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Over the past decades, antimicrobial resistance (AMR) has been recognized as one of 
the most serious threats to public health. Although originally considered a problem to 
human health, the emerging crisis of AMR requires a “One Health” approach, considering 
human, animal, and environmental reservoirs. In this regard, the extensive use of antibiotics 
in the livestock production systems to treat mastitis and other bacterial diseases can lead 
to the presence of AMR genes in bacteria that contaminate or naturally occur in milk and 
dairy products, thereby introducing them into the food chain. The recent development of 
high-throughput next-generation sequencing (NGS) technologies is improving the fast 
characterization of microbial communities and their functional capabilities. In this context, 
whole metagenome sequencing (WMS), also called shotgun metagenomic sequencing, 
allows the generation of a vast amount of data which can be interrogated to generate the 
desired evidence, including the resistome. However, the amount of host DNA poses a 
major challenge to metagenome analysis. Given the current absence of literature concerning 
the application of WMS on milk to detect the presence of AMR genes, in the present 
study, we evaluated the effect of different sequencing depths, host DNA depletion methods 
and matrices to characterize the resistome of a milk production environment. WMS was 
conducted on three aliquots of bulk tank milk and three aliquots of the in-line milk filter 
collected from a single dairy farm; a fourth aliquot of milk and milk filter was bioinformatically 
subsampled. Two commercially available host DNA depletion methods were applied, and 
metagenomic DNA was sequenced to two different sequencing depth. Milk filters proved 
to be the most suitable matrices to evaluate the presence of AMR genes; besides, the 
pre-extraction host DNA depletion method was the most efficient approach to remove 
host reads. To our knowledge, this is the first study to evaluate the limitations posed by 
the host DNA in investigating the milk resistome with a WMS approach, confirming the 
circulation of AMR genes in the milk production environment.
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INTRODUCTION

The increasing prevalence of antimicrobial resistance (AMR) 
in bacteria is one of the most serious threats to public health 
(Schrijver et al., 2018). Latest data report that AMR is responsible 
for more than 30,000 deaths per year in the European Union 
(EU) and European Economic Area (EEA) and costs about 
1.1 billion euros to the health care systems of EU/EEA countries 
(Boolchandani et  al., 2019). Although originally considered 
a problem to human health, the emerging crisis of AMR 
requires a one health approach, considering human, animal, 
and environmental reservoirs (Van Puyvelde et  al., 2018). In 
this regard, of particular concern is the high use of antibiotics 
in livestock production systems, as it is known that the 
emergence and selection of resistant bacteria can be associated 
to the antimicrobial administration due to ecological pressure. 
From a public health perspective, the possible transmission 
of resistance bacteria from food-producing animals to humans 
is considered a major risk; indeed, the increasing presence 
of AMR bacteria in farm animals can lead to their dissemination 
to humans via direct contact with livestock or via the food 
chain (Call et  al., 2008).

The AMR spread may occur through different mechanisms; 
in fact, the genetic dynamics of AMR include multiple strategies, 
from point mutations to the exchange of entire genes. Among 
the mechanisms behind its occurrence, the presence of AMR 
genes on horizontally transmissible elements can lead to their 
transmission to new bacterial hosts, both pathogenic and 
commensal, pointing out the risk to human health (Schrijver 
et al., 2018). The recent advances in next-generation sequencing 
(NGS) technologies and bioinformatic analyses have brought 
continuous advantages in this area, improving fast AMR genes 
identification and characterization (Boolchandani et  al., 2019). 
Culture-based resistance determination involves the isolation 
of target bacteria and the assessment of the growth in the 
presence of antimicrobials; taking into account the large amount 
of unculturable bacteria, this method underestimates species 
and AMR genes. On the other hand, culture-independent 
methods have many potential advantages; among them, whole 
metagenome sequencing (WMS), also called shotgun 
metagenomic sequencing, is accomplished by unrestricted 
sequencing of the genomes of all the microorganisms within 
a sample, including uncultured ones, allowing the generation 
of a large amount of data which can be interrogated to evaluate 
the presence of AMR genes (Zaheer et  al., 2018).

Though overcoming the intrinsic bias of culture-dependent 
and amplicon-based methods, the huge potential of WMS brings 
some challenges (Addis et  al., 2016). For the analysis of host-
derived samples, in fact, the advantage of sequencing the total 
DNA extracted from a sample becomes also a vulnerability, as 
a consequence of the predominance of host DNA; saliva, blood, 
and milk are just few examples of the host-derived sample 
which usually contain more than 90% of host genome-aligned 
reads (Marotz et  al., 2018; McHugh et  al., 2020). This kind of 
sample requires the application of molecular and bioinformatics 
tools to remove the unwanted host DNA; besides, a deep 
sequencing depth is critical to obtain a reasonable coverage of 

the microbial genomes (Pereira-Marques et  al., 2019). A greater 
sequencing depth increases the number of generated sequences 
but, at the same time, can quickly escalate the costs of sequencing, 
reducing the possibility of application on a large number of 
samples (Thoendel et  al., 2016). Actually, few studies have 
investigated the impact of this limitation on the sensitivity of 
WMS to gain a complete picture of the microbiome of host-
derived samples (Zaheer et al., 2018; Gweon et al., 2019; Pereira-
Marques et  al., 2019; Heravi et  al., 2020). In this regard, a very 
recent publication dealt with this issue investigating the dairy 
microbiome (McHugh et  al., 2020); the authors’ conclusions 
highlighted how, due to the high proportion of Bos taurus reads 
sequenced, the resulting low number of microbial reads did 
not allow a strain-level classification or an in-depth functional 
analysis, addressing the possible use of a microbiome enrichment 
kit to overcome the problem for future analyses.

There are several commercial kits available to remove host 
DNA, acting prior to DNA extraction (pre-extraction methods) 
or after DNA extraction (post-extraction methods). Among them, 
MolYsis Basic5 kit (Molzym, Bremen, Germany) takes advantage 
of differential lysis of mammals and microbial cells, lysing 
eukaryotic cells through a chaotropic reagent and removing the 
released DNA by enzymatic digestion prior to extraction of 
bacterial DNA. On the other hand, among post-extraction methods, 
the NEBNext Microbiome DNA Enrichment Kit (New  
England BioLabs, Ipswich, MA) selectively bounds and removes 
CpG-methylated host DNA, taking advantage of the low CpG 
methylation rates of microbial species. Both techniques have been 
used in different studies on human samples (Thoendel et  al., 
2016; Marotz et  al., 2018; Heravi et  al., 2020) and in few works 
on animal stool samples (Thomas et  al., 2017); however, none 
of them have ever been applied on food matrices, such as milk. 
Very little is known about the required sequencing depth necessary 
to investigate complex samples. Though fully capturing all DNA 
sequences from the microbiome of a complex matrix is not 
practical, despite continuous improvements in NGS technologies, 
estimating the required sequencing depth needed to characterize 
a particular microbial population is important to achieve the 
goal of a given study, such as the investigation of the resistome 
in a food production environment (Zaheer et  al., 2018).

In the actual context of growing AMR concern, tracking 
the emergence and prevalence of AMR is a priority. Although 
recent research points toward the possibility of the transmission 
of AMR via the food chain and toward the relevance of food-
processing environments as reservoirs of AMR, little is known 
about the resistome associated with dairy cattle production 
(Call et  al., 2008; Zaheer et  al., 2018; Alexa Oniciuc et  al., 
2020). As previously mentioned, antibiotics are used extensively 
in dairy farms, leading to the introduction of AMR genes in 
milk and dairy products (Freitag et  al., 2017; Nobrega et  al., 
2018). In this context, the increasing preference for raw milk, 
which has already proven to pose a threat for the consumer, 
due to the possible presence of foodborne pathogens (Claeys 
et  al., 2013), is even more troubling. Investigation of the 
presence of AMR genes in the milk production environment 
may provide precious data to estimate the public health risk 
associated with antibiotic usage in dairy industry.
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Given the current paucity of literature concerning the 
application of WMS on milk to detect the presence of AMR 
genes, here, we  carried out a pilot study to investigate the 
impact of varying sequencing depths, host DNA depletion 
methods, and milk production environment matrices on the 
ability to gain valuable data about the microbiome and the 
resistome of a milk production environment.

MATERIALS AND METHODS

Sample Collection
An aliquot of 50  ml of bulk tank milk and the disposable 
in-line milk filter were collected from a dairy farm located 
in Piedmont, North-West Italy; the selected farm had 200 
lactating cows and a mean daily milk production volume of 
5,000  L. Samples were collected directly from the tank in 
sterile conditions, inserted in sterile plastic containers, and 
transferred to the Laboratory of Food Inspection at the 
Department of Veterinary Science – University of Turin. Upon 
arrival, 90 ml of sterile ringer solution (Oxoid Ltd., Basingstoke, 
Hampshire, UK) was added to a 10  g of aseptically weighed 
milk filter in a sterile stomacher bag and homogenized with 
a Stomacher® 400 circular (Seward Ltd., Worthing, UK) at 
230 rpm for 2 min. The bulk milk (sample M) and the obtained 
filter homogenate (sample F) were divided into three aliquots 
of 15 ml each (M1, M2, M3; F1, F2, F3), which were subjected 
to different treatment and sequencing depth; aliquots were 
processed as shown in Figure  1.

Sample Treatment and DNA Extraction
Sample M1 and sample F1 were treated immediately after collection 
using the MolYsis Basic5 kit (Molzym, Bremen, Germany)  

as pre-extraction method to remove host DNA; samples were 
processed according to the manufacturer’s instructions. After 
removal of MolDNase A, DNA was extracted using the DNeasy 
Blood and Tissue Kit (QIAGEN, Hilden, Germany); DNA was 
eluted using 100  μl of 10  mM Tris-HCl buffer (pH 8.5) and 
frozen at −20°C before further analyses.

Samples M2, F2, M3, and F3 were extracted using the 
DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany) 
without a pre-extraction treatment; a few modifications were 
applied to the manufacturer’s instructions. The overnight step 
was preceded by two centrifugation steps: samples were 
centrifuged at 100 × g for 10 min to pellet and discard eukaryotic 
cells; secondly, prokaryotic cells were pelleted from milk serum 
by centrifugation at 13,000  ×  g for 15  min at 4°C and pellets 
were resuspended in phosphate-buffered saline (Oxoid). Isolation 
of genomic DNA was then performed following the conventional 
protocol; DNA was eluted using 100  μl of 10  mM Tris-HCl 
buffer (pH 8.5). Samples M2 and F2 were used as untreated 
samples and frozen at −20°C before further analyses.

Samples M3 and F3 were treated using the NEBNext 
Microbiome DNA Enrichment Kit (New England BioLabs, 
Ipswich, MA) as post-extraction method to remove host DNA, 
following the manufacturer’s protocol; after the treatment, 
Agencourt AMPure XP beads (Beckman Coulter, Brea, CA) 
were used to purify the DNA following the NEBNext Microbiome 
DNA Enrichment Kit’s instructions. DNA was eluted using 
100  μl of 10  mM Tris-HCl buffer (pH 8.5) and frozen  
at −20°C before further analyses.

Whole Metagenome Sequencing
The DNA concentration of each sample was quantified using 
a Qubit 2.0 Fluorometer (Life Technologies, Darmstadt, Germany) 
with the Qubit dsDNA HS Assay Kit. DNA integrity was 

FIGURE 1 | The overall workflow in this study. Bulk tank milk and in-line filter samples were divided into four aliquots each, and the total DNA was extracted using 
four different methods, including two microbial enrichment protocols and two different sequencing depth. Whole metagenome sequencing (WMS) was performed to 
investigate the microbiome and the resistome.
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evaluated by agarose gel electrophoresis and purity of the DNA 
was determined by measuring the ratios of absorbance at 
260/280 using a NanoDrop spectrophotometer (ThermoFisher 
Scientific) considering indicative of DNA purity a 260/280  
ratio between 1.8 and 2.0. Samples meeting quality criteria 
were submitted for library preparation and metagenomic 
DNA sequencing.

DNA library preparation, WMS, and quality control steps 
were performed by the genomics service company Genewiz 
(Leipzig, Germany). NEBnext Ultra II DNA library preparation 
kit and four PCR cycles were applied to generate libraries 
(New England Biolabs, Ipswich, MA); samples were run on 
an Illumina NovaSeq  6000 platform to generate 2  ×  150  bp 
paired-end (PE) reads. The required sequencing depth was 
120 million PE reads for untreated samples M2 and F2 (1x), 
60 million PE reads for samples M1 and F1 (0.5x), and 60 
million PE reads for samples M3 and F3 (0.5x).

Data Analysis
Data Pre-processing: Subsampling, Quality 
Filtering and Host-DNA Filtering
In order to simulate the effect of sequencing at 1/2th depth 
(0.5x), the two FASTQ files with the forward and reverse PE 
reads generated by the WMS of samples M2 and F2 were 
randomly subsampled bioinformatically with Seqtk tool1, 
resulting in two new samples (M4; F4) consisting of 0.5x 
dataset coverage.

Sequencing data quality control of the eight samples was 
carried out using the FastQC (version 0.11.5) with the default 
parameters2. Quality filtering of raw sequencing data was 
performed using Trimmomatic (version 0.33; Bolger et  al., 
2014) as follows: the leading and trailing low quality (below 
quality 3) or ambiguous base calls from sequence reads were 
removed; quality score filtering was performed using a sliding 
window at every four bases with a minimum Phred score of 
15; and sequences with <50 nucleotides were discarded. Adapters 
were removed using a maximum of two mismatches in the 
initial seed and clipped if a match score of 30 was reached.

After the quality filtering step, raw reads were mapped 
against both a bovine reference genome (B. taurus ARS-UCD1.2 
from NCBI genome database) and a human reference genome 
(Homo sapiens GRCh38.p13) with Bowtie2 (version 2.2; 
Langmead and Salzberg, 2012) using the default values, in 
order to identify and remove host DNA sequences and reads 
derived from possible human DNA contamination. The 
unmapped reads were then used for the downstream analysis.

Microbiome Analysis
The host-filtered reads were mapped against the MiniKraken2 
v1 reference database built from the RefSeq bacterial and 
archeal libraries, using the ultrafast metagenomic classification 
package Kraken 2 (Wood et al., 2019) with a filtering threshold 
of 0.05 to enhance accuracy of taxonomic assignments; reports 

1 https://github.com/lh3/seqtk
2 https://www.bioinformatics.babraham.ac.uk/projects/fastqc

of the taxonomic classification of reads were generated using 
Kraken’s report function. Abundance estimates were generated 
with the package Bracken (Lu et  al., 2017), which performs 
a Bayesian re-estimation of abundance after classification with 
Kraken 2.

Resistome Analysis
The host-filtered reads were provided as input to BWA MEM 
alignment (Li, 2013) using default parameters including a 
mismatch penalty value of 4 to the MEGARes AMR genes 
database (Lakin et  al., 2017). Reads were assigned to AMR 
genes using a 75% gene coverage threshold (Zaheer et al., 2018). 
The BAM files generated were processed using ResistomeAnalyzer 
(Lakin et  al., 2017). Counts of short reads aligned to the AMR 
genes were recorded and used for downstream analyses. Read 
counts originating from alignments to housekeeping genes 
associated with AMR present in the MEGARes database requiring 
single nucleotide polymorphism (SNP) confirmation were filtered 
out from the AMR report before further analyses.

Microbiome and Resistome Comparison
For microbiome and resistome comparison among sample 
datasets generated with different sequencing depths and 
treatments, sets of unique taxa for each samples were determined 
for each taxonomic levels (phylum, class, family, order, genus, 
and species) and for each AMR classification level (class, 
mechanism, group, and gene) for non-rarefied data and plotted 
as Venn diagrams. Samples without identified AMR genes were 
removed from further resistome analyses.

Taxonomic profiles were visualized based on the hierarchical 
clustering of the Bray-Curtis distances in the application Calypso 
(Zakrzewski et  al., 2017). Rarefaction analysis was performed 
to compare resistome richness and coverage at different taxon 
levels using the RarefactionAnalyzer tool from the AMRPlusPlus 
pipeline (Lakin et  al., 2017) with 5% subsampling increments 
of the reads data and 10 iterations at each level. The rarefaction 
curves were plotted as numbers of unique mechanisms, classes, 
gene groups, and genes.

RESULTS

Whole Metagenome Sequencing
After the quality control process, including the evaluation of 
the DNA concentration, integrity, and purity, samples M1 and 
M3, corresponding to milk aliquots treated with the MolYsis 
Basic5 kit (Molzym, Bremen, Germany) and the NEBNext 
Microbiome DNA Enrichment Kit (New England BioLabs,  
Ipswich, MA), revealed a DNA concentration lower than 
2 ng/μl. Nevertheless, all eight sample were submitted for library 
preparation and metagenomic DNA sequencing.

Processing of Illumina NovaSeq 6000 metagenomic sequencing 
data at different sequencing depth produced a total of 452 
million reads, over 67  gb across all eight samples. For samples 
M1 and F1, 51 million reads were produced, while 113 and 
124 million reads were produced for samples M2 and F2, 
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respectively, and 55 and 58 million reads were produced for 
samples M3 and F3, respectively; finally, 56 and 62 million 
reads were bioinformatically subsampled for samples M4 and 
F4, respectively (Table 1). PCR duplication rates ranged between 
8.5 and 10.6%. The mean read quality score for samples ranged 
from 34 to 36.

Data Analysis
Data Pre-processing
The reads generated survived quality filtering and trimming 
in different percentage depending on the type of sample and 
treatment. In particular, while for samples F1, F2, F3, F4, M2, 
M3, and M4, only 2–6% were discarded, for sample M1, 
corresponding to the aliquot of milk pre-treated with the 
MolYsis Basic5 kit (Molzym, Bremen, Germany), over 32% of 
reads were discarded (Table  1).

Of the total quality-filtered reads, the percentage of reads 
associated with the bovine genome ranged from 24.7 to 99.4% 
among the eight samples (Table  1). In particular, the host 
DNA content was >99% for samples M2, M3, and M4, while 
82.5% of reads were mapped against the host DNA for sample 
M1, corresponding to the milk aliquot treated with the MolYsis 
Basic5 kit (Molzym, Bremen, Germany). As shown in Table  1, 
filter homogenate aliquots had a lower percentage of reads 
associated with the bovine genome; in particular, the host 
DNA content was around 90% for samples F2, F3, and F4, 
while 24.7% of reads were mapped against the host DNA for 
sample F1, corresponding to the filter aliquot treated with the 
MolYsis Basic5 kit (Molzym, Bremen, Germany). Human DNA 
sequences represented a negligible proportion in all the samples.

Microbiome Comparison
Of a total 571 million reads across all datasets, 23.5 million 
reads (4.1%) were identified at the bacterial and archeal phyla 
level. As shown by Venn diagrams (Figure  2A), for filter 
aliquots, F1 and F2 datasets reads were assigned to the same 
39 bacterial and archaeal phyla; whereas 38 and 36 phyla were 
identified in sample F3 and F4, respectively. For milk aliquots 
(Figure  2B), M1 datasets reads were assigned to 35 bacterial 
and archeal phyla, all included in the 39 phyla identified in 
filter aliquots, whereas 18, 17, and 15 of the 35 phyla were 

identified in samples M2, M3, and M4, respectively. Similarly, 
71 classes, 156 orders, 340 families, 1,035 genera, and 3,030 
species were shared between all filter aliquots, while 22 classes, 
58 orders, 101 families, 134 genera, and 90 species were shared 
in all milk aliquots.

For filter aliquots, at all taxonomic levels, more taxa were 
discovered in F1 and F2 aliquots, corresponding to the filter 
aliquot treated with the MolYsis kit and sequenced to a depth 
of 60 M PE reads and to the untreated filter aliquot sequenced 
to a depth of 120  M PE reads; at lower taxonomic levels, 
including genus and species, more taxa were discovered in F2 
aliquot. For milk aliquots, at all taxonomic levels, more taxa 
were discovered in M1 aliquot, corresponding to the milk 
aliquot treated with the MolYsis kit and sequenced a depth 
of 60  M PE reads. Considering the sequencing depth, for both 
milk and filter aliquots, at each taxonomic levels, more taxa 
were detected in the untreated aliquots sequenced to a depth 
of 120  M PE reads than in the untreated aliquots sequenced 
to a depth of 60  M PE reads (Figure  2).

The relative abundance of reads assigned to the major 
bacterial phyla Proteobacteria, Actinobacteria, Firmicutes, and 
Bacteroidetes remained similar in filter and milk aliquots; on 
the other hand, the actual proportion was distinctly different. 
In particular, focusing on the two matrices processed, more 
reads were assigned to bacterial phyla in filter aliquots than 
in milk aliquots; besides, focusing on the different treatment, 
among both filter and milk aliquots, more reads were assigned 
to bacterial phyla in aliquots treated with MolYsis Kit (F1 
and M1, respectively) despite a reduced sequencing depth 
compared to untreated aliquots. Aliquots treated with NEBNext 
had the most similar bacterial pattern to the untreated aliquots 
for both milk and filter; this was also supported by hierarchical 
clustering, which clustered the taxonomic profiles of these two 
methods together, while untreated aliquots and MolYsis formed 
a separate cluster (Figure  3).

Even though the phylum-level distribution did not indicate 
major shifts in the bacterial community, in-depth analysis at 
genera-level suggested differences of the microbial profile between 
filter and milk aliquots, and, among them, between different 
treatments. As shown in Figure  4, Acinetobacter was the most 
abundant genus in filter aliquots (ranging from 51 to 64% in 

TABLE 1 | Metagenomic sequencing data before and after trimming, quality filtering, and host DNA removal.

Sample ID Sequencing  
coverage

Treatment Raw reads After quality trimming/
filtering (%)

Host DNA (%) Final reads

M1 60 M PE MolYsis 51,025,201 68.2 82.5 6,104,646
M2 120 M PE Untreated 112,962,895 97.9 99.4 645,372
M3 60 M PE NEBNext 54,526,194 97 99.3 368,920
M4 60 M PE Untreated 56,481,447 97.9 99.4 322,543
F1 60 M PE MolYsis 51,856,657 96.6 24.7 37,759,063
F2 120 M PE Untreated 124,198,751 98.1 91.5 10,396,311
F3 60 M PE NEBNext 58,018,631 97.9 87.3 7,264,000
F4 60 M PE Untreated 62,099,375 98.1 91.5 5,194,879

The table shows the number of original (raw) reads, the percentage of reads remaining after trimming and filtering, the percentage of host DNA, and the final number of reads used 
for the downstream analysis per sample.
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the different aliquots), while Pseudomonas in treated aliquots 
and Ralstonia in untreated aliquots were the most abundant 
genera in milk samples (approximately 37 and 20%, respectively). 
Other abundant genera in both filter and milk aliquots were 
Bacillus, Serratia, Moraxella, Corynebacterium, Enterobacter, and 
Lactococcus, with an overall prevalence of Gram-negative bacteria. 
Among filter aliquots, untreated aliquots with different sequencing 
depth and aliquot treated with NebNext kit had a similar 
distribution of the most abundant genera, with Acinetobacter 

(62–64%), Corynebacterium (3%), Bacillus (2%), Serratia (2%), 
Escherichia (2%), Pseudomonas (1–2%), and Enterobacter (1–2%) 
figuring among the most abundant genera with similar percentage. 
Few differences were detected in aliquots treated with MolYsis 
kit, with a lower percentage of Acinetobacter (51%) and a 
higher percentage of Chryseobacterium (5%), while other genera 
percentage remained similar. Among milk aliquots, untreated 
aliquots with different sequencing depth had a similar distribution 
of the most abundant genera, with Ralstonia (19–29%), 

A

B

FIGURE 2 | Venn diagrams representing the intersection of various microbiome taxonomic levels between filter aliquots datasets (A) and milk aliquots (B).
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Actinoalloteichus (16%), Sphingomonas (10%), Sphingobium (6%), 
Bacillus (5%), Enterobacter (2%), Acinetobacter (2%), and 
Lactococcus (2%) figuring among the most abundant genera. 

Aliquots treated with enrichment kits revealed a different 
distribution of the microbial population, with a higher percentage 
of Pseudomonas, Acinetobacter, Raoultella, and Moraxella in 

FIGURE 3 | Clustered bar chart based on hierarchical clustering of the Bray-Curtis distances of milk and filter aliquots visualized in Calypso after total sum scaling 
(TSS) normalization. The most common bacterial phyla obtained from different sample type, sequencing depth, and microbiome DNA enrichment methods are 
shown. The horizontal axis is the square root abundances of the identified taxa.

A B

FIGURE 4 | Relative proportion of microbial phyla and relative abundance of most abundant genera in filter (A) and milk (B) aliquots.
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FIGURE 5 | Venn diagrams representing the intersection of various classification levels of the resistome between datasets obtained in all filter aliquots and M1 milk 
aliquot.

M1 aliquot (aliquot treated with MolYsis kit) and a higher 
percentage of Cutibacterium, Acinetobacter, Moraxella, and 
Pseudomonas in M3 aliquot (aliquot treated with NebNext kit), 
while lower genera percentage remained similar (Figure  4).

Resistome Comparison
Of the host-filtered reads, approximately 130,000 reads (0,02% 
of total reads) were found to be  associated with the MEGARes 
AMR genes database across F1, F2, F3, F4, and M1 datasets; 
instead, no reads pass the gene fraction threshold to be considered 
AMR gene-associated hits in M2, M3, and M4 milk aliquots.

As shown by Venn diagrams (Figure  5), eight AMR classes 
were identified in all filter aliquots and in M1 milk aliquot; 
these included β-lactams; tetracyclines; sulfonamides; fosfomycin; 
aminoglycosides; multi-drug resistance; rifampin; and macrolide, 
lincosamide, and streptogramin (MLS). Besides, five more AMR 
classes were identified in filter aliquots, including cationic 
antimicrobial peptides, trimethoprim, phenicol, bacitracin, 
and glycopeptides.

At the lower AMR annotation levels, more AMR determinants 
were detected in filter aliquots. Indeed, 23 AMR mechanisms, 
47 AMR groups, and 53 AMR genes were shared between all 
filter aliquots but were absent in the milk aliquot; in F1 aliquot, 
corresponding to the aliquot of filter treated with MolYsis kit, 
11 additional AMR mechanisms, 85 more AMR groups, and 
113 more AMR genes were identified. Considering the sequencing 
depth, while the same number of AMR classes were detected 
in F2 and F4 aliquots, corresponding to the untreated aliquots 
sequenced to a depth of 120  M PE reads and 60  M PE reads, 
respectively, for lower classification levels, more mechanisms 
and genes were detected in F2 aliquot (Figure  5).

Rarefaction curves were generated to assess the saturation 
of samples for various AMR categories. As shown in Figure 6, 
all aliquots reached the asymptote or started to plateau up 
to the mechanism level; at the gene group and individual 
gene levels, only F1, F2, and M1 rarefaction curves reached 
their asymptotes, suggesting that saturation in sequencing 
was achieved.
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Similar to microbiome results, while the relative abundance 
of reads assigned to the major AMR determinants remained 
similar in filter aliquots, the actual proportion was distinctly 
different. Among both filter and milk aliquots, more reads 
were assigned to AMR determinants in aliquots treated with 
MolYsis kit (F1 and M1 aliquots); in particular, among milk 
aliquots, no reads pass the gene fraction threshold to 
be  considered AMR gene-associated hits in M2, M3, and M4 
aliquots. Focusing on the two matrices processed, more reads 
were assigned to AMR determinants and more classes, 
mechanisms, and genes were identified in filter aliquots than 
in milk aliquots.

As shown in Figure 7A, the relative proportion of sequences 
associated with different AMR classes remained similar in filter 
aliquots; multi-drug resistance (MDR; 21–28%), rifampin 
(23–30%), aminoglycosides (14–24%), tetracyclines (9–15%), 
sulfonamides (3–5%), MLS (3–7%), and β-lactams (3–5%) were 
the most prevalent AMR classes. The multidrug efflux pump 
mechanism was most abundant (21–38%) followed by 
aminoglycoside O-phosphotransferase (10–28%), tetracycline 
resistance ribosomal protection protein (5–8%), MDR regulator 
(7–8%), and sulfonamide-resistant dihydropteroate synthases 
(3–9%). APH(6) and APH(3’) were the most prevalent 
amynoglicoside resistance genes identified, followed by tetracycline 
resistance genes belonging to TetW group, multi-drug efflux 

pump genes belonging to SME group, and Sulfonamide-resistant 
genes belonging to SULII group (Figure  7B). Few differences 
in the relative abundance of reads associated with different AMR 
determinants were relieved in M1 milk aliquot; multi-drug 
resistance (43%) was the most abundant AMR class, followed 
by aminoglycosides (19%), rifampin (17%), tetracyclines (14%), 
β-lactams (4%), and MLS (3%). As for filter aliquots, multidrug 
efflux pump mechanism was the most abundant mechanism 
(53%) followed by aminoglycoside O-phosphotransferase (18%) 
and tetracycline resistance major facilitator superfamily (MFS) 
efflux pumps (10%). Tetracycline resistance genes belonging to 
Tet39 group and multi-drug efflux pump genes belonging to 
SME group and MexK, MexB, and MexF groups were the most 
prevalent resistance genes identified (Figure  7C).

DISCUSSION

As a result of the rapid evolution of NGS technologies, a 
wide range of approaches is now available for the characterization 
of microbial communities in food matrices; however, the whole 
metagenomic DNA needs to be  extracted and sequenced to 
gain useful information on the AMR genes content (Addis 
et  al., 2016). Previous NGS studies have investigated the milk 
microbiota by 16S metabarcoding and functional metagenomics 

A B

C D

FIGURE 6 | Comparison of resistome richness and coverage at the AMR class (A), mechanism (B), group of genes (C), and gene (D) levels using rarefaction 
curves.
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A B

C

FIGURE 7 | Relative abundance of AMR classes (A), mechanisms (B), and gene groups (C) across filter aliquots and M1 milk aliquot.

(Oikonomou et  al., 2012; Addis et  al., 2016; Alexa Oniciuc 
et  al., 2020), while literature references on the application of 
shotgun metagenomics sequencing are limited to the evaluation 
of the microbiota in human milk (Ward et  al., 2013; Jiménez 
et  al., 2015). Thus, here, we  compared the effectiveness  
of two different matrices, bulk milk and milk filter, two 
commercially available bacterial enrichment kits, and two 
different sequencing depths to investigate the microbiome and 
the resistome of a milk production environment with a 
WMS approach.

The low relative abundance of bacterial DNA presents a 
major challenge when using WMS to investigate the microbiome 
and the resistome in host-derived samples (Thoendel et  al., 
2016). This concept can also be  applied to food matrices of 
animal origin, such us milk and dairy products, often resulting 
in more than 90% of host genome-aligned reads (Marotz et al., 
2018). In our study, the milk sample and the in-line milk 
filter revealed a different proportion of host DNA, with a 
higher percentage of reads associated to the bovine genome 

in milk aliquots than in filter aliquots, regardless of sequencing 
depth and enrichment treatment. As shown in previous studies, 
high amounts of host DNA reduce the sensitivity of WMS 
on taxonomic and AMR gene content profiling, in particular 
for low abundant species of bacteria and AMR determinants 
(Thoendel et  al., 2016; Pereira-Marques et  al., 2019). This is 
consistent with the results of our study, in which more taxa 
and more AMR determinants were detected in filter than in 
milk aliquots at each classification level; in particular, only 
one milk aliquot revealed the presence of AMR genes, highlighting 
the significant effect of a massive amount of host DNA on 
the resistome profiling.

Considering the sequencing depth, the deep sequencing of 
120  M PE reads revealed more microbial taxa than the 0.5x 
sequencing, in both milk and filter untreated aliquots; similar 
to microbiome results, less AMR determinants were detected 
in the sub-sampled filter aliquot, except for the highest AMR 
annotation level. The significant effect of sequencing depth on 
the characterization of the microbiome and the resistome has 
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been demonstrated in previous studies applied on different 
matrices, such as environmental samples and stool samples 
(Zaheer et  al., 2018; Gweon et  al., 2019). In our study, the 
results obtained in milk and milk filter are consistent with 
previous works, though referring to food and food associated 
matrices. The AMR gene content and low abundant species 
of bacteria appeared to require a high sequencing depth to 
be fully characterized in untreated samples. However, the lowest 
sequencing depth applied appeared to be  as performing as 
the highest sequencing depth on aliquots treated with microbial 
DNA enrichment methods.

In this context, we  compared the effectiveness of two 
commercially available kits in removing the host DNA. Whether 
testing milk or milk filters, both techniques reduced the 
percentage of bovine genome associated reads; however, the 
MolYsis kit was much more effective than the NEBNext kit, 
with a reduction in percentage of host associated reads from 
99.4 to 82.5% and from 91.5 to 24.7% in milk and filter 
aliquots, respectively. As expected, the reduction of host DNA 
was associated with a higher detection of microbial taxa and 
AMR determinants; in particular, among milk aliquots, AMR 
genes were detected only in the aliquot treated with MolYsis 
kit. Aliquots treated with NEBNext kit revealed a minor 
reduction of the host associated reads, with few differences 
in terms of AMR determinants and microbial taxa identified 
compared to untreated aliquots. The promising results of 
MolYsis kit on milk and milk filters are consistent with some 
limited studies regarding its application on clinical human 
samples, from blood to saliva, periodontal samples, and synovial 
and cerebrospinal fluids samples (Gebert et  al., 2008; Horz 
et  al., 2008, 2010; McCann and Jordan, 2014; Hasan et  al., 
2016; Thoendel et  al., 2016; Ivy et  al., 2018). On the other 
hand, the limited effectiveness of NEBNext kit has been 
described in previous studies on clinical human samples, 
probably due to the requirement of high molecular weight 
intact DNA input (Thoendel et  al., 2016; Heravi et  al., 2020). 
In our study, the initial centrifugation steps applied to milk 
aliquots and the filter homogenization might have caused 
shearing of high molecular weight DNA, limiting the efficacy 
of NEBNext kit (Heravi et  al., 2020).

As any steps of sample processing and DNA isolation, 
enrichment methods can introduce some biases: Indeed, bacteria 
with weak or absent cell walls could be  lysed and removed 
by these protocols, with the subsequent generation of an 
extracted DNA which does not accurately reflect the genomic 
content of the microbial community from which it was derived. 
Though microbial DNA enrichment kits have been applied on 
different clinical samples, the effect of this approach on mixed 
microbial communities in terms of the loss of microbial DNA 
has been scarcely investigated (Heravi et  al., 2020); besides, 
there is a lack of literature on the application of these methods 
on food matrices. In our study, at higher classification levels, 
bacterial community composition of filter and milk aliquots 
was similar between untreated and enriched DNA aliquots 
(Figure  3). Based on the WMS analysis, Proteobacteria, 
Actinobacteria, Firmicutes, and Bacteroidetes phyla accounted 
for most of the taxon assigned OTUs identified in all the 

aliquots, while multi-drug resistance, rifampin, aminoglycosides, 
and tetracyclines were the most abundant AMR classes. However, 
at lower annotation levels, few variations were identified in 
aliquots treated with microbiome DNA enrichment methods, 
with NEBNext resulting in a more similar taxonomic profile 
to the untreated aliquots (Figure  7). These variations might 
be  explained by the different enzymes and buffers used to 
lyse the host cells and to degrade the released DNA and by 
the different DNA purification procedures used; besides, variation 
in cell lysability and genome GC content of the different bacteria 
present in complex samples might result in the underestimation 
or overestimation of particular microbial taxa (Heravi et  al., 
2020). In this regard, the reduction of the relative abundance 
of some Gram-negative bacteria in milk and filter aliquots 
treated with microbial DNA enrichment methods is in line 
with the expected outcomes, though these results reflect possible 
biases in the microbial profile and in the AMR genes content.

The investigation of the microbiome performed in our study 
revealed a high proportion of sequences assigned to Gram-
negative bacteria in both filter and milk aliquots, with taxonomic 
assignments depending on the sample type; our results are 
consistent with what emerged from some previous studies 
describing the microbiome of dairy products and dairy processing 
environments, as well as the minor proportion of sequences 
assigned to lactic acid bacteria compared to data referring to 
raw milk cheeses (Alexa Oniciuc et  al., 2020). The role of 
commensal and pathogenic Gram-negative bacteria as vectors 
of AMR determinants in raw bulk tank milk has already been 
investigated and proven (Straley et  al., 2006). In this context, 
regarding the AMR genes screening, this study shows that the 
milk production environment might be  a rich reservoir of 
AMR determinants, with the detection of different genes 
conveying multi-drug resistance and resistance to rifampin, 
aminoglycosides, tetracyclines, sulfonamides, macrolides, 
lincosamides, streptogramins, and β-lactams. The possibility to 
uncover a wide range of determinants involved in AMR without 
the isolation and culture of bacteria must be  considered 
particularly valuable, and especially relevant for food safety. 
However, as proved in this pilot study, choosing the right 
sample type and sample pre-treatment has a critical importance 
to correctly describe the resistome of food or food-related 
sample rich in host-DNA.

In summary, considering the different matrices, sequencing 
depths and microbial enrichment methods evaluated in this study, 
milk filters treated with MolYsis kit and sequenced to a depth 
of 60  M PE reads appeared to be  the more suitable samples 
to obtain a deep taxonomic and AMR gene content profiling 
of the milk production environment evaluated; nevertheless, the 
increasing of costs and time spent manipulating the samples 
must be  taken into account. The analysis of milk filters to 
investigate the microbiome and to identify the presence of 
foodborne pathogens or AMR genes has already proved to be  a 
useful tool (Murphy et  al., 2005; Sonnier et  al., 2018; Dell’Orco 
et  al., 2019). In-line filters can filter milk from approximately 
150 cows, catching debris, large particles of organic material, 
and foreign objects. Therefore, the milk filters’ microbiome might 
include the presence of unexpected bacteria due to fecal 
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contamination during the milking process and dispersal of cells 
from biofilms present in milking systems, thus reflecting the 
complex and rich milk production environment microbiome 
(Kim et  al., 2018). Though retaining foreign objects, filter pores 
are too big to prevent bacteria to enter the bulk tank milk; as 
a consequence, the microbiome and the resistome of milk filters 
can be  considered representative of the microbiome and the 
resistome of the milk production environment (Murphy et al., 2005).

To our knowledge, this is the first study to compare the 
effectiveness of sequencing depths and host-DNA removal kits 
on the characterization of the microbiome and the resistome 
of bulk tank milk and milk filters using a WMS approach. 
Due to the limit posed by the small number of samples, our 
study must be  considered a pilot study; the results of our 
work are consistent with the results of previous researches 
applied on clinical samples and can assist in the design of 
WMS experiments on food matrices with a high content of 
host DNA, highlighting the importance of sample type, microbial 
enrichment method, and sequencing depth to profile the 
taxonomic and the AMR gene content.
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