (69.9%) C. tropicalis isolates exhibited
NWT MICs to posaconazole (Supplementary Table 5). The
overall prevalence of fluconazole resistance in the C. glabrata
population was 14 (26.9%), and the prevalence of C. glabrata
isolates exhibiting NWT to voriconazole was 33 (63.5%).
Among C. krusei, all isolates showed the WT phenotype to
itraconazole, while resistance was more prevalent (8.3%) to
voriconazole and posaconazole. However, the remaining non-
C. albicans species (those with >2.5% prevalence), including
C. guilliermondii, C. lusitaniae, C. inconspicua, C. lipolytica,
C. utilis, C. kefyr, and C. carpophila, exhibited reduced azole
susceptibility, and their 50% MIC (MIC50), MIC90, and
geometric mean MIC were twofold to 15-fold higher than those
of C. albicans. The overall cross-resistant prevalence rates in
common Candida species were 23 (44.2%) in C. glabrata, 24
(32.9%) in C. tropicalis, 1 (8.3%) in C. krusei, and 12 (4.6%) in
C. albicans (Supplementary Table 5).

The overall prevalence of antifungal agents resistance in
184 blood culture isolates was 25 (13.6%). For C. tropicalis
and C. glabrata, resistance was more prevalent to at least one
triazole [19 (73.1%) and 23 (74.2%), respectively]. Triazole
cross-resistance prevalence rates were also high in C. tropicalis
(10, 38.5%) and C. glabrata (19, 61.3%) isolates. Resistance to
echinocandins was detected in two (3.3%) C. albicans isolates and
one (3.8%) C. tropicalis isolate (Supplementary Table 6).

In vitro Susceptibility to Echinocandins,
Amphotericin B, and Flucytosine
Resistance to one or more of the echinocandins was distinctly
uncommon among isolates of C. albicans (0.8–1.6%),
C. parapsilosis (0.0%), C. tropicalis (1.4–2.7%), and C. krusei
(0.0%). The prevalence rates of resistance to anidulafungin (5,
9.6%), caspofungin (4, 7.7%), and micafungin (5, 9.6%) were
most prominent among C. glabrata isolates. No trend toward
increasing resistance was seen over time for any of these species,
although a higher prevalence of resistant isolates was detected
in C. tropicalis in 2013–2014 and in C. glabrata in 2017–2019.
Cross-resistance to two or three echinocandins was observed in
three (1.2%) C. albicans isolates, five (9.6%) C. glabrata isolates,
and one (1.4%) C. tropicalis isolates.
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FIGURE 1 | Species distribution over 10 years of surveillance. Yeast species varied across years. More rare species were isolated in the recent 5 years; C. albicans
was the predominant single species. Non-C. albicans species identified most frequently were C. parapsilosis sensu stricto, C. tropicalis, and C. glabrata.

Amphotericin B also showed good overall activity against
common Candida species, with WT rates of 100% (Table 1).
The MIC50 and MIC90 values of amphotericin B were 1 and
2 µg/ml for C. krusei and C. neoformans, respectively, and
were either 0.5 and 1 µg/ml for C. lipolytica, C. guilliermondii,
C. carpophila, and C. kefyr species (Table 1). Rare species
exhibited amphotericin B MICs of 0.12–2 mg/L (Table 1), which
are considered WT for other Candida species. Less than 6% of
common Candida species were of NWT phenotype to flucytosine,
while C. tropicalis and C. krusei were 100% susceptible to
flucytosine (Table 1).

Multidrug Resistance
For species with established ECVs and CBPs, we analyzed
antifungal multidrug resistance (i.e., isolates that were resistant
or NWT to at least two classes of antifungal agents tested).

Only six isolates (two C. albicans, two C. glabrata, and two
C. tropicalis) showed multidrug resistance to two classes of
antifungal agents (<3% for each species), of which one C. albicans
and one C. glabrata isolates were multidrug resistant to azoles,
echinocandins, and flucytosine.

Trends in Fluconazole and Voriconazole
Resistance Over Time
Trends in fluconazole and voriconazole resistance/NWT for
common Candida species over time are shown in Table 2.
Generally, fluconazole resistance in C. albicans slightly increased
from 2012 (3.0%) to 2018 (5.9%), but this increase was not
statistically significant (P > 0.05; Table 2). A significantly higher
prevalence of resistant isolates was detected in C. tropicalis
to fluconazole and voriconazole (frequency of resistance from
<10 to 75%) over 10 years, C. glabrata to voriconazole
(NWT phenotype increased from <25 to 40%; Table 2),
and C. parapsilosis complex to fluconazole (from <6 to 9%).
There were no trends in resistance for other species in this
study (Table 2).

DISCUSSION

The landscape of invasive mycoses is in a continuous evolution
with important implications for their diagnosis and treatment.
The overall burden remains high, particularly in neonates
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TABLE 1 | Susceptibility of the 527 yeast isolates to nine antifungal agents.

Species MIC range (mg/L) MIC50
†

(mg/L)
MIC90

†

(mg/L)
GM (mg/L) S/WT (%) Number of isolates (%) Susceptibility phenotype

S SDD I R WT (%) Non-WT (%)

C. albicans (n = 259)

Amphotericin B ≤0.12 to 2 0.5 1 0.619 100 – – – – 259 (100) 0

Fluconazole ≤0.12 to >256 0.5 1 1.171 95.0 247 (95.0) 6 (2.3) – 7 (2.7) – –

Voriconazole ≤0.008 to >8 0.008 0.03 0.055 96.1 249 (96.1) – 6 (2.3) 4 (1.6) – –

Posaconazole ≤0.008 to >8 0.03 0.06 0.074 92.3 – – – – 239 (92.3) 20 (7.7%)

Itraconazole ≤0.015 to >16 0.06 0.12 0.114 94.2 – – – – 244 (94.2) 15 (5.8%)

Caspofungin 0.015 to >8 0.06 0.12 0.092 97.3 252 (97.3) – 5 (1.9) 2 (0.8) – –

Micafungin ≤0.008 to >8 0.015 0.015 0.056 98.1 254 (98.1) – 1 (0.4) 4 (1.6) – –

Anidulafungin ≤0.015 to >8 0.06 0.12 0.109 97.7 253 (97.7) – 2 (0.8) 4 (1.6) – –

Flucytosine ≤0.06 to >64 <0.06 0.12 0.224 98.1 – – – – 254 (98.1) 5 (1.9)

C. parapsilosis complex (n = 92)

Amphotericin B ≤0.12 to 2 0.5 1 0.636 100 – – – – 92 (100) 0

Fluconazole ≤0.12 to 64 0.5 1 1.206 95.7 88 (95.7) 2 (2.2) – 2 (2.2) – –

Voriconazole ≤0.008 to 0.5 0.008 0.03 0.055 97.8 90 (97.8) – 2 (2.2) 0 – –

Posaconazole 0.008 to 0.5 0.06 0.06 0.076 98.9 – – – – 91 (98.9) 1 (1.1)

Itraconazole ≤0.015 to 0.5 0.06 0.12 0.117 100 – – – – 92 (100) 0

Caspofungin 0.03 to 1 0.5 1 0.094 100 92 (100) – 0 0 – –

Micafungin 0.015 to 2 1 1 0.058 100 92 (100) – 0 0 – –

Anidulafungin 0.015 to 2 1 2 0.112 100 92 (100) – 0 0 – –

Flucytosine ≤0.06 to >64 0.06 0.12 0.221 97.8 – – – – 90 (97.8) 2 (2.2)

C. tropicalis (n = 73)

Amphotericin B <0.12 to 2 1 1 0.634 100 – – – – 73 (100) 0

Fluconazole 0.25 to >256 2 >256 1.217 57.5 42 (57.5) 5 (6.8) – 26 (35.6) – –

Voriconazole ≤0.008 to >8 0.25 >8 0.055 42.5 31 (42.5) – 23 (31.5) 19 (26.0) – –

Posaconazole 0.03 to >8 0.25 1 0.077 30.1 – – – – 22 (30.1) 51 (69.9)

Itraconazole 0.03 to >16 0.25 1 0.117 78.1 – – – – 57 (78.1) 16 (21.9)

Caspofungin 0.015 to >8 0.06 0.12 0.093 95.9 70 (95.9) – 1 (1.4) 2 (2.7) – –

Micafungin ≤0.008 to >8 0.03 0.03 0.056 98.6 72 (98.6) – 0 1 (1.4) – –

Anidulafungin 0.015 to >8 0.06 0.12 0.111 98.6 72 (98.6) – 0 1 (1.4) – –

Flucytosine ≤0.06 to 0.5 <0.06 0.06 0.224 100.0 – – – – 73 (100) 0

C. glabrata (n = 52)

Amphotericin B <0.12 to 1 0.5 1 0.64 100 – – – – 52 (100) 0

Fluconazole 0.5 to >256 32 256 1.194 48.1 25 (48.1) 13 (25.0) – 14 (26.9) – –

Voriconazole 0.015 to 8 0.5 2 0.054 36.5 – – – – 19 (36.5) 33 (63.5)

Posaconazole 0.06 to >8 1 >8 0.075 65.4 – – – – 34 (65.4) 18 (34.6)

Itraconazole 0.12 to >16 0.5 2 0.117 92.3 – – – – 48 (92.3) 4 (7.7)

Caspofungin 0.015 to 0.5 0.12 0.25 0.094 71.2 37 (71.2) – 11 (21.2) 4 (7.7) – –

Micafungin <0.008 to 1 0.015 0.03 0.058 90.4 47 (90.4) – 0 5 (9.6) – –

Anidulafungin <0.015 to 1 0.03 0.12 0.112 90.4 47 (90.4) – 0 5 (9.6) – –

Flucytosine ≤0.06 to 64 <0.06 <0.06 0.219 98.1 – – – – 51 (98.1) 1 (1.9)

C. krusei (n = 12)

Amphotericin B <0.12 to 2 1 2 0.616 100 – – – – 12 (100) 0

Fluconazole 32 to 256 64 256 1.202 – – – – – – –

Voriconazole 0.25 to 2 0.5 1 0.056 66.7 8 (66.7) – 3 (25.0) 1 (8.3) – –

Posaconazole 0.25 to 1 0.25 0.5 0.076 91.7 – – – – 11 (91.7) 1 (8.3)

Itraconazole 0.25 to 0.5 0.25 0.5 0.117 100 – – – – 12 (100) 0

Caspofungin 0.06 to 0.5 0.12 0.25 0.094 91.7 11 (91.7) – 1 (8.3) 0 – –

Micafungin 0.06 to 0.25 0.12 0.12 0.06 100 12 (100) – 0 0 – –

Anidulafungin <0.015 to 0.12 0.06 0.12 0.114 100 12 (100) – 0 0 – –

Flucytosine 2 to 16 8 16 0.229 100 – – – – 12 (100) 0

(Continued)
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TABLE 1 | Continued

Species MIC range (mg/L) MIC50
† (mg/L) MIC90

† (mg/L) GM (mg/L) S/WT (%) Number of isolates (%) Susceptibility phenotype

S SDD I R WT (%) Non-WT (%)

C. neoformans (n = 14)

Amphotericin B 0.5 to 2 1 2 0.591 – – – – – – –

Fluconazole 0.5 to 4 2 4 1.201 – – – – – – –

Voriconazole 0.015 to 0.06 0.03 0.06 0.059 – – – – – – –

Posaconazole 0.03 to 0.12 0.06 0.12 0.077 – – – – – – –

Itraconazole <0.015 to 0.12 0.06 0.12 0.116 – – – – – – –

Caspofungin 0.03 to >8 >8 >8 0.095 – – – – – – –

Micafungin <0.008 to >8 >8 >8 0.059 – – – – – – –

Anidulafungin 0.12 to >8 >8 >8 0.113 – – – – – – –

Flucytosine 0.12 to 32 4 8 0.24 – – – – – – –

Other species (n = 25)‡

Amphotericin B 0.12 to 2 0.5 1 0.691 – – – – – – –

Fluconazole 0.25 to >256 4 >256 1.295 – – – – – – –

Voriconazole <0.008 to 8 0.12 1 0.055 – – – – – – –

Posaconazole 0.015 to 2 0.12 1 0.08 – – – – – – –

Itraconazole 0.03 to 1 0.25 0.5 0.124 – – – – – – –

Caspofungin 0.03 to >8 0.5 >8 0.093 – – – – – – –

Micafungin 0.015 to >8 0.5 >8 0.057 – – – – – – –

Anidulafungin 0.015 to >8 1 >8 0.111 – – – – – – –

Flucytosine <0.06 to 64 0.06 16 0.224 – – – – – – –

For available clinical break points and/or epidemiological cutoff values, see Supplementary Table 1. †MIC50 and MIC90: the concentrations at which 50 and 90% of
isolates are inhibited. ‡ Including T. asahii (4), R. glutinis (4), C. guilliermondii (3), C. lusitaniae (3), C. inconspicua (3), P. anomalus (2), C. lipolytica (1), C. curvatus (1),
C. utilis (1), C. kefyr (1), T. inkin (1), C. carpophila (1). MIC, minimum inhibitory concentration; S, susceptible; SDD, susceptible-dose dependent; I, intermediate; R,
resistant; WT, wild-type.

TABLE 2 | Trends of fluconazole and voriconazole resistance or non-wild-type phenotype in Candida species over 10 years.

Resistance (%)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Fluconazole

C. albicans 0.0 5.1 3.0 0.0 5.6 0.0 0.0 6.7 5.9 0.0

C. parapsilosis complex 0.0 0.0 5.9 0.0 0.0 0.0 0.0 9.1 0.0 0.0

C. tropicalis 25.0 36.4 16.7 12.5 40.0 60.0 50.0 75.0 35.7 50.0

C. glabrata 22.2 35.7 33.3 40.0 18.2 25.0 33.3 0.0 0.0 0.0

C. krusei 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Voriconazole

C. albicans 0.0 5.1 0.0 0.0 0.0 0.0 0.0 6.7 2.9 0.0

C. parapsilosis complex 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C. tropicalis 8.3 18.2 0.0 12.5 40.0 40.0 50.0 75.0 35.7 33.3

C. glabrata 88.9 71.4 66.7 60.0 36.4 50.0 66.7 0.0 0.0 100.0

C. krusei 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0

and the elderly; patients admitted to intensive care units and
using prostheses, catheters, or other intravenous devices;
those receiving different immunosuppressant treatments
or antineoplastic chemotherapy; or transplant recipients
(Lortholary et al., 2014; Quindós, 2018; Pfaller et al., 2019).
In this 10-year surveillance study, the etiology of invasive
candidiasis progressively shifts from C. albicans to other species
of Candida, and the proportion of non-C. albicans was over
50% in 6 out of 10 years, of which the C. parapsilosis complex,

C. tropicalis, C. glabrata, and C. krusei accounted for 43.4%
collectively, while C. albicans represents more than 50% of
isolates in 2018 and more than 70% in 2019 due to the high
frequency of C. albicans isolated from BALF, with 12 (35.3%) in
2018 and 31 (66.0%) in 2019. The prevalence of C. parapsilosis
sensu stricto is much higher than C. tropicalis and C. glabrata
(17.3% versus 13.9 and 9.9%). In addition, large nosocomial
outbreaks due to C. parapsilosis sensu stricto have been reported
in NICU patients and adult wards from tertiary hospitals in
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China (Wang et al., 2016a,b; Qi et al., 2018). Rarer species
accounted for 4.5% in this study, including C. inconspicua,
C. utilis, C. lipolytica, C. kefyr, C. curvatus, C. carpophila, and
T. inkin. The species varied gradually over time, and more species
were present in the recent 5 years. This increasing prevalence
of non-C. albicans species over time has been noted in other
studies, which is generally considered to be associated with
reduced antifungal susceptibilities (Kullberg and Arendrup,
2015; Perlin et al., 2017; Lamoth et al., 2018).

Variation in species distribution was noted among different
clinical services and age groups; for example, C. parapsilosis
sensu stricto was predominant in ICU admissions and among
patients aged 65 years and older. This may be because potential
risk factors for candidiasis were more common in such patient
population, regarding invasive procedures in ICU, the aging of
the population, and previous antibiotic exposure (Kullberg and
Arendrup, 2015). The trend for increasing C. parapsilosis was
seen in tertiary university-affiliated hospitals located in southwest
China as well (Jia et al., 2018). The picture is somewhat different
in a teaching hospital in central China, where the predominant
species was C. tropicalis (25.1%), followed by the C. parapsilosis
complex (17.3%) and C. glabrata (9%) (Xu et al., 2019). The
trend for increasing C. glabrata was reported in Australia and
in some Latin American and African countries (Nucci et al.,
2013; Doi et al., 2016; Govender et al., 2016). The difference
showed the geographic and temporal variations in the frequency
of Candida species.

The epidemiology of candidemia has been described in
numerous single-center and population-based surveys conducted
worldwide (Guinea, 2014; Yang et al., 2014; Astvad et al., 2018;
Lamoth et al., 2018). As our results showed, in the 184 isolates
from candidemia patients, the proportion of non-C. albicans
species exceeded that of C. albicans to become the most common
among patients infected with candidemia, in accordance with
some previous studies from local China, Asia-Pacific regions, and
European countries (Liu et al., 2014; Tan et al., 2016; Wang et al.,
2016a; Guo et al., 2017; Pappas et al., 2018; Zeng et al., 2019). In
addition, the C. parapsilosis complex (26.1%) was the second most
prevalent Candida spp. isolated in our study, the frequencies of
which were much higher than those reported in Southern Europe
and Southeast Asia (Siri et al., 2017; Teo et al., 2017). Another
report analyzed patients with candidemia in the ICU in a teaching
hospital in Beijing, with similar trends of the C. parapsilosis
complex (19.5%), C. glabrata (15.9%), and C. tropicalis (14.6%)
(Xiao et al., 2019), while the prevalence of C. tropicalis is much
higher in some other reports (Ma et al., 2013; Pfaller et al., 2019;
Xiao et al., 2020).

In our study, most Candida species isolates were susceptible
to the antifungal agents. For example, C. albicans and the
C. parapsilosis complex have low incidences of fluconazole
resistance, at 5.0 and 4.3%, respectively. The low fluconazole
resistance prevalence among C. albicans isolates was consistent
with previous reports (Liu et al., 2014; Guo et al., 2017; Brilhante
et al., 2018; Zeng et al., 2019). But a trend toward increased
resistance or the emergence of naturally resistant species was
observed among other Candida spp. Our study confirmed
that azole resistance was mainly observed in C. tropicalis and
C. glabrata isolates over 10 years. Moreover, the resistance

prevalence rates to fluconazole (35.6%) and voriconazole (26.0%)
in C. tropicalis isolates were much higher than those reported
in the single-center study in southwest China (Jia et al., 2018)
and CHIF-NET study in China (Guo et al., 2017; Xiao et al.,
2020). Notably, 32.9% of C. tropicalis isolates were cross-resistant
to azoles, but no isolate was multidrug resistant to azoles,
flucytosine, and amphotericin B. In C. glabrata species, the
prevalence rates of fluconazole (26.9%) and voriconazole (63.5%)
resistance in this study were much higher than those reported
in the United States, Australia, and several European countries,
which also have increasing trends in prevalence of C. glabrata
over time, with 6–15% of isolates being resistant to fluconazole
(Chapman et al., 2017; Lamoth et al., 2018; Pfaller et al., 2019).
There has been high fluconazole and azole cross-resistance
prevalence (>30%) of C. glabrata in this study. This 10-year
surveillance study identified a sharp increase in fluconazole and
voriconazole resistance prevalence of C. tropicalis (from <10
to 75%) over 10 years and C. glabrata to voriconazole (from
<25 to 40%). The C. parapsilosis complex showed a slightly
increase to fluconazole and voriconazole resistance prevalence
(from <6% in 2012 to 9% in 2017), and fluconazole resistance
in C. albicans increased from 3.0% in 2012 to 5.9% in 2018.
C. glabrata and C. tropicalis are considered to exhibit moderate-
to high-level intrinsic azole resistance, with the prevalence and
resistance prevalence varying with geographic region (Kullberg
and Arendrup, 2015; Fan et al., 2017; Perlin et al., 2017).

Another noteworthy finding of our study was the emergence
of echinocandin resistance. High-level echinocandin resistance
was mainly observed in C. glabrata, with resistance prevalence
rates of 9.6% to anidulafungin, 9.6% to micafungin, and
7.7% to caspofungin, all higher than those seen in large-
scale surveillance studies in China and Europe (Pham et al.,
2014; Klotz et al., 2016; Xiao et al., 2020), and a higher
prevalence rate close to or more than 10% in C. glabrata is
also reported by some institutional studies in North America
(Alexander et al., 2013; Farmakiotis et al., 2014). Whether
this difference is because of strain types, clinical practice
issues, or both is unclear. Notably, one C. glabrata isolate was
multidrug resistant to azoles, echinocandins, and flucytosine in
this study. Previous studies reported that echinocandin resistance
in susceptible Candida species arises after repeated or long-
term exposure (Lortholary et al., 2011; Fekkar et al., 2014;
Perlin et al., 2017), and an increase in echinocandin resistance
among C. glabrata is often accompanied by azole resistance,
resulting in multidrug-resistant isolates (Alexander et al., 2013;
Pham et al., 2014).

From our study, the increasing prevalence of non-C. albicans
species over time has been noted. The emergence of azole
resistance among non-C. albicans is particularly concerning,
followed by echinocandin and multidrug resistance among
some Candida species, especially C. tropicalis and C. glabrata.
Notably, C. glabrata can acquire resistance to azoles and
echinocandins as single-drug classes, as well as multidrug
resistance involving all major drug classes. Azole resistance
among Candida spp. involves several well-defined mechanisms,
including upregulation of drug transporters, overexpression or
alteration of the drug target, and cellular changes caused, in
some cases, by nontarget effects induced by stress responses
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(Cowen et al., 2015; Perlin et al., 2017). Genetic factors, such
as DNA repair, and chromosomal abnormalities help to
induce drug-resistant phenotypes. Drug exposure also drives
the emergence of resistance (Perlin et al., 2017). Numerous
point mutations in ERG11 have been reported in response to
fluconazole. Investigation has shown that the ERG11 mutation
A395T was the major resistance mechanism, which was
responsible for >83% of azole resistance in China (Fan et al.,
2019). Echinocandin resistance is uncommon but is conferred
by hot spot amino acid substitutions in glucan synthase.
Candida isolates that are potentially echinocandin resistant or
less susceptible often harbor amino acid substitutions in the
Fks1p (and/or Fks2p in C. glabrata) gene (Alexander et al.,
2013; Pham et al., 2014). Therefore, it is essential to screen the
isolates with drug MIC values in the intermediate or resistant
range to determine the mutations in FKS1 and FKS2 genes
based on our surveillance data and compare the changes in
MIC values caused by those mutations. Susceptibility testing of
azoles and echinocandins, detection of the molecular mechanism
of resistance, and combined antifungal treatment outcomes will
allow more informed determinations of the value of these drugs
in the antifungal armamentarium.

Our study has some limitations. First, this was a single-
center retrospective study, so our results may not be generalizable
to all patients with candidiasis and extrapolated to other
institutions as the epidemiology of candidiasis can be highly
institution specific. Second, this was a laboratory-based study,
more detailed demographic and clinical characteristics were not
collected, but it is the intention to include the collection of
such data prospectively from this time forward. Nevertheless,
this study provides important epidemiological findings which are
instrumental in designing strategies for better management of
candidiasis in our hospital.

In conclusion, our study has provided important updated
information at a tertiary hospital in China on species distribution
and antifungal susceptibility of yeast species. Over the 10-
year surveillance, non-C. albicans species have become the
predominant cause of nosocomial candidemia, and azole
resistance is notable among C tropicalis and C. glabrata
isolates. Multidrug resistance has emerged in C. glabrata, while
overall resistance to echinocandins and flucytosine remains
rare. Amphotericin B demonstrated excellent activity against all
Candida species over the years. Continued surveillance, especially
of national antifungal susceptibility trends, is warranted. The

epidemiological findings in our study will pave the way for
more in-depth studies and help us establish better antifungal
stewardship in our hospital.
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