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The inappropriate use of antibiotics and an inadequate control of infections have led
to the emergence of resistant strains which represent a major threat to public health
and the global economy. Therefore, research and development of a new generation of
antimicrobials to mitigate the spread of antibiotic resistance has become imperative.
Current research and technology developments have promoted the improvement of
antimicrobial agents that can selectively interact with a target site (e.g., a gene or a
cellular process) or a specific pathogen. Antimicrobial peptides and metal nanoparticles
exemplify a novel approach to treat infectious diseases. Nonetheless, combinatorial
treatments have been recently considered as an excellent platform to design and
develop the next generation of antibacterial agents. The combination of different drugs
offers many advantages over their use as individual chemical moieties; these include
a reduction in dosage of the individual drugs, fewer side effects compared to the
monotherapy, reduced risk for the development of drug resistance, a better combined
response compared to the effect of the individual drugs (synergistic effects), wide-
spectrum antibacterial action, and the ability to attack simultaneously multiple target
sites, in many occasions leading to an increased antibacterial effect. The selection
of the appropriate combinatorial treatment is critical for the successful treatment of
infections. Therefore, the design of combinatorial treatments provides a pathway to
develop antimicrobial therapeutics with broad-spectrum antibacterial action, bactericidal
instead of bacteriostatic mechanisms of action, and better efficacy against multidrug-
resistant bacteria.

Keywords: ESKAPE, MDR, XDR, antimicrobial peptides, metal nanoparticles, combinatorial treatments

INTRODUCTION

Development of antibacterial resistance is considered one of the leading public
health problems, since it has a significant impact on the economy worldwide. Since
therapeutic options to treat infections are increasingly being limited due to antibacterial
resistance, this escalates the morbidity and mortality associated with infectious
diseases caused by bacteria [World Health Organization (WHO), 2020]. ESKAPE
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pathogens are responsible for the majority of life-threatening
nosocomial infections and are capable of “escaping” the biocidal
action of antimicrobial agents (Pendleton et al., 2013). The
term “ESKAPE” is an acronym for six bacterial pathogens
associated with multidrug resistance: Enterococcus faecium
(E. faecium), Staphylococcus aureus (S. aureus), Klebsiella
pneumoniae (K. pneumoniae), Acinetobacter baumannii (A.
baumannii), Pseudomonas aeruginosa (P. aeruginosa), and
Enterobacter spp. (Mulani et al., 2019). Multidrug-resistant
(MDR) bacteria are resistant to more than one antimicrobial
drug, and extensively drug-resistant (XDR) bacteria are types
of drug-resistant organisms that are resistant to all, or almost
all, approved antimicrobial agents (Magiorakos et al., 2012). For
these reasons, it is essential to design and engineer new promising
classes of antibiotics (Gajdács, 2019).

THE NEW THERAPEUTIC
ALTERNATIVES: INPUT FROM RECENT
STUDIES

As we described above, the development of antimicrobial
resistance represents a major threat to public health, and this
has been echoed by different health organizations around the
globe. Antimicrobial peptides (AMPs) and nanoparticles (NPs)
and the design of novel combinatorial therapies are among the
new promising alternatives to fight infections caused by MDR-
and XDR-resistant bacteria.

Antimicrobial Peptides
Antimicrobial peptides are a highly diverse family of small
proteins with a varying number of amino acids; they have
also been referred to as cationic host defense peptides (Boparai
and Sharma, 2019). A variety of synthetic AMPs have been
synthesized in the laboratories, but there are also a wide
diversity of AMPs produced by bacteria and yeast, in addition
to those found naturally in animals and plants (Wang,
2013). AMPs have demonstrated to participate in a variety
of biological activities, including as antimicrobial antiviral,
antifungal, and anti-mitogenic agents, in addition to their
antitumor and anti-inflammatory properties and their ability
to act as immune modulators. Therefore, AMPs represent a
potential alternative to replace a wide variety of commonly used
drugs. Moreover, most of the available studies demonstrate that
AMPs exhibit therapeutic activity in in vitro and in vivo models
(Divyashree et al., 2019).

The use of AMPs alone or in combination with conventional
drugs has proven effective in combating different infectious
agents, mainly MDR bacteria (Zharkova et al., 2019). AMPs
are promising potential candidates to counteract multiresistant
pathogens since they possess many advantages: they display
potent microbicidal activity in the micromolar range (Aoki and
Ueda, 2013), they have demonstrated a rapid bacterial death
action (Lei et al., 2019), and they have low resistance selection
(Mahlapuu et al., 2016). Their mechanism of antibacterial action
is multifunctional because it alters the cell membrane (Li
et al., 2017) and also attacks specific targets that take part in

the development of different intracellular processes (Le et al.,
2017), such as inhibition of transcription, translation, protein
synthesis, and bacterial cell wall formation (Mwangi et al., 2019).
These general mechanisms of action of AMPs are displayed
in Figure 1A.

One AMP of particular interest is human cathelicidin peptide
(LL-37), which has been reported to have wound-healing effects
on the host in addition to exhibiting antimicrobial and anti-
biofilm activity against a variety of Gram-positive and Gram-
negative human pathogens (Duplantier and van Hoek, 2013).
LL-37 and its derivatives are considered excellent candidates as
antimicrobial therapeutic agents and have been the subject of
many studies (Dürr et al., 2006; Kościuczuk et al., 2012; De
Breij et al., 2018). Especially, in 2018, De Breij et al. synthesized
an LL-37 derivative (SAAP-148), with potent antimicrobial
activities, by replacing an amino acid from the terminal carbon
of the LL-37 chain. This LL-37 derivative exhibited a minimum
inhibitory concentration [MIC] between 0.4 and 12.8 µM against
various ESKAPE pathogenic bacteria (e.g., E. faecium, S. aureus,
K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter
species) without selection of resistance. Furthermore, this
AMP derivative showed anti-biofilm activity against S. aureus,
A. baumannii, and P. aeruginosa (De Breij et al., 2018).

Colistin is another important peptide antibiotic (produced
Bacillus polymyxa var. colistinus) used as a last-resort drug
to treat MDR infections (Oka and Ito, 2000). It has emerged
as an important agent in the treatment of Gram-negative
bacterial infections, especially those caused by MDR pathogens
in hospitalized patients (Das et al., 2017). Notably, two new
colistin-derived AMPs (AA139 and SET-M33), with a mechanism
similar to colistin, are in development and have shown excellent
therapeutic potential both in vitro against MDR bacteria and in
in vivo infection models (van der Weide et al., 2019).

The main limiting factor for the systemic use of AMPs
is their sensitivity to proteolytic digestion in different body
fluids (e.g., intestinal mucosa, gastrointestinal tract, and blood
plasma), which directly affect both their in vivo stability and
their pharmacokinetic profile (Moncla et al., 2011; Starr and
Wimley, 2017). Therefore, the search for new AMPs continues,
particularly in a new class of peptides with high specificity and
potency, known as “selectively targeted AMPs” (STAMPs), which
show increased sensitivity to specific pathogens, demonstrating
a significant increase in their bactericidal capacity without
direct effects on the microbiota (Chung and Khanum, 2017).
The STAMP technology requires two functionally independent
peptide domains integrated through a small linker. One peptide
domain serves as the killing AMP moiety and the other peptide
domain consisting of a high-affinity binding peptide which
functions as a targeting moiety (Aoki and Ueda, 2013). These
properties increase the binding to the surface of a targeted
pathogen by enhancing the local concentration of the AMP
and thus lead to improve bactericidal efficiency (Sarma et al.,
2018). In recent years, several new and promising STEMs have
been developed against Streptococcus mutans (Huo et al., 2017),
Pseudomonas aeruginosa, and Streptococcus mutants together
(He et al., 2009), methicillin-resistant Staphylococcus aureus
(Mao et al., 2013), Enterococcus faecalis (Xu et al., 2020), and
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FIGURE 1 | Mechanism of antimicrobial action in bacteria: (A) General mechanisms of action of antimicrobial peptides (AMPs). AMPs act through different
mechanisms (Le et al., 2017) such as 1. Alteration in membrane integrity via electrostatic interaction with negatively charged cell membranes which kill cells, 2.
Inhibition of DNA synthesis by (i) cross-linking with single- or double-stranded DNA, (ii) prevention of the DNA relaxation by inactivation of DNA topoisomerase I, and
(iii) blocking of DNA replication by trapping the gyrase-DNA complex; and protein synthesis by (i) inhibition of protein translation by targeting the ribosomes, (ii)
interrupting the protein-folding pathway, and (iii) rapid proteolytic activity causing the degradation of some DNA replication-associated proteins, leading to secondary
inhibition of DNA synthesis, 3. Inhibition of bacterial cell wall formation by alteration of the alternating amino sugars in linear form that cross-link via peptide bridges to
form the peptidoglycan layer, and 4. Inhibition of metabolic pathways by alteration of nucleic acid metabolism, including nucleotide transport and metabolism,
nucleobase, nucleoside, and nucleotide interconversion. (B) Mechanisms for antimicrobial action of metal nanoparticles (MNPs). MNPs act via the following (Shaikh
et al., 2019). 1. MNPs disturb cell membrane permeability by interfering with metabolic pathways and inducing changes in membrane shape and function. 2. When
MNPs are in solution, metal ions are released in the environment surrounding. Metal ions generate reactive oxygen species (e.g., oxygen ions and hydroxyl radicals)
and induce oxidative stress in bacteria. Oxidative stress is a key contributor in altering the bacterial membrane permeability and thus can damage cell membranes.
Also, metal ions may cause cell structural changes and aberrant enzyme activities, which perturb normal physiological processes. 3. Interaction with sulfur- and
phosphorous-containing compounds such as DNA, which prevent DNA from unwinding and transcription.

clinical isolates (Pseudomonas aeruginosa; Eckert et al., 2006).
Nonetheless, more preclinical and clinical research is needed in
the development of targeted antimicrobial therapy.

Metal Nanoparticles
An additional alternative to fighting infections caused by
antibiotic-resistant bacteria is the development of NPs since
it has been amply reported that metal nanoparticles (MNPs)
have antibacterial activity against ESKAPE pathogens (Wang
et al., 2017; Lee et al., 2019). Some of the mechanisms of
the antimicrobial mode of action of MNPs are summarized
in Figure 1B. In the search for new antimicrobials to treat
the ESKAPE pathogens, silver has been highlighted as a
potential candidate to treat infectious diseases (Borthagaray
et al., 2018). Silver nanoparticles (AgNPs) possess antimicrobial
activity, and they act by disturbing cell membrane permeability,

interacting with sulfur- and phosphorous-containing compounds
including DNA, in addition to their ability to release silver
ions, contributing to the antibacterial effect (Morones et al.,
2005; Morones-Ramirez et al., 2013). Gold (Au) nanoparticles
have also been reported as effective antibacterial agents for
antibiotic-resistant bacterial strains such as S. aureus, E. faecium,
Enterococcus faecalis (E. faecium), Escherichia coli (E. coli), Vibrio
cholerae (V. cholerae), Salmonella typhimurium (S. typhimurium),
and Salmonella dysenteriae (S. dysenteriae; Kumar et al., 2016).

Among metal oxide nanoparticles, zinc oxide (ZnO)
nanoparticles have shown antimicrobial activity against both
Gram-negative and Gram-positive bacteria, including Bacillus
subtilis (B. subtilis), S. aureus, E. coli, P. aeruginosa, and A.
baumannii (Guo et al., 2015; Tiwari et al., 2018). On the
other hand, among photocatalytic nanoparticles, titanium
dioxide (TiO2) NPs have been extensively studied due to their
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antimicrobial activity (Gelover et al., 2006). Several studies
have reported the antimicrobial activity of TiO2 NPs against
methicillin-resistant S. aureus and MDR E. coli (Jesline et al.,
2015; Mantravadi, 2017; de Dicastillo et al., 2019).

Despite the advantages that nanoparticles offer, such as a broad
therapeutic index, controlled drug release, less prone to bacterial
resistance, and fewer side effects than chemical antimicrobials
(Lee et al., 2019), to treat infections caused by the ESKAPE
pathogens, there are still challenges remaining to be tackled
such as improvement of physicochemical properties, better
pharmacokinetic profiles, and comprehensive studies on long-
term exposure to humans. In terms of design and application,
there is a particular interest in the generation of nanohybrids
combining different metals with different antimicrobial and
sensitizer agents (Zhang et al., 2014; Wolfram et al., 2015). Metal
nanoparticle-based compounds (alone or in combination with
other antimicrobial agents) provide promising alternatives to
combat the development of antibacterial resistance (Shaikh et al.,
2019). Therefore, it is imperative to develop a comprehensive
understanding of the mechanisms of action responsible for the
bactericidal properties as well as the identification of the most
promising antimicrobial agents for future clinical translation.

Combinatorial Treatments
The strategies to reduce antibiotic resistance include the
limited use of antibiotics and the application of more effective
antibacterial therapies. Because the time of exposure to
antibiotics correlates with the development of resistance
(Andersson et al., 2020), it is necessary to use drugs with a
broad spectrum of action and pharmacokinetic properties that
facilitate their rapid access to the target site (Krause et al.,
2016). However, most of the available treatments do not have
all these characteristics, so an alternative option is the use of
combination therapies, which can lead to a synergistic and more
effective response (Lehár et al., 2009). It has been shown that the
combination of drugs leads to a considerably more potent effect,
compared to the individual drug (Tamma et al., 2012; Marks
et al., 2013). Figure 2 displays the disadvantages of using single
drugs (Figure 2A) and the advantages of using combinatorial
treatments (Figure 2B).

Antimicrobial Peptide-Based Combinatorial
Treatments
Combinations of AMPs with antibiotics have been reported to
show synergistic effects in the treatment of bacterial infections.
The mechanism of antibacterial action in these combinations
involves the disruption of the outer membrane (Cassone and
Otvos, 2010). Moreover, the use of AMPs in combinatorial
treatments has certain advantages over their use as a single
treatment since it has been observed that in combinatorial
treatments, AMPs work as enhancers of the antimicrobial effects.
This characteristic allows the reduction of their dose, and it
also unlocks the bactericidal application of molecules with low
molecular weight, which typically do not exhibit antimicrobial
properties (Si et al., 2020).

Recent studies have demonstrated the synergistic activity of
antibiotics combined with AMPs. Akbari et al. (2019) reported

the synergism and other drug interactions between melittin, a
cationic amphipathic peptide, and antibiotics such as doripenem,
doxycycline, colistin, and ceftazidime, against MDR isolates of A.
baumannii and P. aeruginosa. Likewise, combinatorial treatments
of conventional antibiotics with new synthetic peptides inspired
by human cationic peptides LL-37 and thrombocidin-1 (TC-1)
have shown synergistic activity against S. aureus (antibacterial
and anti-biofilm activity; Koppen et al., 2019). In addition,
the synergistic activity of 30 short AMPs combined with
several conventional antibiotics such as beta-lactam antibiotics,
cephalosporins, aminoglycosides, and quinolones was tested
against an MDR P. aeruginosa isolate (PA910; Ruden et al.,
2019). Several combinations between peptides, polymyxin B,
erythromycin, and tetracycline, as well as novel variants of
indolicidin were found to be synergistic. Furthermore, the results
showed that a single amino acid substitution within the peptides
can have a powerful effect on the ability to synergize, which
represents an opportunity to design treatment strategies based on
synergistic interactions (Ruden et al., 2019).

Metal Nanoparticle-Based Combinatorial Treatments
Metal nanoparticles should be considered as an attractive
alternative to potentiate the antimicrobial effect of old and
current antibiotics, since they have a high tendency to act
synergistically when combined with a wide variety of antibiotics
(Bankier et al., 2019). This, in addition to the increased
biocompatibility achieved by synthesizing them through green
chemistry, allows considering the use of MNPs as adjuvant agents
for the treatment of infectious diseases (Rout et al., 2018).

In the past years, there has been a marked increase
in the use of biopolymers (e.g., proteins, nucleic acids,
and polysaccharide) as capping agents to functionalize and
stabilize MNPs (Sharma et al., 2019). Exopolysaccharides
are biocompatible and eco-friendly biomolecules; therefore,
they can be used in the synthesis of MNPs (Escárcega-
González et al., 2018). Recently, a silver-based nanobiocomposite
was synthesized using an exopolysaccharide produced by
Rhodotorula mucilaginosa UANL-001L (EPS). The results
showed an increased antibacterial and anti-biofilm activity of
this nanobiocomposite against pathogens of clinical relevance
(Vazquez-Rodriguez et al., 2020). Moreover, nanocomposites
have been synthesized through green chemistry, such as zinc
(Zn) and nickel (Ni) MNPs capped with EPS as capping agents,
and they have displayed interesting antimicrobial properties as
well. Ni-EPS nanoparticles exhibited both antimicrobial and
anti-biofilm activity against resistant MDR strains of S. aureus
and P. aeruginosa. Furthermore, Zn-EPS nanoparticles showed
antimicrobial activity for treatments against MDR S. aureus and
P. aeruginosa (Garza-Cervantes et al., 2019).

Among the most studied nanomaterials are silver
nanoparticles due to their antimicrobial activity against
Gram-positive and Gram-negative bacteria. They can be used
in combinatorial treatments with currently used antibiotics for
enhanced antimicrobial activity (Shahverdi et al., 2007; Kora
and Rastogi, 2013; Naqvi et al., 2013; Singh et al., 2013; Panácek
et al., 2016; Lopez-Carrizales et al., 2018; Perveen et al., 2018;
Vazquez-Muñoz et al., 2019). Nonetheless, some other MNPs
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FIGURE 2 | Antimicrobial treatment strategies: (A) disadvantages of using single drugs and (B) advantages of using combinatorial treatments. The advantage of
using combinatorial treatments of synergistic drug pairs provides the opportunity to lower the dosage of the individual agents, thereby reducing toxicity while
maintaining the wanted effect on bacteria. Moreover, a synergistic response can occur because of complementary drug action (multiple targets sites on the same
protein or pathway are hit; Pemovska et al., 2018). By combining two drugs that achieve the same effect through different mechanisms of action, the development of
resistance to a single drug in the combination may be less likely to occur, and when it does occur, it may have a lower impact on the therapeutic outcome (Pirrone
et al., 2011). Finally, the use of more than one agent broadens the antibacterial spectrum of the empirical therapy and thus ensures that at least one agent will cover
the infecting organism (Gurjar et al., 2014).

such as gold (El-Sheekh and El Kassas, 2014; Kalita et al., 2016;
Al-Mawlawi and Obaid, 2019; Arya et al., 2019; Lee and Lee,
2019; Nishanthi et al., 2019; Yang et al., 2019), copper (Khurana
et al., 2016; Woźniak-Budych et al., 2017; Murugan, 2018;
Selvaraj et al., 2019), and zinc (Banoee et al., 2010; Bhande et al.,
2013) have been used in combination with a variety of antibiotic
families to enhance bactericidal efficacy.

Some other interesting studies of silver-based nanomaterials
have been reported. A novel silver-microfibrillated cellulose
biocomposite has been synthesized, and its antimicrobial activity
was determined against relevant clinical strains. The results
showed that this biocomposite has antimicrobial activity against
Gram-negative and Gram-positive bacteria so that it could be
applied in the development of biocompatible biomedical devices
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TABLE 1 | Antimicrobial peptides, metal nanoparticles, and combinatorial treatments: mechanism of action, tested bacterial strains, advantages, and disadvantages.

Mechanism of action Tested bacterial strains Advantages Disadvantages

Antimicrobial
peptides (AMPs)

1. Alteration in membrane integrity.
2. Inhibition of DNA and protein
synthesis.
3. Inhibition of bacterial cell wall
formation.
4. Inhibition of metabolic pathways.

Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas
aeruginosa, Enterobacter spp.,
multidrug-resistant strains.

1. Show potent microbicidal activity in the micromolar
range.
2. Rapid bacterial death action.
3. Low resistance selection.

1. High sensitivity to proteolytic
digestion in different body fluids.
2. Low in vivo stability.
3. Reduced pharmacokinetic profile.

Metal nanoparticles
(MNPs)

1. Disruption of cell membrane and
increased permeability.
2. Releasing metal ions.
3. Interaction with DNA

Enterococcus faecium,
Enterococcus faecalis, Staphylococcus
aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas
aeruginosa, Escherichia coli,
Salmonella typhimurium,
Salmonella dysenteriae,
Vibrio cholerae,
Bacillus subtilis,
multidrug-resistant strains.

1. Broad therapeutic index.
2. Controlled drug release.
3. Less prone to bacterial resistance.
4. Fewer side effects than chemical antimicrobials.

1. Need to improve metal ions release
from MNPs.
2. Moderate stability in biological fluids.
3. Reduced long-term toxicity studies.

Combinatorial
treatments

1. Synergistic response.
2. Multiple cellular targets for
antimicrobial action.
3. Combination of bactericidal and
bacteriostatic mechanism of action.

Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas
aeruginosa, Escherichia coli
Mycobacterium tuberculosis
multidrug-resistant strains.

1. Require lower dose than a single drug.
2. Reduced toxicity.
3. Synergisms and more effective response.
4. Decrease the probability of resistance evolution.
5. Better efficacy against multidrug-resistant bacteria.

1. Physical-chemical compatibility
among antimicrobial agents.
2. Possible pharmacokinetic and
pharmacodynamic interactions.
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(Garza-Cervantes et al., 2020a). Another promising approach
toward the development of new antimicrobial combinatorial
treatments is the use of transition metals, since they exhibit
rapid and significant toxicity, at low concentrations, in different
bacterial strains. Garza-Cervantes et al. evaluated the synergistic
antimicrobial effects of silver/transition-metal combinatorial
treatments. Their results showed combinatorial treatments that
exhibited synergism (Ag–Zn, Ag–Co, Ag–Cd, Ag–Ni, and Ag–
Cu) since their antimicrobial effects are increased up to 8-fold,
compared to the effects observed for the treatments with the
individual metals (Garza-Cervantes et al., 2017). Furthermore,
Montelongo-Peralta et al. reported synergism between transition
metals and antibiotics used to treat first-line drug-resistant
strains of Mycobacterium tuberculosis (M. tuberculosis).
Combinatorial treatments composed of isoniazid/silver exhibited
a synergistic bactericidal effect in an isoniazid-resistant clinical
strain of M. tuberculosis (Montelongo-Peralta et al., 2019).

Moreover, a previous study showed the ability of silver
to potentiate the activity of a broad range of antibiotics
against Gram-negative bacteria, as well as to restore antibiotic
susceptibility (re-sensitizing) to a resistant bacterial strain
(Morones-Ramirez et al., 2013). Recently, a group of researchers
achieved to re-sensitize antibiotic-resistant E. coli using
transition-metal micronutrients (Cu2+, Zn2+, Co2+, Cd2+, and
Ni2+) combined with antibiotics (ampicillin and kanamycin).
These combinatorial treatments showed a therapeutic activity
and no toxicological effects in a murine topical infection
model caused by antibiotic-resistant strains (Garza-Cervantes
et al., 2020b). The above data therefore strongly suggest that
combination therapies are a potential strategy in the development
of new treatments against infectious diseases.

The search for a new generation of antimicrobials to mitigate
the spread of antibiotic resistance is urgent (de la Fuente-Nunez
et al., 2017). Current research and technology developments
have promoted the improvement of antimicrobial agents that
selectively target a target site (e.g., a gene, a cellular process, or a
specific pathogen; de la Fuente-Nunez et al., 2017; Jackson et al.,
2018). AMPs and MNPs exemplify a novel approach for treating
infectious diseases. Nonetheless, the combinatorial treatments
are considered as an excellent option for designing and
developing next-generation antibacterial agents. As summary,
Table 1 describes the mechanism of action, tested bacterial
strains, advantages and disadvantages of AMPs, MNPs, and
combinatorial treatments.

The selection of appropriate combinatorial treatment is
critical for the successful prevention of infections (Bayramov
and Neff, 2017). The most important challenges include (i)
selection of agents with ideal physical–chemical properties
(hydrosolubility and chemical stability in biological fluids;
Ebejer et al., 2016), (ii) selection of antimicrobials that
display appropriate pharmacokinetics and pharmacodynamics
properties (Preston, 2004), (iii) selection of biocompatible
capping agents or biopolymer-based materials that enable drug
release (Campoccia et al., 2013), and (iv) development of a
process that ensures the stability and does not compromise
the performance of the combination therapy formulation as
a whole (Wu and Grainger, 2006). Therefore, the design
of combinatorial treatment provides a pathway to develop
antimicrobial therapeutics with broad-spectrum antimicrobial
activity, bactericidal instead of bacteriostatic mechanism of
action, and better efficacy against MDR bacteria.
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