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Little is known about the underlying airway microbiome diversity in chronic obstructive
pulmonary disease (COPD) at in-depth taxonomic levels. Here we present the first
insights on the COPD airway microbiome at species and strain-levels. The full-
length 16S rRNA gene was characterized from sputum in 98 COPD patients and
27 age-matched healthy controls, using the Pacific Biosciences sequencing platform.
Individual species within the same genus exhibited reciprocal relationships with
COPD and disease severity. Species dominant in health can be taken over by
another species within the same genus but with potentially increasing pathogenicity
in severe COPD patients. Ralstonia mannitolilytica, an opportunistic pathogen, was
significantly increased in frequent exacerbators (fold-change = 4.94, FDR P = 0.005).
There were distinct patterns of interaction between bacterial species and host
inflammatory mediators according to neutrophilic or eosinophilic inflammations, two
major airway inflammatory phenotypes in COPD. Haemophilus influenzae, Moraxella
catarrhalis, Pseudomonas aeruginosa, and Neisseria meningitidis were associated
with enhanced Th1, Th17 and pro-inflammatory mediators, while a group of seven
species including Tropheryma whipplei were specifically associated with Th2 mediators
related to eosinophilia. We developed an automated pipeline to assign strain-level
taxonomy leveraging bacterial intra-genomic 16S allele frequency. Using this pipeline
we further resolved three non-typeable H. influenzae strains PittEE, PittGG and 86-
028NP with reasonable precision and uncovered strain-level variation related to airway
inflammation. In particular, 86-028NP and PittGG strains exhibited inverse associations
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with Th2 chemokines CCL17 and CCL13, suggesting their abundances may inversely
predict eosinophilic inflammation. A systematic comparison of 16S hypervariable regions
indicated V1V3 instead of the commonly used V4 region was the best surrogate
for airway microbiome. The full-length 16S data augmented the power of functional
inference, which slightly better recapitulated the actual metagenomes. This led to
the unique identification of butyrate-producing and nitrate reduction pathways as
depleted in COPD. Our analysis uncovered finer-scale airway microbial diversity that
was previously underappreciated, thus enabled a refined view of the airway microbiome
in COPD.

Keywords: airway microbiome, COPD, full-length 16S sequencing, PacBio, airway inflammation

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a
heterogeneous lung disease characterized by airflow obstruction
and persistent airway inflammation. The respiratory microbiome
in COPD has been well studied in the last decade. The airway
microbiome differs between health and COPD (Pragman et al.,
2012; Sze et al., 2012; Zakharkina et al., 2013; Einarsson et al.,
2016), shifts during acute exacerbations (Huang et al., 2014;
Wang et al., 2016, 2018), associates with airway inflammation
(Wang et al., 2016; Wang Z. et al., 2019) and predicts 1-
year mortality of hospitalized exacerbation patients (Leitao
Filho et al., 2018), all suggesting the implication of airway
microbiome in COPD pathophysiology. Despite advances, the
role of airway microbiome in COPD remains incompletely
understood. An important knowledge gap is that our current
view of airway microbiome is limited at most to its composition
at bacterial genus-level, due to insufficient resolution of one or
few hypervariable regions of 16S rRNA gene being sequenced
in essentially all previous amplicon sequencing-based studies.
In these studies, certain bacterial genera were often reported
to be altered as a whole in disease and in relation to airway
inflammation (Wang et al., 2016, 2018). However, from an
ecological perspective, members of microbial community do not
necessarily function according to their taxonomic groups, instead
diversified species can act in the form of ecological “guilds” that
co-adapt to altered environment (Zander, 2001; Zhao et al.,
2018). Therefore, the aggregated genus-level associations can
often be spurious or even misleading due to violation of basic
ecological concepts. The inadequate depth of taxonomic profiling
limits not only the accuracy of ecological inferences but also
the ability to identify key bacterial species to use in follow-up
experimental studies.

The recently advanced ‘third-generation’ sequencing
technologies such as Pacific Biosciences (PacBio) and Nanopore
is increasingly applied to microbiome studies (Goodwin
et al., 2016; Levy and Myers, 2016). By generating long
reads that extend tens of thousands of nucleotides, they
offer the promise of increased taxonomic resolution by
sequencing the full-length of 16S rRNA gene, thus serve as
an attractive alternative for in-depth microbial taxonomic
profiling (Wagner et al., 2016). In these applications, the 16S
amplicon is circularized and read through multiple passes

before circular consensus sequences (CCS) are generated,
which greatly reduced the initial high error rate (∼10%) of
the long-read sequencing to that comparable to short-read
sequencing (∼0.5%) (Jiao et al., 2013; Hebert et al., 2018).
Recent development of sophisticated denoising algorithms
further enable accurate bacterial species identification at single-
nucleotide resolution with near-zero error rate (Callahan et al.,
2019). In some situations, strain-level identity can be further
resolved utilizing information on the full complement of 16S
rRNA gene alleles in bacterial genomes (Callahan et al., 2019;
Johnson et al., 2019).

Here, we present the first analysis of the airway microbiome
in COPD at species-level using PacBio sequencing. We also
developed an automated pipeline to further resolve strain-
level identity when possible. Our results uncovered additional
diversity and heterogeneity in the airway microbiome at species-
level and below, which was associated with patient clinical
features and airway inflammation.

MATERIALS AND METHODS

Patient Inclusion and Exclusion Criteria
Sputum samples of 98 stable COPD patients and 27 age-matched
healthy controls were collected in the First Affiliated Hospital
of Guangzhou Medical University. The study was approved
and supervised by the ethics committee of the First Affiliated
Hospital of Guangzhou Medical University (reference number:
No. 2017-22) and was registered in www.clinicaltrials.gov
(NCT 03240315). All COPD patients met the diagnostic
criteria according to GOLD guideline and were also assessed
for symptoms and exacerbation frequency (Table 1). GOLD
classification for disease severity (stage I-IV) was assigned to
COPD patients based on pulmonary function test. For COPD
patients, the inclusion criteria were: (1) age > 40 years; and
(2) confirmed diagnosis of COPD according to the GOLD
guideline (post-bronchodilator forced expiratory volume in 1s
[FEV1]/forced vital capacity [FVC] ratio < 0.7). The exclusion
criteria were: (1) physician-diagnosis of asthma or significant
respiratory disease other than COPD; (2) COPD exacerbation
within 4 weeks of enrollment; (3) history of lung surgery and
tuberculosis; (4) diagnosis of cancer; (5) blood transfusion within
4 weeks of enrollment; (6) diagnosis of autoimmune diseases;
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(7) enrollment in a blinded drug trial; and (8) short-term
antibiotic usage within 4 weeks of enrollment. Informed consent
was obtained from all patients.

Quality Control of Sputum Samples
Induced sputum were obtained for all subjects and quality-
controlled upon collection. Briefly, sputum plugs which
contained the most viscous material were picked up in a
petri dish and isolated from saliva. The selected sputum
plugs were prepared for cytology by dilution with 0.1%
dithiothreitol (DTT) solution and filtered through 48 µm
nylon-mesh filter according to standardized sputum processing

TABLE 1 | Major demographic and clinical characteristics of subjects.

Demographic and
clinical features

Healthy
(n = 27)

COPD
(n = 98)

P-value

Age 65.4 (10.8) 66.2 (8.9) 0.67

Gender, n(M/F) 23/4 89/9 0.48

Current smoking, n(Y/N) 9/18 85/13 1.0e−4***

GOLD (1/2/3/4) NA 24/33/32/9 NA

New GOLD (a/b/c/d)$ NA 39/38/4/17 NA

Frequent exacerbator
(Y/N)$$

NA 20/78 NA

ICS usage (Y/N) NA 58/40 NA

Long-term antibiotics (Y/N) 0/27 1/97 0.60

pre-FEV1 (L) 2.8 ± 0.1 1.5 ± 0.1 5.1e−10***

pre-FVC (L) 3.4 ± 0.2 2.9 ± 0.1 0.01**

pre-FEV1 (%) 100.0 ± 2.6 56.1 ± 2.7 1.0e−10***

pre-FEV1/FVC 0.81 ± 0.01 0.49 ± 0.02 2.5e−13***

post-FEV1 (L) NA 1.6 ± 0.7 NA

post-FVC (L) NA 3.1 ± 0.8 NA

post-FEV1 (%) NA 59.6 ± 2.6 NA

post-FEV1/FVC NA 0.5 ± 0.1 NA

CAT score NA 4.0 ± 0.6 NA

mMRC NA 0.4 ± 0.1 NA

Total sputum cells
(cells × 109/L)

NA 20.4 ± 2.8 NA

Sputum neutrophils (%) NA 86.2 ± 1.2 NA

Sputum eosinophils (%) NA 5.3 ± 0.7 NA

Sputum lymphocyte (%) NA 0.7 ± 0.1 NA

Sputum monocyte (%) NA 7.9 ± 1.1 NA

Blood neutrophils
(cells × 109/L)

NA 3.9 ± 0.1 NA

Blood eosinophils
(cells × 109/L)

NA 0.3 ± 0.0 NA

Blood lymphocyte
(cells × 109/L)

NA 1.8 ± 0.1 NA

Blood monocyte
(cells × 109/L)

NA 0.5 ± 0.1 NA

Continuous data are present as mean (range) or mean ± SEM. P-value was
calculated using Fisher exact test for categorical variables and using Wilcoxon rank-
sum test for continuous variables. ***P < 0.001; **P < 0.01; *P < 0.05 ICS: inhaled
corticosteroids; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity,
CAT: COPD Assessment Test, mMRC: modified Medical Research Council. $The
new GOLD classification based on mMRC, CAT and exacerbation frequency (2019)
[Global Initiative for Chronic Obstructive Lung Disease (GOLD), 2019]. $$The
frequent exacerbator was defined as exacerbation event > = 2/last year.

protocol (Bafadhel et al., 2012). The numbers of total cells,
squamous epithelial cells and leukocytes were counted and
recorded. Sputum specimens with squamous epithelial cells:
leukocytes < 1:2.5 were considered unlikely to be contaminated
with oropharyngeal flora and acceptable for downstream
experiments (Murray and Washington, 1975; Roson et al., 2000).

Sputum Inflammatory Mediators
A panel of 47 sputum mediators (BLC, Eotaxin, Eotaxin-2,
CXCL11, CXCL10, CCL2, CCL3, CCL4, CCL5, CCL13, CCL17,
G-CSF, GM-CSF, I-309, ICAM-1, IFNg, IL-1a, IL-1ra, IL-
1b, IL-2, IL-4, IL-5, IL-6, IL-6R, IL-7, IL-8, IL-10, IL-12p40,
IL-12p70, IL-13, IL-15, IL-16, IL-17, IL-21, MCSF, MIG,
MIP-1d, MMP-8, MMP-9, PDGF-AB, Procalcitonin, TNFa,
TNFb, TNFRI, TNFRII, TIMP-1, TIMP-2) were measured
in a subset of 59 patients with available sputum samples
using custom antibody microarray (Human Cytokine Antibody
Microarray slides; RayBiotech Inc., Norcross, GA, United States)
(Wang F. et al., 2019).

The Full-Length 16S Sequencing and
Analysis
Bacterial genomic DNA was extracted from selected sputum
plugs using Qiagen DNA Mini kit. Negative controls for
extraction (no sputum) and PCR amplification (no DNA
template, ddH2O only) were included and sequenced
together with all samples. The full-length (V1V9) bacterial
16S rRNA gene sequences were amplified using barcoded
27F (AGRGTTYGATYMTGGCTCAG) and 1492R (RGYTA
CCTTGTTACGACTT) primers. Library construction was
performed using Pacific Biosciences (PacBio) SMRTbellTM

Template Prep Kit V1 on normalized pooled PCR products, and
was sequenced using PacBio Sequel platform.

Circular consensus sequences reads were generated using
the ccs application in SMRTLink 5.1 with minPasses = 5 and
minPredictedAccuracy = 0.90. The demultiplexed CCS were
analyzed using DADA2 v1.12.1 customized for the PacBio full-
length 16S sequencing data (Callahan et al., 2016, 2019). Briefly,
primers were removed from the CCS sequences using the
removePrimers function. Sequences without primer matches were
discarded. The remaining CCS sequences were filtered using
the filterAndTrim function with parameters: minLen = 1000,
maxLen = 1600, maxN = 0, maxEE = 2, and minQ = 3. Sequences
were dereplicated and used for learning the dataset-specific
error model using the learnErrors function with parameter
errorEstimationFunction = dada2:PacBioErrfun. Sequences were
denoised using the error model and Amplicon Sequence
Variants (ASVs) were identified using the dada function.
Taxonomy up to the genus-level was assigned using the
assignTaxonomy function based on the silva_nr_v128_train_set
sequence database. ASVs were further assigned to species if
they had exact unambiguous sequence match to species in
the silva_species_assignment_v132 sequence database using the
addSpecies function1. For the remaining ASVs, an additional
step of BLASTn search was performed against the local NCBI

1https://benjjneb.github.io/dada2/assign.html
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nt database to make possible species-level calls based on exact
unambiguous sequence match. Chimera sequences were removed
using the removeBimeraDenovo function.

For comparison with the DADA2 approach, we performed
two different clustering-based analyses that were previously
used for full-length 16S amplicon sequences. First, we used the
MCSMRT pipeline developed by Earl et al. for PacBio full-length
16S sequences (−e = 2), which clustered sequences into 97%
operational taxonomic units (OTUs) and assigned taxonomy
using a utax classifier on a custom-built full-length 16S database
(Earl et al., 2018). Second, we performed a de novo clustering
using the quality-filtered CCS reads into OTUs at 99% sequence
identity using USEARCH (v11.0.667) (Edgar, 2010), according
to Johnson et al. (2019). A custom Naïve Bayes classifier was
trained on the Greengenes 13_8 99% OTUs using full-length 16S
sequences obtained with 27F and 1492R primers, and applied to
assign taxonomy for the representative sequence of each OTU
using QIIME2 (Bolyen et al., 2018).

For downstream analyses, when analyzing microbiomes
at the community level (i.e., alpha/beta diversity, functional
inference), all ASVs were included irrespective of their taxonomic
assignments. For differential analysis and correlation analyses
with host mediators, we only focused on ASVs with species-level
assignment, in order to identify species-level markers that were
biologically interpretable. The ASV profile was rarefied to 3,119
reads per sample (Supplementary Figure S1).

Metagenomic Sequencing and Analysis
To assess the precision of functional inference based on full-
length 16S data, we randomly selected sputum samples from 10
healthy controls and 10 COPD patients for shotgun metagenomic
sequencing as benchmark. Shotgun metagenomic library was
prepared using the extracted genomic DNA and sequenced using
Illumina NovaSeq platform. Quality filtering of the metagenomic
reads was performed using Cutadapt v1.18 (–q = 20) (Marcel,
2011). Host reads were removed by mapping the quality-
filtered reads to human reference genome hg38 using bowtie2
(Langmead and Salzberg, 2012). The remaining reads were
subject to functional profiling using HUMANn2 (Franzosa
et al., 2018). An average of 1.3 million reads per sample can
be putatively assigned to KO genes (range 188,636–6,882,594
reads). The HUMANn2 profile was downsized to 188,636
reads per sample only when performing correlation analysis
on gene features across all samples, to eliminate variations
influenced by sequencing depth. The raw Fastq data of this
study has been deposited in the Chinese National Gene Bank
(CNGB) Nucleotide Sequence Archive (CNSA) under accession
code CNP0000837.

Strain-Level Identification Pipeline
Callahan et al. (2019) described a method for strain-level
identification by hand using full-length 16S data leveraging the
full complement of 16S rRNA alleles in bacterial genomes. In
principle, a strain can be confidently assigned if all intra-genomic
16S sequence variants of that strain are recovered in integral
ratios according to its genuine allelic variants. In extension to
this approach, we designed an automated pipeline to assign

strain-level ASV bins in four steps below. (1) All copies of
16S sequences were retrieved from 14,062 complete bacterial
genomes in Genbank (assessed May 3, 2019) and the intra-
genomic 16S copy number ratios were calculated. (2) All species-
level ASVs were BLASTn-searched against the 16S database in
step 1. ASVs with exact match to the same bacterial genome
were assigned to the same initial bins. (3) The ASVs within each
initial bin were subject to pairwise correlation, to generate refined
bins by identifying ASVs with co-occurrence pattern (Pearson’s
R > 0.7). (4) For each refined bin, the copy number ratio of
ASVs were determined based on linear regression slope, and
reconciled with the genuine copy number ratio of the 16S alleles
in the corresponding bacterial genomes. The ASVs in integral
copy number ratio with the genuine ratio (± 0.3) were retained in
the final bins and assigned with strain-level taxonomy. The non-
unique BLASTn matches (i.e., multiple genome-bins for the same
set of ASVs) were resolved in this step using the genuine copy
number ratio, when possible. The genomic abundances of each
strain in each sample was calculated as the average abundances
of ASVs normalized by their copy numbers in the genome. The
curated intra-genomic 16S copy number ratio for all complete
bacterial genomes and the code for the pipeline are available
at GitHub2.

Statistical Analysis
Differential microbiome features between COPD and healthy
controls were identified using a linear discriminant analysis
(LDA) effect size (LEfSe) method with a threshold of logarithmic
LDA score 2.0 (Segata et al., 2011). Random forest analysis was
performed using genus and species-level microbiome features
selected by LEfSe (LDA > 2.0) using Weka 3.8 with 7-fold cross-
validation (Frank et al., 2016). Area under receiver operative
characteristic curve (AUC) were assessed to evaluate the
performance of the random forest models. Statistical comparison
of AUCs was performed using pROC package in R (Robin et al.,
2011). Co-occurrence analysis of microbiome was performed
using SparCC (Friedman and Alm, 2012). Functional inference
of microbiome was performed using PICRUSt2 (Douglas et al.,
2020). The false discovery rate (FDR) method was used to adjust
P-values.

To identify microbiome-mediator associations independent
of patient demographic factors, we performed a residualized
correlation analysis (Lloyd-Price et al., 2019). All microbiome
features and the 47 sputum mediators were first residualized
using a general linear model adjusting for patient demographic
covariates including age, gender, smoking history, exacerbation
frequency and ICS usage. An all-against all correlation analysis
was performed on the residues of microbiome features and
sputum mediators using HAllA (Hierarchical All-against-All
association testing) (Lloyd-Price et al., 2019), a computational
tool to identify pairs of statistically significant associations in a
hierarchical manner (FDR P < 0.05). A two-way hierarchical
clustering analysis was performed on the microbiome-mediator
correlation matrix using Ward’s method, in which microbiome
features and mediators were both clustered. The mediators were

2https://github.com/wangzlab/Strain_ID_FL16S
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clustered into three groups based on dendrogram and termed
based on their inflammatory classes (Group 1: Th2-related,
Group 2: Th1/Th17/Pro-inflammatory-related, Group 3: Others).
The microbiome features were clustered into four groups based
on dendrogram. The four microbiome groups were termed
according to their association patterns with the three groups of
mediators (“Pro-inflammatory,” “Neutrophilic,” “Eosinophilic,”
and “Anti-inflammatory”). The “Neutrophilic” microbiome
group had specific association pattern with Th1/Th17/Pro-
inflammatory mediators. The “Eosinophilic” microbiome group
had specific association pattern with Th2 mediators. The “Pro-
inflammatory” and “Anti-inflammatory” microbiome groups had
overall consistent positive or negative association pattern with
the broad panel of inflammatory mediators. Patients were further
stratified into eosinophilic-high and eosinophilic-low subgroups
based on established criteria on sputum eosinophilic percentage
(eosinophilic-high: sputum eosinophil > = 3%, eosinophilic-low:
sputum eosinophil < 3%) (Bafadhel et al., 2011).

Individual partitions of 16S rRNA gene sequences were
generated by truncating different hypervariable regions (V1V2,
V1V3, V2, V3, V3V4, V3V5, V4, V6V8, and V6V9) from
the full-length 16S sequences according to established primer
sets using Cutadapt v2.6 (Marcel, 2011). The same DADA2
analysis as described above was performed on each individual
partition. Mantel test was performed to assess the similarity in
compositional and functional profiles generated using the full-
length 16S sequences as well as using individual sub-regions.

Quantitative PCR Assays
To validate our results for species identification and
quantification, quantitative PCR assays were performed on
a subset of 87 subjects with sufficient sputum genomic DNA
(76 COPD patients and 11 controls). We designed species-
specific primers for Haemophilus influenzae, Haemophilus
parainfluenzae, and Ralstonia mannitolilytica. Species-specific
genes were first identified using a BLASTp search of all protein-
coding genes from each species against an in-house database of
protein-coding genes from 2,764 complete bacterial genomes,
to identify genes present in at least 90% of genomes of that
species but absent in all other bacterial genomes. Primers were
designed on the species-specific genes using Primer 33 and were
checked for primer-dimer and binding specificity to the bacterial
genomes. We also identified strain-specific protein coding genes
for Haemophilus influenzae strains PittEE, PittGG and 86-028NP
using similar strategies as above, and designed primers based
on these genes. The primer sequences for Trophyrema whipplei
were adopted from the study of Lozupone et al. (2013), based on
the hsp65 gene sequence. To make standard curves for absolute
quantification, an initial qPCR was performed on one of the
sputum samples with sufficient quantity to amplify the PCR
products using all primers. The PCR products were verified
by Sanger sequencing and subject to standard Escherichia coli
transformation procedure to obtain DNA templates with absolute
copy numbers. The primers and their targeting genes for each
species and sub-species were listed in Supplementary Table S1.

3http://primer3.ut.ee

For validation of functional inference, we performed
qPCR assays on butyryl-CoA:acetate CoA-transferase gene
(EC:2.8.3.8) using the validated broad-spectrum primers
reported by Vital et al. (2013) (but_3F: GHATYGGIGSTA
TGCC, but_3R: AAGTCWAAYTGWCCRCC). The universal
marker rpoB gene was used as the internal control in the
qPCR assays (F: GGYTWYGAAGTNCGHGACGTDCA, R:
TGACGYTGCATGTTBGMRCCCATMA). The fold change of
the but gene between COPD and healthy controls was calculated
using the 2−11Ct approach.

All qPCR assays were performed using 96-well MicroAmp
Fast Optical 96-Well Reaction Plate on the Applied Biosystems
StepOnePlusTM Real-Time System. The 20 µl reaction mixture
contained 10 µl of SYBR R© Select Master Mix (2×), 6 µl of
microbial-free water, 2 µl DNA templates, and 1 µl forward
and reverse primer each. The following cycling parameters
were used: initial cycle of 95◦C for 10 min; 40 cycles of
95◦C for 15 s; 60◦C for 1 min. All qPCR templates were run
in duplicate. For standard curve calculation, each plate run
included a decimal serial dilution of the corresponding double-
stranded DNA templates as obtained above from 1E8 to 1E3
copies per µl. For qPCR of the functional gene (EC:2.8.3.8)
using broad-spectrum primers, a high MgCl2 concentrations of
3mM was used and thermocycling was performed as follows:
95◦C for 2 min; 95◦C for 45 s, 54◦C for 45 s, 72◦C for 45 s
(× 40); 10 min at 72◦C, according to the original publication
(Vital et al., 2013).

RESULTS

Overview of the Species-Level Airway
Microbiome Profile
A total of 1,317,570 high-quality CCS reads were obtained for
98 stable COPD patients and 27 healthy controls (Table 1).
The average number of passes on the 16S gene was 34.9
for all CCS reads (5-270 passes), equivalent to a low
error rate of ∼0.48% based on previous sequencing runs
on a mock community (Johnson et al., 2019). A total of
2,868 non-singleton ASVs were identified using the DADA2
approach. Seven ASVs were present in reagent controls
totaling 106 reads and were subtracted from the samples
(Supplementary Table S2). At the community level, there
were significant shifts in COPD patients versus controls
(Figures 1A,B, Adonis, P = 0.004). There were no significant
community shifts between smokers and non-smokers within
COPD patients or healthy controls, between patients with and
without inhaled corticosteroid usage, and between the patients
that were frequent and non-frequent exacerbators (frequent
exacerbators defined as exacerbation events > = 2/last year,
Supplementary Figures S2A,B).

Of the 2,868 ASVs, 795 ASVs constituting 52.1% of all
CCS reads were putatively assigned to 228 bacterial species
in 92 genera (Supplementary Figure S3A). In comparison,
using the MCSMRT pipeline, 499 out of 2,121 non-singleton
OTUs constituting 44.8% reads were assigned to 164 bacterial
species in 88 genera (Supplementary Table S3). Using the
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FIGURE 1 | The overview of species-level profile of the airway microbiome in COPD patients and healthy controls. (A) Principal coordinate analysis based on
weighted UniFrac distance on sputum samples from 98 COPD patients and 27 healthy controls. (B) The Shannon diversity and relative abundances of major genera
(relative abundance > 0.005) in COPD patients and healthy controls. (C) The 11 top discriminatory species-level taxa between COPD and controls as identified from
LEfSe analysis (LDA > 2.0). (D) The receiver operating characteristic curves for the Random Forest analyses using the 11 species-level and 9 genus-level
discriminatory taxa (LDA > 2.0) to segregate COPD patients from controls. (E) The heatmap for the species-level microbiome profile. The major species-level taxa
(relative abundance > 0.001) within each genus in panel (B) were shown. The fold change of each species (Sp) and its corresponding genus (Gn) in COPD patients
versus controls were shown beside the taxonomy. * Wilcoxon test, P < 0.05.

99% OTU-based clustering approach, 681 out of 2,159 non-
singleton OTUs constituting 39.0% reads were assigned to 110
bacterial species in 60 genera (Supplementary Table S3). The
DADA2 approach outperformed the clustering-based approaches
for our data in terms of the number of species and the
proportion of reads assigned to species, and was chosen for
downstream analyses. Twenty species had an average relative
abundance greater than 0.005 (Table 2). The number of species
capable of being detected increased by 3.26 folds compared to
a re-analysis of all previous COPD airway microbiome studies
using similar pipeline (Supplementary Table S4). Streptococcus,
Prevotella, and Neisseria had the highest numbers of 26, 18
and 12 species identified (Supplementary Figure S3B). LEfSe
analysis identified 11 discriminatory species-level taxa between
COPD and controls (Figure 1C, LDA > 2.0). Random forest
analysis using these 11 species yielded increased precision
in classifying patients, compared to that using 9 genera

obtained with the same criteria (LDA > 2.0) (Figure 1D
and Supplementary Figure S3C, AUC: 0.787 versus 0.706,
P = 0.026). Figure 1E showed an overview of species-level airway
microbiome profile.

Among the species-level taxa, Haemophilus parahaemolyticus
was significantly increased in COPD smokers versus COPD
non-smokers (fold-change = 6.40, FDR P = 0.02, Supplementary
Figure S2C). Ralstonia mannitolilytica, an opportunistic
pathogen, was significantly increased in frequent exacerbators,
a subgroup of COPD patients that experienced more frequent
acute exacerbation events than others (fold-change = 4.94,
FDR P = 0.005, Supplementary Figure S2C). The increase
of R. mannitolilytica was further confirmed by qPCR
(Supplementary Figure S2D).

There was an overall decreased alpha diversity (Shannon
index) and non-significantly increased relative abundance of
Haemophilus in patients with increased severity measured
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TABLE 2 | The major species-level taxa identified in this study (average relative
abundance > 0.005).

Species All
average

COPD
average

Healthy
average

Fold
change

FDR
P-value

Prevotella intermedia 0.005 0.006 0.005 1.191 0.319

Prevotella
melaninogenica

0.060 0.057 0.071 0.801 0.342

Prevotella pallens 0.013 0.012 0.017 0.700 0.0140*

Streptococcus
pseudopneumoniae

0.017 0.020 0.004 5.667 0.222

Streptococcus salivarius 0.013 0.015 0.004 3.664 0.277

Streptococcus
thermophilus

0.027 0.030 0.014 2.228 0.809

Haemophilus influenzae 0.043 0.052 0.008 6.779 0.617

Haemophilus
parahaemolyticus

0.009 0.010 0.004 2.564 0.204

Haemophilus
parainfluenzae

0.012 0.009 0.020 0.474 0.0074**

Neisseria meningitidis 0.009 0.009 0.008 1.044 0.128

Neisseria mucosa 0.007 0.008 0.002 4.452 0.785

Neisseria perflava 0.011 0.012 0.005 2.391 0.742

Neisseria subflava 0.017 0.012 0.036 0.330 0.0415*

Fusobacterium
nucleatum

0.016 0.013 0.027 0.495 0.139

Fusobacterium
periodonticum

0.014 0.012 0.022 0.531 0.0199*

Pseudomonas
aeruginosa

0.016 0.020 0.000 NA 0.105

Moraxella catarrhalis 0.030 0.038 0.001 28.947 0.275

Veillonella parvula 0.005 0.004 0.010 0.439 0.208

Porphyromonas
gingivalis

0.010 0.009 0.015 0.570 0.282

Campylobacter concisus 0.006 0.006 0.007 0.902 0.233

P-value was calculated using Wilcoxon rank-sum test. ***FDR P < 0.001;
**P < 0.01; *P < 0.05.

using both spirometry-based GOLD I-IV and new GOLD A-D
classification scheme based on exacerbation frequency, CAT
and mMRC scores [Global Initiative for Chronic Obstructive
Lung Disease (GOLD), 2019], consistent with previous findings
(Mayhew et al., 2018; Dicker et al., 2020) (Supplementary
Figures S4A,B). No species-level taxa reached statistical
significance in association with GOLD classification, CAT or
mMRC scores (FDR P < 0.05). Fusobacterium periodontium
exhibited significant positive correlation with pre-FEV1 (FDR
P < 0.05, Supplementary Figure S4C).

In our study, 58 out of 98 patients were administered long-
term ICS. We classified the 58 patients into subgroups based
on their daily ICS doses (500 ug/day [n = 5], 320 ug/day
[n = 15], 250 ug/day [n = 14], 160 ug/day [n = 17], and less
than 160 ug/day [n = 7]). All five groups have comparable alpha
diversity (Supplementary Figure S5A). No clear clustering was
observed for these groups in principal coordinate analysis based
on Bray-Curtis dissimilarity (Supplementary Figure S5B). No
genus or species-level taxa were significantly different across
these groups. There was a non-significant increase of Moraxella
and Pseudomonas in the higher dose groups (500 ug and 320 ug
groups, Supplementary Figure S5A), consistent with the notion

that higher dose of ICS may increase pathogenic bacterial load
(Contoli et al., 2017).

Substantial Intra-Genus Variation in the
Airway Microbiome
Inspection of individual species revealed substantial intra-genus
variation in their relationships with COPD. For example, while
Neisseria mucosa was increased in COPD versus controls,
its counterpart Neisseria subflava was significantly depleted
(Figure 2A). The reciprocal relationships with COPD were also
observed between Haemophilus influenzae and Haemophilus
parainfluenzae, and between Prevotella oris and other Prevotella
species (Supplementary Figure S6). The species also altered
differentially with enhanced disease severity. For example,
H. parainfluenzae and N. subflava were the most predominant
species within the respective genera in healthy subjects, while
H. influenzae and N. meningitidis were over-dominant in GOLD
IV class of COPD patients with the highest disease severity
(Figure 2A). Within Streptococcus, Streptococcus salivarius
and Streptococcus thermophilus were most highly abundant in
GOLD I patients, whereas Streptococcus pseudopneumoniae and
Streptococcus pneumoniae were dominant in GOLD II and IV
patients, respectively (Figure 2A). Opposite relationships were
further observed between H. influenzae and H. parainfluenzae
(Figure 2B), and between Prevotella melaninogenica and
Prevotella denticola with patient sputum neutrophilic levels
(Supplementary Figure S7). Individual species within the
same genus exhibited disproportionately more co-exclusive
than co-occurrence relationships (Figure 2C), indicating
potential ecological interference. These results indicated that
there was substantial intra-genus heterogeneity in the airways
possibly resulting from interspecific competition. qPCR using
primers designed on species-specific genes showed overall
concordance between the absolute count and relative abundance
of H. influenzae and H. parainfluenzae (Figure 2D), although the
qPCR results showed better sensitivity at lower abundances.

Major Airway Inflammatory Phenotypes
Shaped Species-Level Microbiome-Host
Interactions
To investigate how the intra-genus heterogeneity was related to
airway inflammation, we performed an all-against-all correlation
analysis between the species-level microbiome features and
a panel of 47 sputum inflammatory mediators measured in a
subset of 59 COPD patients. We used residualized correlation
to identify microbiome-mediator correlations independent
of patient demographic co-factors (Lloyd-Price et al., 2019).
Unsupervised two-way hierarchical clustering based on the
microbiome-mediator correlation profile revealed four clusters
of bacterial species that each had distinct association patterns
with three groups of mediators (Group 1–3, Figure 3). Four
pathogens, Moraxella catarrhalis, Pseudomonas aeruginosa, N.
meningitidis and H. influenzae, exhibited negative associations
with a group of 11 mediators mostly Th2-related (i.e., IL-5,
IL-13, CCL17), while they were positively correlated with
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FIGURE 2 | The intra-genus heterogeneity of the airway microbiome. (A) The alternation of major species in Haemophilus, Neisseria, Streptococcus, and Prevotella
between healthy controls and COPD patients with increasing disease severity based on GOLD classification (spirometry-based). The average relative abundance and
standard deviation of each species in each group were shown. The number of subjects in each subgroup was indicated in the parenthesis. (B) The reciprocal
relationship between H. influenzae and H. parainfluenzae with sputum neutrophilic percentage. (C) The species-level co-occurrence network showed more pervasive
co-exclusive than co-occurrence relationships between major species-level taxa within Prevotella, Streptococcus, Neisseria and Haemophilus. Each node
represents a species-level taxon and each edge represents a correlation between paired taxa. Only significant correlations were shown in the networks (SparCC,
P < 0.05). The size of the node is proportional to its degree of connectivity. The width of the edge is proportional to the absolute correlation coefficient. Co-exclusion
relationships were colored in red, whereas co-occurrence relationships were colored in gray. (D) qPCR assays using species-specific primers showed concordance
between absolute counts and relative abundances of H. influenzae and H. parainfluenzae.

a group of 21 mediators mostly Th1, Th17-related or pro-
inflammatory (i.e., IL-8, IL-17, MMP-8), and had mixed
relationships with the remaining mediators. By contrast, another

seven species, Prevotella aurantiaca, Fusobacterium nucleatum,
Leptotrichia buccalis, Prevotella histicola, Porphyromonas
gingivalis, N. mucosa and Tropheryma whipplei, were specifically
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FIGURE 3 | Species-specific association of airway microbiome with inflammatory phenotypes. Unsupervised two-way hierarchical clustering analysis on an
all-against-all correlation profile between species-level microbiome features and 47 sputum mediators from a subset of 59 COPD patients (Ward’s method), in which
microbiome features and mediators were both clustered. The species were shown if they had relative abundance > 0.001 and were significantly associated with at
least one of the 47 sputum mediators (HAllA, FDR P < 0.05). The mediators were clustered into three groups and termed based on their classes and associations
with airway eosinophils or neutrophils (Group 1: Th2-related, Group 2: Th1/Th17/Pro-inflammatory-related, Group 3: Others). The microbiome features were
clustered into four groups based on their association patterns with the three groups of mediators (termed “Pro-inflammatory,” “Neutrophilic,” “Eosinophilic,” and
“Anti-inflammatory”). The significant associations were indicated in asterisks. Significant positive and negative associations between sputum mediators and
neutrophilic and eosinophilic percentages were shown on bottom of the heatmap (FDR P < 0.05).

associated with increased Th2 mediators and decreased
Th1/Th17/pro-inflammatory mediators. Members of these two
groups of mediators further showed specific correlations with
increased sputum neutrophils or eosinophils, respectively (FDR
P < 0.05), in agreement with their roles in neutrophilic or
eosinophilic inflammation, the two major airway inflammatory
phenotypes in COPD (Balzano et al., 1999; Saha and Brightling,
2006). Correspondingly, all seven species were increased in
the subgroup of COPD patients with high eosinophilic levels
(sputum eosinophil > = 3%) versus those with low eosinophilic
levels (sputum eosinophil < 3%, Supplementary Figure S8A).
The increase of T. whipplei was further confirmed by qPCR
(Supplementary Figure S8B). The other two groups of species
in general showed consistent positive or negative associations
with the broad panel of inflammatory mediators (denoted as
‘Pro-inflammatory’ or ‘Anti-inflammatory’ in Figure 3). Such
phenotype-specific clustering pattern was not observed at the
genus-level (Supplementary Figure S9), indicating that airway
microbiome interacted with host in a species-specific manner,
which was shaped by major airway inflammatory phenotypes.

An Automated Pipeline for Strain-Level
Identification in the Airway Microbiome
We further explored possible strain-level diversity in the airway
microbiome. Recent studies showed that it is possible to resolve

strain-level identity using full-length 16S sequences by leveraging
the power of the full complement of 16S rRNA alleles within
bacterial genomes (Callahan et al., 2019; Johnson et al., 2019).
Callahan et al. introduced a simple rule to manually assign
strain-level taxonomy by examining ASVs according to 16S
integral ratio, similar taxonomy assignments and consistent
patterns across samples (Callahan et al., 2019). In extension to
this rule, we designed a pipeline to automate this process and
identify strain-level ASV bins in a large-scale. Using this pipeline
with a set of stringent criteria (see methods, Figure 4A), we
identified genome-level ASV bins corresponding to 14 different
bacterial strains with reasonable confidence (Supplementary
Table S5). This included ASV bins with sequence identical and
in integral copy number ratio to the 16S rRNA gene alleles
of three non-typeable H. influenzae (NTHi) strains PittEE,
PittGG and 86-028NP, although the major 16S allele of 86-
028NP was not detected (Figures 4B–D). All three strains
increased in COPD versus controls. The three strains were
associated with distinct groups of mediators, implicating that
they likely provoked different types of host inflammatory
response (Figure 4E). In particular, 86-028NP and PittGG
exhibited inverse associations with Th2 chemokines such as
CCL17 and CCL13 related to eosinophilic inflammation. qPCR
using strain-specific primers showed moderate concordance
for PittEE and PittGG (Figure 4F), although the strain
detection rate by sequencing was lower than that using
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FIGURE 4 | Strain-level identification in the airway microbiome. (A) The designed pipeline for identifying strain-level ASV bins. (B) The polymorphism in the 16S rRNA
gene sequences for H. influenzae PittEE, PittGG and 86-028NP strains. The position and frequency of substitution in the full-length 16S sequences of the three
strains were shown. The magnified regions showed respective positions in the alignment of all six copies of 16S gene in the corresponding H. influenzae genomes.
The genuine ratios of 16S allelic variants in the three genomes are: 3:3, 5:1 and 4:1:1. (C) The correlation pattern between the counts for pairs of ASVs assigned to
the strains PittEE, PittGG and 86-028NP (Pearson’s R > 0.93). (D) The copy number of the highly-correlated ASVs are in integral ratio with the genuine allelic
frequency of the 16S rRNA genes within the genome. The major 16S allele of the 86-028NP strain was not detected. (E) Significant associations between the three
H. influenzae strains with sputum mediators (Spearman, FDR P < 0.05). (F) qPCR results using strain-specific primers for the three H. influenzae strains in relation to
their relative abundances in the sequencing data.
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qPCR. qPCR for 86-028NP yield positive but non-significant
correlation (Figure 4F).

A Systematic Evaluation of 16S
Sub-Regions for Airway Microbiome
Profiling
The full-length 16S sequences can serve as a benchmark
for a systematic evaluation on the performance of individual
hypervariable regions for airway microbiome studies. To this
end, we created partitions of 16S sequences from the full-
length data according to nine hypervariable regions used in
previous COPD microbiome studies, and analyzed each partition
separately. Among all sub-regions, V1V3 and V3V4 were among
the highest in terms of the number of species assigned as well
as the proportion of sequences assigned to species (Figure 5A).

In addition, the V1V3 and V3V4 regions captured the greatest
microbial beta diversity measured using pairwise Bray-Curtis
dissimilarity, whereas the diversity was the lowest for the V4
region (Figure 5A). The V4 region was particularly poor in
classifying Proteobacteria and Actinobacteria, with 79.8 and
90.9% of sequences from these two phyla unable to be assigned to
species (Supplementary Figure S10). Mantel test for Bray-Curtis
dissimilarity showed that the V1V3 region also bear the highest
similarity with the full-length 16S data in the overall community
composition (Figure 5B).

Full-Length 16S Sequences Augmented
the Power of Functional Inference
PICRUSt is a useful tool to infer functional capacity of
microbiome based on 16S sequences (Douglas et al., 2020). We
compared PICRUSt2 prediction results using the full-length 16S

FIGURE 5 | Systematic comparison of full-length 16S data and sub-region data for taxonomic diversity and functional inference. (A) Comparisons between the
full-length 16S data and the sub-region data, in terms of (1) the number of species-level taxa assigned, (2) the proportion of reads that can be assigned to species,
(3) the pairwise Bray-Curtis dissimilarity across all samples, and (4) the average abundances of pathways predicted by PICRUSt2. (B) Heatmap showing similarity in
compositional and functional profiles between the full-length 16S data and data for individual 16S sub-regions. Mantel test for Bray-Curtis dissimilarity was
performed to assess the profile-level correlations. (C) The correlation between PICRUSt2-inferred genes and the same genes in the actual metagenome, within each
of the 20 samples. The sample IDs and their corresponding groups (COPD: C, Healthy: H) were indicated. (D) The PICRUSt2-inferred abundances of the two
pathways ‘PWY-5676: acetyl-CoA fermentation to butyrate’ and ‘PWY-490-3: nitrate reduction’ in COPD and controls using the full-length (V1V9) and V1V3 data (**
FDR P < 0.01, * FDR P < 0.05). (E) The two pathways showed negative correlations with IL-17, which was more pronounced when inferred from full-length 16S
sequences than V1V3 sequences.
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sequences and sequences from the nine hypervariable regions.
PICRUSt analysis using the full-length 16S data greatly enhanced
the power of functional inference by increasing the copy number
abundances of the predicted pathways by an average 1.83-fold
compared to individual sub-regions. Again, V1V3 were the next
best in terms of the predicted pathway abundances (Figure 5A).
The same sub-region also showed the highest similarity with the
full-length 16S data in the inferred functional profile (Mantel test,
Figure 5B).

To further assess the precision of functional inference
using the full-length 16S data, we characterized the airway
metagenome for a randomly selected set of 10 COPD patients
and 10 controls as benchmark. We performed correlation
analysis between genes in the actual metagenome and PICRUSt2-
inferred metagenome using the full-length 16S data as well
as sub-region data. When examining each sample, there was
an overall correlation pattern between the PICRUSt2-inferred
genes and those from the metagenomic data (Figure 5C,
Supplementary Figure S11, Supplementary Table S5,
Spearman’s R: 0.624–0.818). The correlations were notably
centric to the abundant genes, whereas genes with less
abundance showed more random patterns (Supplementary
Figure S11). This suggested that PICRUSt2 better predicted
the more abundant genes in the metagenome. PICRUSt2
inference based on full-length 16S sequences yielded slightly
better per-sample correlations with metagenome than those
based on sub-region sequences (i.e., Spearman’s R: 0.750 ± 0.06
for full-length data versus 0.736 ± 0.06 for V1V3 data,
Figure 5C, Supplementary Table S6), as well as a higher
resemblance to the sample-wise metagenome profiles based
on Mantel test for Bray-Curtis dissimilarity (Supplementary
Table S6). When examining each individual gene, PICRUSt2
inference using full-length 16S data generated more genes that
showed correlations with metagenome across all samples,
compared to the inferences using sub-region data (305
KO genes versus 248.2 ± 18.8 genes, Spearman’s R > 0.5,
Supplementary Table S6).

At the pathway level, PICRUSt2 inference based on full-
length 16S sequences led to slightly different set of pathways
differentially abundant in COPD versus controls (FDR P < 0.05,
Supplementary Table S7). This included the identification
of 9 pathways that were uniquely associated with COPD
when inferred using the full-length 16S data (Supplementary
Table S8). Of interest are two pathways ‘acetyl-CoA fermentation
to butyrate’ and ‘nitrate reduction,’ both inferred as significantly
depleted in COPD (FDR P < 0.05, Figure 5D, Supplementary
Figure S12). Both pathways were also decreased in COPD
versus controls in the subset metagenomic data (log2 fold-
change = −1.608 and −2.502 respectively, Supplementary
Table S8). qPCR using validated broad-spectrum primers on
butyryl-CoA:acetate-CoA-transferase gene (Vital et al., 2013) in
the butyrate pathway further supported the finding by showing
a 4.32-fold decrease of the gene in COPD versus controls
(Supplementary Table S9). Furthermore, the two pathways
showed inverse correlations with sputum inflammatory marker
IL-17, which were more pronounced when inferred from full-
length 16S data than from sub-regions (Figure 5E).

DISCUSSION

Here, we provided the first insights on the COPD airway
microbiome at the species and strain-levels. By applying the
‘third-generation’ PacBio sequencing to the full-length 16S rRNA
gene, we uncovered diversity and complexity in the airway
microbiome at in-depth taxonomic levels that were previously
underappreciated. In light of our results, many aspects of our
understanding of the airway microbiome need to be refined.

Our results showed that there were substantial intra-genus
variations in the airway microbiome in relation to patient clinical
outcomes. Individual species within the same genus often altered
differentially in COPD and with enhanced clinical severity. The
species predominant in healthy state can be taken over by another
species within the same genus but with potentially increasing
pathogenicity in severe COPD patients. Understanding such
variation is a prerequisite in precisely identifying and targeting
key microbial species at play at different clinical stages of COPD.
All previous studies by reporting the aggregated genus-level
associations failed to capture such phenomenon. Thus those
results by neglecting the species-level variations only represent an
attenuated signal by the mixed effects of individual species within,
and should be interpreted with caution.

Unsupervised clustering analysis demonstrated clear species-
level microbiome-host interaction patterns according to
neutrophilic or eosinophilic inflammation, the two major
inflammatory phenotypes in COPD (Balzano et al., 1999;
Saha and Brightling, 2006). The neutrophil-specific bacterial
species included known respiratory pathogens including
H. influenzae, M. catarrhalis, N. meningitidis, and P. aeruginosa
in Proteobacteria that provoked pro-inflammatory host response
(Sethi and Murphy, 2001). There is increasing evidence showing
that airway microbiome is associated with inflammatory
phenotypes of COPD patients. Several studies have showed that
airway microbiome differs between exacerbation phenotypes
in particular between bacterial-associated and eosinophilic
exacerbations, with reduced microbial diversity and increased
Proteobacteria in the former group (Wang et al., 2016,
2018; Mayhew et al., 2018). In this regard, our results are
consistent and extend these findings by showing that specific
Proteobacteria species may be key members contributing
to enhanced neutrophilic over eosinophilic inflammations.
The respiratory pathogens can frequently colonize and be
persistent in the airways despite innate host immunity through
various evasive pathogenic mechanisms. For example, non-
typeable H. influenzae evades host immune recognition and
clearance by neutrophil extracellular traps (NETs) through
invading host epithelial cells, forming biofilms, altering gene
expression and displaying surface antigenic variation (Ahearn
et al., 2017). P. aeruginosa is able to modify its motility,
alginate production, biofilm formation or susceptibility to
host anti-microbial defenses to establish niches of persistent
infection (Skopelja-Gardner et al., 2019). N. meningitidis can
be resistant against NETs through a series of mechanisms
including modification of LPS and escape from NET-mediated
nutritional immunity (Lappann et al., 2013). A recent study
showed that M. catarrhalis achieved its persistent colonization
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in COPD patients through regulating major adhesin Hag/MID
(Murphy et al., 2019). Our data showed significant positive
correlations between M. catarrhalis and P. aeruginosa with
NET-triggering inflammatory mediators such as CXCL8, IL-1b
and TNFa, supporting possible involvement of NETs in COPD
host-microbiome interactions (Dicker et al., 2018). Further
studies are warranted to investigate association between the
species or strain-level airway microbiome with NETopathic
inflammation in COPD (Uddin et al., 2019).

The eosinophil-specific species included T. whipplei, a
clinically important species reported to be implicated in
pneumonia (Bousbia et al., 2010), HIV infection (Lozupone
et al., 2013) and eosinophilic, corticosteroid-resistant asthma
(Goleva et al., 2013; Simpson et al., 2016). Thus the association
between T. whipplei and eosinophilic inflammation may be a
common signature across airway diseases. Such phenotype-
specific host-microbiome interaction pattern was not detected
at the broader genus-level, which supports the notion that
phylogenetically diversified airway bacterial species may
act as ecological “guilds” in response to specific types of
environmental stimuli (here being the different types of
host inflammations). The species delineation enabled an
ecologically coherent view of airway microbiome according to
host inflammatory phenotypes.

The full-length 16S sequencing is capable of resolving subtle
nucleotide substitutions that exist between 16S gene copies
within a bacterial genome. It has been shown that such intra-
genomic variations, when properly accounted for, can aid in
strain-level identification (Johnson et al., 2019). Callahan et al.
introduced an approach by manually obtaining ASV copy
number ratios and reconciling with the genuine 16S ratio of
their corresponding bacterial genomes (Callahan et al., 2019).
By curating the intra-genomic 16S variations for all complete
bacterial genomes, we show that this process can be made fully
automated and applied in real, complex microbial communities.
We detected three NTHi clinical strains PittEE, PittGG and 86-
028NP in the airway microbiome with reasonable confidence,
and suggested that even within the pathogenic species there
may be variations between strains in their relationships with
airway inflammations (Chin et al., 2005). All three strains were
initially isolated from otitis media patients (Harrison et al., 2005;
Hogg et al., 2007; Arce et al., 2009). It has been shown that
the PittGG strain, by possessing an extra cluster of 339 genes
and a Hif-type pili structure, conveyed greater virulence than
PittEE (Arce et al., 2009). qPCR assays based on alpA gene on
this extra locus confirmed our results in PittGG quantification.
While all three strains were related to increased Th1/Th17
mediators, 86-028NP and PittGG were further associated with
decreased Th2-related CCL13 and CCL17, indicating their
abundances may inversely predict eosinophilic inflammation.
The microbiome species or strains may be suitable markers for
airway inflammatory phenotypes.

We identified Ralstonia mannitolilytica as significantly
increased in a subgroup of COPD patients that experienced more
frequent acute exacerbations than others, a clinically important
phenotype in COPD for which the underlying pathophysiology
was not completely understood (Wedzicha et al., 2013).

R. mannitolilytica is an opportunistic pathogen that has been
recovered from cystic fibrosis airways (Coenye et al., 2002). In
a previous report, the same species was isolated from one COPD
exacerbation patient in western China with extreme symptoms
and acute respiratory failure (Zong and Peng, 2011). Ralstonia
spp. rarely cause infection in healthy individuals but can be a
severe pathogen especially in immunosuppressed patients (Basso
et al., 2019). Therefore, the presence of R. mannitolilytica in stable
COPD patients may be a risk factor in predisposing patients to
recurrent infection and exacerbations.

There is emerging evidence showing that airway microbiome
is associated with clinical outcome and mortality of COPD
patients. Leitao Filho et al. found that microbiome dysbiosis,
in particular the presence of Staphylococcus and absence of
Veillonella, was associated with increased 1-year mortality for
hospitalized AECOPD patients (Leitao Filho et al., 2018).
Staphylococcus spp. were barely detected in our patients (3 out
of 98 COPD patients) so their association with clinical outcomes
were unable to be assessed in our cohort. A key difference
between our study and Leitao Filho et al. is that only patients
with severe exacerbations that required hospitalization were
included in their study, whereas we captured mild, moderate and
severe patients at clinical stability. Nevertheless, both our results
(increased Ralstonia mannitolilytica in frequent exacerbators)
and those of Leitao Filho et al. supported the notion that
identification of rare opportunistic pathogens may be associated
with worse clinical outcome and prognosis of COPD patients.
A recent study by Dicker et al. showed that Haemophilus
dominance at COPD clinical stability was linked to increased
severity, frequent exacerbations and increased mortality (Dicker
et al., 2020). This is also consistent with our finding that increased
relative abundance of Haemophilus, in particular H. influenzae
species, was observed in patients with enhanced GOLD status.

The systematic comparison of individual 16S sub-regions
indicated that V1V3 region performed the best in terms of the
species-level microbial alpha and beta diversity, the power of
functional inference, as well as the profile resemblance with full-
length 16S data in terms of both microbiome composition and
function. Our results based on real sequencing data on natural
microbial communities are consistent with the in silico analysis
by Johnson et al. based on existing 16S databases (Johnson et al.,
2019), and should guide future studies that sequencing V1V3
may be a surrogate for airway microbiome when sequencing
the full-length 16S gene is not available. Conversely, sequencing
the V4 region alone, despite its wide usage in previous airway
microbiome studies, might not provide sufficient resolution for
in-depth taxonomic profiling in particular in Proteobacteria
and Actinobacteria.

The full-length 16S sequences yielded increased abundances
for genes and pathways capable of being predicted, possibly
due to the higher precision of full-length 16S sequences in
hidden state prediction in the PICRUSt2 algorithm[24]. The
augmented power led to better concordance with the actual
metagenomes in a subset of 20 samples, thereby also increased the
accuracy of functional inference. With better power, we inferred
butyrate-producing and nitrate reduction pathways as uniquely
depleted in COPD using the full-length 16S data. The decreases
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of these pathways were supported by the subset of samples with
metagenomic data as well as some preliminary qPCR results.
Butyrate is a well-characterized microbial metabolite with anti-
inflammatory effects in human gut (Cait et al., 2018), whereas its
role in the airways remains unclear. Nitric oxide, the end product
of nitrate reduction, may have possible disease-ameliorating
effects by suppressing NLRP3 inflammasome activation in the
airways (Mao et al., 2013; Lee et al., 2016). The mechanistic roles
of these pathways in COPD remain to be determined.

There are several caveats to our study. First, the study
design is single-centered and cross-sectional so the temporal
stability of the airway microbiome is unable to be tracked.
Nevertheless, the major microbiome composition in our cohort,
as well as the associations between key microbiome taxa and
neutrophilic and eosinophilic inflammations, were generally
consistent with previous findings on European and US cohorts,
suggesting that there may be a common core airway flora and
microbiome-host interactions despite geographical differences.
Additional multi-centered cohorts preferably across continents
(i.e., similar as the design in Mac Aogain et al., 2018) with
longitudinal follow-up are needed to test this hypothesis and
further validate our findings. Second, despite multiple approaches
and databases employed, only about half of all CCS reads
in our data can be confidently assigned to bacterial species-
level taxa. This was also reflected by the lower sensitivity for
species and strains detection based on sequencing compared
to that based on qPCR. This is an important caveat due to
inherently limited power of 16S sequences for species or strain
resolution, its sensitivity to potential sequencing errors and
incompleteness of current reference databases. Therefore even
the full-length 16S gene survey may still underrepresent the true
microbial species diversity in the airways. Third, despite efforts
made in quality control and careful selection of sputum plugs
from saliva, potential sources of oral contamination cannot be
fully excluded. Comparative studies with concurrent oral rinse
sampling are needed to distinguish bacterial species and strains
originated from oral cavity and airways. Fourth, we lack sufficient
data to explore species-specific relationships with other COPD
etiological factors such as viral infections.

In summary, we present a finer-scale taxonomic analysis on
the COPD airway microbiome. We showed there were substantial
microbial diversity and heterogeneity at species-level and below,
which was associated with patient clinical outcome and host
inflammation. Sequencing the full-length 16S rRNA gene enabled
a refined view on the composition and function of the airway
microbiome in COPD, and should see a wider applicability in
airway microbiome studies in future.
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