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As the world faces the challenge of the COVID-19 pandemic, it has become an urgent 
need of the hour to understand how our immune system sense and respond to RNA 
viruses that are often life-threatening. While most vaccine strategies for these viruses are 
developed around a programmed antibody response, relatively less attention is paid to 
our innate immune defenses that can determine the outcome of a viral infection via the 
production of antiviral cytokines like Type I Interferons. However, it is becoming increasingly 
evident that the “cytokine storm” induced by aberrant activation of the innate immune 
response against a viral pathogen may sometimes offer replicative advantage to the virus 
thus promoting disease pathogenesis. Thus, it is important to fine tune the responses of 
the innate immune network that can be achieved via a deeper insight into the candidate 
molecules involved. Several pattern recognition receptors (PRRs) like the Toll like receptors 
(TLRs), NOD-like receptors (NLRs), and the retinoic acid inducible gene-I (RIG-I) like 
receptors (RLRs) recognize cytosolic RNA viruses and mount an antiviral immune response. 
RLRs recognize invasive viral RNA produced during infection and mediate the induction 
of Type I  Interferons via the mitochondrial antiviral signaling (MAVS) molecule. It is an 
intriguing fact that the mitochondrion, one of the cell’s most vital organelle, has evolved 
to be a central hub in this antiviral defense. However, cytokine responses and interferon 
signaling via MAVS signalosome at the mitochondria must be tightly regulated to prevent 
overactivation of the immune responses. This review focuses on our current understanding 
of the innate immune sensing of the host mitochondria by the RLR-MAVS signalosome 
and its specificity against some of the emerging/re-emerging RNA viruses like Ebola, Zika, 
Influenza A virus (IAV), and severe acute respiratory syndrome-coronavirus (SARS-CoV) 
that may expand our understanding for novel pharmaceutical development.

Keywords: mitochondria, innate immunity, mitochondrial antiviral signaling, retinoic acid inducible gene-I,  
RNA virus, cytokine storm

INTRODUCTION

Mitochondrion, also known as the “powerhouse” of the cell, is critically involved in cellular respiration 
and ATP synthesis. Apart from its canonical role in cellular energetics, it orchestrates cell fate 
through the process of apoptosis and mitophagy, thus maintaining cellular homeostasis (Tsujimoto 
and Shimizu, 2007; Murphy, 2009; Friedman and Nunnari, 2014; Mishra and Chan, 2014; Khan 
et  al., 2015; Sliter et  al., 2018). In recent years, several studies have pinpointed the crucial role of 
mitochondria in stimulating innate immune responses, as well as modulating parts of the adaptive 
immune response (Walker et  al., 2014; Weinberg et  al., 2015; Mills et  al., 2017). The evolutionary 
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conserved pattern recognition receptors (PRRs), expressed by most 
immune effector cells recognize conserved sequence within the 
pathogen and aids in their early detection and containment (Green 
et  al., 2016). The Toll like receptors (TLRs) are a class of PRRs 
that recognize either dsRNA (TLR3) or ssRNA (TLR7/8) virus 
(Lester and Li, 2014; Hartmann, 2017; Miyake et  al., 2018). The 
NOD-like receptor (NLR) family of PRRs is cytoplasmic receptors 
that form a multiprotein complex called “inflammasome” involved 
in the production of the pro-inflammatory cytokines IL1β and 
IL18 (He et  al., 2016; Hughes and O’Neill, 2018). Another class 
of PRRs, the RIG-I like receptor (RLR) family involving retinoic 
acid inducible gene-I (RIG-I), melanoma differentiation-associated 
protein-5 (MDA-5), and laboratory of genetics and physiology 2 
(LGP2) are cytoplasmic sensors of non-self and viral RNA (Vazquez 
and Horner, 2015; Sadler, 2017; Chow et  al., 2018). A few of 
these receptors have been shown to augment mitochondria mediated 
antiviral innate immune responses via stimulation of Type 
I Interferon. Evolutionary conserved signaling intermediate in Toll 
(ECSIT) pathway, a component of the mitochondrial complex I, 
has been shown to enhance TLR7 responses via the mitochondrial 
adaptor protein tumor necrosis factor receptor (TNFR) associated 
factor 6 (TRAF6; Carneiro et  al., 2018). NLRP3 has been shown 
to form the active inflammasome complex at the mitochondria 
by associating with the adaptor protein mitochondrial antiviral 
signaling protein (MAVS; Dorn, 2012; Haneklaus and O’Neill, 
2015; Yabal et  al., 2019). However, of special interest is the first 
identified RLR, RIG-I, which recognizes viral RNA that has a 
triphosphate moiety at its 5' end and has been shown to be targeted 
by some of the deadliest form of the RNA viruses (Kell and 
Gale, 2015; Dai et  al., 2018). Following viral recognition, RIG-I 
binds to MAVS located on the outer surface of healthy intact 
mitochondria leading to interferon production and activation of 
the NFκB pathway (Kawai and Akira, 2007; Okamoto et al., 2018). 
This review speculates whether subversion of early viral sensing 
via the RIG-I/MAVS pathway could determine viral persistence 
within the host. Further, aberrant activation of the MAVS 
signalosome by the RLRs could cause hyperstimulation of the 
inflammatory responses and hence this arm of the innate immune 
defense could serve as a potential therapeutic target to combat 
highly communicable infectious RNA viruses.

The “Flu pandemic” over the last century has drawn particular 
attention to enveloped RNA viruses, a characteristic feature 
that empowers the virus with greater adaptability and high 
mutagenic potential, a key strategy in the evasion of host 
immune response and increased survivability within the host. 
Here, we  systematically review our current understanding of 
the conserved host RIG-I/MAVS pathway and its regulation 
in some of the emerging/re-emerging RNA virus infections 
that include Ebola virus (EBOV) belonging to Filoviridae family, 
Zika virus (ZIKV) belonging to Flaviviridae family, Influenza 
A virus (IAV) belonging to Orthomyxoviridae family, and severe 
acute respiratory syndrome-coronavirus (SARS-CoV) belonging 
to Coronaviridae family. These viruses have been known to 
cause deadly outbreaks across the world and it is important 
to analyze whether key sensors of RNA viruses like the RIG-I/
MAVS pathway are important targets of these viruses either 
to suppress of hyper-activate the immune responses.

MAVS SIGNALOSOME IN ENVELOPED 
RNA VIRUS

Mitochondria play an important role in antiviral immunity by 
eliciting and maintaining the RLR/MAVS signaling cascade. RLRs 
are soluble RNA helicase type receptors containing N-terminal 
tandem of caspase activation and recruitment domains (CARDs) 
and a DECH-helicase domain required for RNA binding and 
ATP hydrolysis (Kao et  al., 2015; Brisse and Ly, 2019). All the 
three known RLRs (i.e., RIG-I, MDA-5, and LGP-2) are very 
efficient in distinguishing between cellular RNAs from those 
produced by RNA viruses (Züst et  al., 2011). Upon recognition 
of viral RNA, one of the widely studied RLRs, RIG-I, binds to 
the downstream adaptor protein MAVS (also known as IPS-1, 
VISA, Cardif) at the mitochondria via CARD-CARD interaction 
(Liu et al., 2017). MAVS is an integral protein of the mitochondrial 
outer membrane that binds to the mitochondrial membrane 
via its C-terminal domain and acts as a key determinant of 
the antiviral signaling cascade (Xu et  al., 2014). Following its 
interaction with RIG-I, MAVS bind with several kinases and 
other signaling molecules including TRAF3 and 6, TNFR associated 
death domain (TRADD), and TRAF associated NF-ĸB activator 
(TANK1) to form a large multimeric complex called the “MAVS 
signalosome” (Biacchesi et al., 2009; Vazquez and Horner, 2015). 
This structure ultimately leads to the activation of the interferon 
regulatory factor 3 (IRF3) and phosphorylation of IKKε to 
stimulate the NF-ĸB pathway leading to transcriptional activation 
of Type I Interferons and other inflammatory cytokines (Pothlichet 
et  al., 2013; Refolo et  al., 2020). Interferons in turn stimulate 
a plethora of interferon stimulated genes (ISGs) that aid in the 
containment of the viruses as well crosstalk with the adaptive 
immune response. Thus mitochondrial targeting via the MAVS 
signalosome by the viral proteins upon their entry appears to 
be  a central executioner of antiviral responses as summarized 
in Table  1. In a continuous war with the host, viruses have 
evolved strategies to avoid MAVS mediated innate immune 
activation. For example, MAVS is expressed only on the surface 
of intact mitochondria and several studies suggest that RNA 
viruses alter mitochondrial metabolism and homeostasis that 
ultimately lead to mitochondrial damage and blocking interferon 
response via MAVS (Lei et  al., 2009; Zhao et  al., 2012; Wang 
et  al., 2013; Choi et  al., 2017; He et  al., 2019). Over centuries, 
it has been found that enveloped RNA virus causes persistent 
human infections like the current COVID-19 pandemic (Schoeman 
and Fielding, 2019). Whether the viral envelope provides additional 
arsenal to the RNA viruses in the suppression of the protective 
interferon response via the MAVS signalosome is not known yet.

FINE TUNING INTERFERON RESPONSES 
AT THE MITOCHONDRIA

Following viral infection, our cellular defense machinery systematically 
induces a number of cytokines (both pro‐ and anti-inflammatory) 
that, in certain instances, may lead to hyperstimulation of the 
immune response in a positive feedback loop (Geoghegan et al., 2016; 
Shrivastava et  al., 2016; Orzalli and Kagan, 2017). This leads to 
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a catastrophic damage to the surrounding cells and the side effects 
of this manifests itself in some of the symptoms like fever, fatigue, 
nausea along with multiple organ failure (Chen et  al., 2020; 
Hackbart et  al., 2020). This has been observed not only in 
COVID-19 patients but also in case of other strains of the Flu 
virus, the MERS-CoV, and SARS-CoV1 leading to severe respiratory 
distress and increased mortality rates (DeDiego et al., 2014; Nieto-
Torres et  al., 2015; Liang et  al., 2020). Hence, the question 
automatically arises is whether mitochondria can fine tune this 
response to prevent such overreaction of the immune cells.

Since mitochondria provide the first line of defense against 
viral infection, signals converging at the mitochondria need to 
be  tightly regulated to prevent bystander tissue damage within 
the host. One such checkpoint is provided by the NLR, NLRX1 

which prevents overactivation of the immune response by its 
direct competition with RIG-I at its MAVS binding site and 
antagonizing Type I  Interferon responses (Allen et  al., 2012; 
Qin et  al., 2017). Further, ubiquitination plays an important 
immunomodulatory role in the MAVS-signalosome (Gack et al., 
2007, 2009). The ubiquitin ligase, tripartite motif containing-25 
(TRIM-25), mediates Lys63 polyubiquitination of RIG-I thus, 
enabling its binding with MAVS for antiviral signaling. It has 
been shown that TRIM-25 also ubiquitinates MAVS at Lys7 
and Lys10 inducing its proteolysis and dissociating it from RIG-I 
to halt the antiviral signaling cascade (Castanier et  al., 2012). 
Mitophagy induction by reactive oxygen species is another strategy 
for MAVS degradation at the damaged mitochondria which is 
sometime adopted by certain viruses to dampen the host immune 
response (Zhang et al., 2018; He et al., 2019). These observations 
suggest that stimulators of the MAVS signalosome must work 
in concert with the negative regulators to strike a balance between 
activation and deactivation in a timely manner and have been 
summarized in Figure 1. However, extensive studies are required 
to find candidate molecules that may act to dampen the overzealous 
immune activation following an initial protective response via 
mitochondrial sensing (D’Elia et  al., 2013; Cusabio, 2020).

INSIGHT INTO REGULATION OF MAVS 
SIGNALOSOME BY RNA VIRUSES

Ebola Virus
The EBOV that causes Ebola Virus Disease (EVD) is an emerging 
pathogen and has an almost 90% mortality rate. Although it 
is mostly endemic to West Africa with the Democratic Republic 
of Congo (DRC) being the hardest hit region over the past 
decade (2013–2019), it remains a major health concern worldwide 
due to its high potential to infect other species and the 
unavailability of a viable therapy till date (Kaner and Schaack, 
2016; Chowell et  al., 2019; Ebola virus disease, n.d.). EBOV 
is a non-segmented enveloped (−) single-stranded RNA virus 
that initially infects the innate immune cells such as macrophages 
(Structure of Ebola Virus, n.d.). However, the virus has the 
remarkable ability to infect a wide variety of cells that enables 
its rapid spread to different tissues. EBOV infection is characterized 
by hemorrhagic fever accompanied by massive cytokine storm, 
cytolytic damage, vascular leakage in liver, lungs, and kidneys, 
and ultimately death (Yu et  al., 2012; Falasca et  al., 2015).

The role of the viral sensor RIG-I and the subsequent 
activation of the MAVS pathway in determining the outcome 
of EBOV infection has not been thoroughly investigated. A 
study on mouse adapted EBOV (MA-EBOV) infection 
demonstrated that IFN-dependent and independent MAVS 
signaling takes place in an organ specific manner, where activation 
of monocytes and subsequent trafficking to the spleen occurs 
in a MAVS-dependent manner (Green et al., 2016; Dutta et al., 
2017). EBOV mitigates the host immune response by using 
two viral IFN-antagonists, VP24 and VP35. VP35 has been 
shown to suppress the IFN-pathway by antagonizing the function 
of interferon regulatory factor (IRF) activating kinases IKKε 
and TANK binding kinase-1 (TBK-1; Messaoudi et  al., 2015). 

TABLE 1 | Summary of viral proteins and their targets in mitochondria mediated 
antiviral response.

Virus Viral 
proteins

Targets in mitochondrial 
functioning

References

Ebola virus VP24 Inhibits RIGI pathway: binds 
karyopherin 𝛼1 and prevents 
localization of p-STAT in 
nucleus

(Reid et al., 2006;  
He et al., 2017)

VP35 Inhibits RLR/MAVS signaling: 
binds PACT, binds dsRNA and 
prevents recognition by RIGI, 
inhibits IKK𝛆/TBK1 complex, 
inhibits TNF𝛼 mediated 
activation of PKR, causes 
SUMOylation of IRF7

(Cárdenas et al., 2006; 
Feng et al., 2007; 

Chang et al., 2009; 
Prins et al., 2009; 
Luthra et al., 2013)

Zika virus NS4B Induces mitochondrial 
elongation: inhibits activation 
of DRP1; disrupts MAVS 
signaling: inhibits 
phosphorylation of TBK1

(Keystone Symposia, 
n.d.; Wu et al., 2017)

NS4A Inhibits MAVS signaling: binds 
CARD domain of MAVS

(Ma et al., 2018)

NS5 Restricts MAVS signaling: 
inhibits phosphorylation of 
IRF3 by binding TBK1, binds 
and degrades STAT2

(Grant et al., 2016;  
Lin et al., 2019)

NS3 Binds and degrades MAVS (Li et al., 2019)
Influenza A 
virus

PB2 Binds and inhibits MAVS (Graef et al., 2010)
PB1-F2 Binds and inhibits MAVS; 

induces mitophagy: interacts 
with TUFM and MAP1 LC3B/
LC3B; disrupts MMP and 
induces apoptosis: binds 
VDAC1 and ANT

(Zamarin et al., 2005; 
Varga et al., 2012; 

Wang et al., 2020b)

NS1 Inhibits RIG1 activation: 
degrades deubiquitylase 
OTUB1, binds TRIM25, binds 
CARD of RIG1

(Gack et al., 2009; 
Jahan et al., 2019; 
Jureka et al., 2020)

SARS-CoV ORF3b Translocates to mitochondria 
and inhibits RIG1/MAVS 
signaling; inhibits 
phosphorylation of IRF3

(Kopecky-Bromberg 
et al., 2007; Freundt 

et al., 2009)

Nsp10 Induces ROS production: 
binds NADH 4 L subunit and 
cytochrome oxidase II; 
depolarizes inner mitochondrial 
membrane

(Li et al., 2005)
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Further, VP35 has been shown to inhibit RIG-activation via 
binding to transiently produced dsRNA during EBOV infection, 
thus preventing viral sensing and also by binding to the RIG-I 
ATPase activator PACT (Luthra et  al., 2013). In an in vitro 
study, VP24 has been shown to prevent IFN-gene expression 
by targeting the RIG-I/MAVS pathway. It works downstream 
of the RIG-I/MAVS pathway by binding karyopherin 𝛼1 and 
inhibiting p-STAT translocation (Reid et  al., 2006). Further 
studies are required to understand how EBOV suppress early 
innate immune sensing to develop antiviral strategies.

Zika Virus
Zika virus (ZIKV) is a re-emerging mosquito borne pathogen 
belonging to the genus Flavivirus. However, apart from mosquito-
transmission, several other modes of ZIKV infection have 
been reported and the most striking is the mother to fetus 
transmission via the transplacental route (Plourde and Bloch, 
2016). Although the first document of human infection by 
ZIKV occurred in 1954 and was associated with mild flu-like 
symptoms, a recent epidemic in French Polynesia during 
2013–2014 that subsequently spread to South and Central 
America caught the world’s attention with rising symptoms 
of microcephaly in newborns (Song et al., 2017; Haby et al., 2018). 

The re-emergence and the rising cases of ZIKV infection with 
higher infectivity are poorly understood and no clinically 
approved drug or vaccine is available till date.

ZIKV is a non-segmented enveloped (+) single stranded 
RNA virus that has shown to co-evolve with the host and 
strongly antagonizes the host antiviral IFN-responses. Several 
non-structural proteins of ZIKV like NS1, NS2B/3, NS4A, 
NS4B, and NS5 have been shown to antagonize IFN-responses 
(Wu et al., 2017; Ding et al., 2018; Zheng et al., 2018; Lundberg 
et  al., 2019; Zhao et  al., 2019). Studies have shown a direct 
interaction of the ZIKV NS4 with the N-terminal CARD domain 
of MAVS at the mitochondria (Ma et  al., 2018). This prevents 
binding of RIG-I to MAVS and downstream activation of the 
interferon responses. It has been further shown that ZIKV 
NS4 specifically inhibits RIG-I mediated interferon responses 
and not that mediated by TLRs (Ma et  al., 2018; Hu et  al., 
2019; Schilling et  al., 2020). It is also known to disrupt 
mitochondrial dynamics which aids in infection (Keystone 
Symposia, n.d.). Further, the non-structural protein NS3 have 
been shown to target MAVs to proteasomal degradation via 
K48 linked polyubiquitination and subsequent downregulation 
of IFNβ pathway (Li et  al., 2019). Further, these responses 
vary among the different ZIKV strains isolated from different 

FIGURE 1 | Overview of antiviral response at the mitochondrial antiviral signaling (MAVS) signalosome. Enveloped RNA virus can enter the cell via membrane fusion 
or endocytosis (Step 1). Following entry, the “ppp” group at the 5' end of the viral genome is recognized by the core domain of the retinoic acid inducible gene-I 
(RIG-I) like receptor (RLR) helicase RIG-I (Steps 2, 3, and 4). The activated RIG-I molecule binds to MAVS via caspase activation and recruitment domain (CARD)-
CARD interaction at the N-terminal domain of MAVS leading to the formation of the “MAVS Signalosome” (Step 5). Two different signals can emanate from this 
signalosome, the first one leads to the activation of interferon regulatory factor 3/7 (IRF3/7), transcriptional activation of Type I Interferons and stimulation of interferon 
stimulated genes (ISGs; Steps 6 and 7) leading to a protective antiviral immunity. The second signal phosphorylates IκB via IKK and releases NFκB that translocates 
to the nucleus and results in the transcriptional activation of pro-inflammatory cytokines (Steps 8, 9, and 10). Events at this step needs to be finely tuned as 
hyperstimulation of the responses may lead to a “cytokine storm” that aids in viral persistence within the infected cells. To fine tune the hyperstimualtion of the 
MAVS-signalosome NLRX1 antagonizes IFN signaling by binding to MAVS that may act as a brake on the hyperactive immune response. COX 5B suppress ROS 
production via suppressing MAVS aggregation and the proteasomal subunit PSMA-7 inhibits MAVS by enhancing its proteasomal degradation. Further, PCBP1, 2 
and Smurf2 similarly degrade MAVS via K48 linked polyubiquitination and inhibit Type I Interferon production (Step 11).
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geographical locations. ZIKV strains from Brazil and Uganda 
showed delayed activation of the innate immune responses 
mediated by RIG-I as compared to the milder Cambodia strain 
that correlates with their pathological outcomes (Esser-Nobis 
et  al., 2019). Studies using these different strains in lung A549 
cells revealed the important role of RIG-I sensing in early 
innate immune response and induction of Type I  Interferon 
responses (Strottmann et  al., 2019). However, the role of this 
pathway in the host tropism of different isolates of ZIKV is 
yet to be  fully uncovered that may provide a deeper insight 
into the importance of early viral sensing and productive 
IFN-response via the MAVS signalosome in ZIKV clearance.

Influenza A Virus
Influenza A virus (IAV) is one of the four types of influenza 
virus and the only influenza virus sub-type that has been 
known to cause global pandemic. Based on the presence of 
two surface proteins, hemagglutinin (HA) and neuraminidase 
(N), IAV can be  sub-categorized into different strains (Bouvier 
and Palese, 2008). The 1918 Spanish Flu and the pandemic 
of 2009 were associated with the H1N1 subtype of IAV. H1N1 
mostly affect children and young and middle-aged adult contrary 
to other flu where it affects mostly the older people.
The Influenza virus contains eight segmented (−) single stranded 
RNA and affects the upper respiratory tract epithelial cells 
causing the “seasonal” flu or fatal pulmonary disorder in extreme 
conditions (Shao et  al., 2017). The polymeric basic 2 (PB2) 
subunit of the RNA polymerase complex is a major pathogenic 
determinant of seasonal IAV (Liu et  al., 2019). Further, an 
intact mitochondrial membrane potential (MMP) is required 
for MAVS-mediated interferon production and PB2 might 
indirectly affect MAVS function by altering MMP (Varga et al., 
2012). PB2 protein of pdm/09 variant of IAV carrying T5881 
mutation has been shown to suppress MAVS-mediated interferon 
signaling more robustly that could potentially contribute to 
its increased pathogenicity. It has been demonstrated that PB2 
is imported into the mitochondrial matrix and associates with 
MAVS at the mitochondria that correlates with reduced IFNβ 
production in vitro (Graef et  al., 2010; Long and Fodor, 2016). 
Besides PB2, other proteins of IAV like the non-structural 
protein 1 (NS1) can block the RIG-I mediated induction of 
IFNβ by inhibiting TRIM25 (Gack et al., 2009). Inflammasome 
formation, a complex of NLRP3/ASC/Caspase-1, that is required 
for the production the inflammatory cytokine IL1β, is triggered 
by IFNβ in a positive feedback loop in primary lung epithelial 
cells and was shown to be mediated by RIG-I via its interaction 
with MAVS/TRIM2/Riplet (Mibayashi et  al., 2007; Pothlichet 
et al., 2013). TRIM25 and Riplet positively regulates the antiviral 
responses mediated by RIG-I and the NS1 protein of highly 
pathogenic 1918 virus binds to RIG-I and TRIM25 to antagonize 
IFNβ activation (Gack et  al., 2009; Koliopoulos et  al., 2018). 
This correlated with the reduced induction of both Type 
I Interferon, as well as IL1β production by NS1 in IAV infected 
ferrets. Further RNAse L, a ubiquitous endonuclease for single 
stranded RNA, enhances NLRP3 activation and complex 
formation with the DExD/H-box helicase, DHX33, and MAVS 
in bone marrow derived dendritic cells and THP-1 derived 

macrophages (Chakrabarti et  al., 2015). However, this antiviral 
response appears to be  a double-edged sword as heightened 
inflammation and production of pro-inflammatory cytokines 
is often associated with increased morbidity following IAV 
infection. One of the NLRs, NLRX1 was shown to inhibit the 
production of antiviral cytokines and reduce lung pathology 
in IAV virus infected mice via its direct interaction with the 
RIG-I/MAVS pathway (Allen et  al., 2011). Thus, NLRX1 at 
the mitochondria could provide a brake on the cytokine storm 
induced by IAV that has often been associated with the higher 
mortality rates during influenza virus pandemic.

SARS-Coronavirus
Coronavirus is emerging pathogens that has serious life-
threatening impact on human health. Severe acute respiratory 
syndrome-related coronavirus (SARS-CoV1) caused a major 
outbreak of respiratory disease in 2002–2004 (SARS | Home 
| Severe Acute Respiratory Syndrome | SARS-CoV Disease | 
CDC, n.d.). The current pandemic which has bypassed the 
death rate of all previous pandemic of the last century is 
caused by a novel subtype of SARS-CoV and has been named 
SARS-CoV2 causing corona virus disease 19 (COVID-19). 
Coming from zoonotic reservoir, SARS-CoV shows extreme 
adaptivity through species jump and is a major health concern 
worldwide with the probability of new strains with heightened 
pathogenic potential emerging every year. SARS-CoV is an 
enveloped (+) single stranded RNA virus and in human host, 
it mainly infects the ciliated epithelium and alveolar type II 
pneumocytes (de Wit et  al., 2016). Being mostly asymptomatic 
in the early stages of infection with flu like symptoms, it can 
quickly escalate to acute respiratory distress syndrome (ARDS) 
and multiorgan failure (Cameron et al., 2008; Yin and Wunderink, 
2018). A similar manifestation has also been observed in 
COVID-19 patients, where cytokine storm has been shown to 
result in ARDS-like symptoms. SARS-CoV-2 can efficiently 
alter the cytokine profile by promoting the production of 
pro-inflammatory genes and blocking the stimulation of 
interferon genes based on their mode of infectivity (i.e., severe 
or non-severe form of SARS; Mahmudpour et al., 2020; Ratajczak 
and Kucia, 2020; Wang et  al., 2020a; Yap et  al., 2020). An 
arsenal of viral proteins is dedicated for this process and the 
host mitochondria play a pivotal role in the early response 
to infection (Maier et al., 2015). SARS-CoV-1 proteins, ORF-3b 
and nsp-10, show direct mitochondrial association where ORF-3b 
co-localizes with mitochondria specific markers and nsp-10 
specifically interacts with NADH 4  L subunit and cytochrome 
c oxidase that affects mitochondrial function (Li et  al., 2005; 
Yuan et  al., 2006). It can also inhibit the MAVS downstream 
signaling by directly binding to STAT1 and inhibiting the 
TBK1/IKK𝛆 signaling. Further, the SARS-CoV-1 envelope protein 
has been shown to activate inflammasome formation and 
stimulate the production of pro-inflammatory cytokines like 
IL6 and TNF which makes it an attractive target for future 
studies (Nieto-Torres et  al., 2014). Hence, studies on SARS-
CoV-1 points toward the relevance of mitochondria mediated 
innate immune signaling pathway that may be  further 
extrapolated to SARS-CoV-2 infection (Singh et  al., 2020).  
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No study has reported the role of the mitochondrial innate 
immune sensing in COVID-19 pathogenesis that may provide 
effective strategies to limit viral replication within the host 
and the generation of a protective adaptive immune response.

CONCLUSION

RNA viruses have become important etiological agents of emerging 
pathogens in humans constituting a major percentage of all 
human emerging diseases including those induced by bacteria 
or parasites. The past decade has seen several cases of pandemics 
arising due to RNA viruses originating from wild life reservoirs 
like the Ebola, H1N1 influenza, SARS, and MERS and the recent 
COVID-19 pandemic. The RNA polymerases of these viruses 
often lack proofreading activity increasing their mutation rates 
during the replicative stage of the virus. This comes as a severe 
challenge in developing vaccine strategies and it is important 
to understand conserved host immune responses which may 
help combat a wide range of these RNA viruses.

The innate immune response, which provides the first line 
of defense against these RNA viruses via the production of 
Type I  Interferon, is often targeted by the viruses for the 
successful establishment of an infection. However, priming of 
IFN-responses prior to an infection can be  a double edged 
sword as cytokine storm following hyper-stimulation of the 
immune responses and the over production of pro-inflammatory 
cytokines have been shown to be  associated with diseases like 
Ebola, Influenza, and COVID-19 (D’Elia et al., 2013; Infection-
cusabio and Topics, 2020) and the mitochondria may act as 
a central hub in modulating these responses. MAVS dependent 
pathway at the mitochondria act as a critical factor for limiting 
virus infection and a detailed understanding of its regulation 

can help fine tune the host immune responses toward a productive 
antiviral strategy. Several molecules like NLRX1 and DUBs 
regulate RIG-I binding to MAVS at the mitochondria or directly 
target MAVS for degradation, thus acting as a counterbalance 
to prevent overproduction of Type I  Interferons during a 
persistent viral infection. Further, development of agonists for 
the RIG-I/MAVS pathways can be  used synergistically with 
antiviral compounds to restrict the replication of viruses at 
the initial stage and offer prophylactic solution to prevent such 
deadly outbreaks and rapid spread of RNA-virus induced infection.
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