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Marine Group Il Euryarchaeota From
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the Western Pacific Ocean:
Implication for Upwelling Impact on
Microbial Functions in the Photic
Zone

Jinlong Dai, Qi Ye*, Ying Wu*, Miao Zhang and Jing Zhang

State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China

Mesoscale eddies can have a strong impact on regional biogeochemistry and primary
productivity. To investigate the effect of the upwelling of seawater by western Pacific
eddies on the composition of the active planktonic marine archaeal community
composition of the deep chlorophyll maximum (DCM) layer, mesoscale cold-core eddies
were simulated in situ by mixing western Pacific DCM layer water with mesopelagic layer
(400 m) water. lllumina sequencing of the 16S rRNA gene and 16S rRNA transcripts
indicated that the specific heterotrophic Marine Group llb (MGllb) taxonomic group
of the DCM layer was rapidly stimulated after receiving fresh substrate from 400 m
water, which was dominated by uncultured autotrophic Marine Group | (MGI) archaea.
Furthermore, niche differentiation of autotrophic ammonia-oxidizing archaea (MGI) was
demonstrated by deep sequencing of 16S rRNA, amoA, and accA genes, respectively.
Similar distribution patterns of active Marine Group Il (MGIIll) were observed in the
DCM layer with or without vertical mixing, indicating that they are inclined to utilize the
substrates already present in the DCM layer. These findings underscore the importance
of mesoscale cyclonic eddies in stimulating microbial processes involved in the regional
carbon cycle.

Keywords: mesoscale eddies, Marine Group | (MGI) Thaumarchaeota, Marine Group Il (MGll) Euryarchaeota, deep
chlorophyll maximum, simulation

INTRODUCTION

Mesoscale eddies are considered oceanic hotspots of prokaryotic activity. Microbial community
structure varies greatly from surface waters (i.e., epipelagic zone) to deeper regions (e.g.,
mesopelagic zone) where different microbial community structures are found (Baltar et al., 2010).
Previous studies have reported that mesoscale eddies play an essential role in controlling the
distribution of microbial populations in the ocean (Ewart et al., 2008; Fong et al., 2008; Zhang et al.,
2009, 2011; Liu et al., 2017). The deep chlorophyll maximum (DCM) is the layer of subsurface
ocean water with the highest concentration of chlorophyll and thus high photosynthetic activity.
Although depth can vary by season and location, the DCM is typically found between 60 and
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120 m below the surface (Estrada et al., 1993). Generally, the
DCM is located close to the bottom of the photic zone connecting
to nutrient-rich deep waters (Martin-Cuadrado et al., 2015). The
DCM provides phytoplankton and marine microbes with light
and inorganic nutrients (Ghai et al., 2010). The distribution of
Marine Group I (MGI) Thaumarchaeota (Fuhrman et al., 1992),
Marine Group II (MGII) Euryarchaeota (DeLong, 2006; Ghai
et al., 2010; Martin-Cuadrado et al., 2015), and Marine Group
III (MGIII) Euryarchaeota (Galand et al., 2010; Haro-Moreno
et al,, 2017; Parada and Fuhrman, 2017) in the DCM zones
have been characterized from different oceanic regions, however,
interaction between these archaea group in the DCM and deeper
waters is not well-studied.

MGII Euryarchaeota are globally distributed throughout the
water column in the seas and open ocean (Massana et al., 2000).
Based on 16S rRNA gene sequences, MGII has been classified into
at least four groups: MGlIIa, MGIIb, MGIIc, and MGIId (Belmar
et al.,, 2011; Martin-Cuadrado et al., 2015), with MGIIb members
notably abundant in surface waters and in the DCM (Massana
et al., 2000). It was suggested that MGIIb should be grouped
as a distinct class of euryarchaea, specifically Thalassoarchaea
(Martin-Cuadrado et al, 2015). More recently, Rinke et al.
(2019) proposed the new name Candidatus Poseidoniales,
based on normalized ranks, comprising the families Candidatus
Poseidoniaceae fam. nov. (formerly MGlla) and Candidatus
Thalassarchaeaceae fam. nov. (formerly MGIIb).

To date, there are no cultured isolates of MGII species. The
ecological roles of MGII members have been revealed only
by genome sequencing studies (Iverson et al, 2012; Martin-
Cuadrado et al,, 2015; Xie et al., 2018). In general, MGII
members can degrade high-molecular-weight (HMW) organic
matter such as proteins, carbohydrates, and lipids (Li et al.,
2015). Amino acids, simple sugars, and fatty acids can serve
as viable carbon sources for MGII growth (Martin-Cuadrado
et al., 2015). The identification of proteorhodopsins in genomes
derived from both surface and DCM layer indicated that MGII
are a taxon of photoheterotrophs (Frigaard et al., 2006; Pereira
etal., 2019). Based on the unique metabolic characteristics of the
MGIIa and MGIIb genomes, 17 subclades have been identified,
revealing different ecological patterns (Tully, 2019). These
subclades include algal-saccharide-degrading coastal subclades,
protein-degrading oligotrophic surface ocean subclades, and
mesopelagic subclades lacking proteorhodopsins (Tully, 2019).
These ecological distribution and metabolic profile of MGII
species make them significant contributors to the global oceanic
carbon cycle (Zhang et al., 2015).

In contrast to MGII Euryarchaeota, the availability of pure
and enriched cultures of MGI Thaumarchaeota has led to the
discovery that these organisms are chemolithotrophic ammonia
oxidizers (Konneke et al., 2005; Santoro and Casciotti, 2011;
Tourna et al, 2011; Qin et al, 2014; Jung et al, 2018).
Although oceanic ammonia and nitrite oxidation are balanced,
ammonia-oxidizing archaea (AOA) vastly outnumber the main
nitrite oxidizers, the bacterial Nitrospinae (Kitzinger et al., 2020).
The habitat specificity of AOA varies widely in terms of
global phylogenetic (Alves et al., 2018). To date, all cultivated
planktonic MGI representatives possess the homologs of the

ammonia monooxygenase (AMO) subunit A (amoA) gene, which
encodes a key enzyme catalyzing the oxidation of ammonia
at extremely low concentrations (Santoro et al, 2019). To
adapt to nutrient-limited conditions, marine thaumarchaeotal
ammonia oxidizers commonly utilize a modified version of
the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle,
which is the most energy-efficient aerobic pathway for CO,
fixation (Konneke et al., 2014). In the open ocean, the relative
abundance of Thaumarchaeota sharply increases in the upper
mesopelagic layer and decreases at depths greater than 1000
m (Karner et al, 2001). Evidences suggested that dark CO,
fixation by Thaumarchaeota reflects its high potential for primary
production in mesopelagic waters (Ingalls et al., 2006; Reinthaler
et al., 2006; Bergauer et al., 2013).

The tropical equatorial region of the Northwestern Pacific
represents a typical oligotrophic marine environment with a
euphotic zone generally less than 120 m deep (Zheng et al,,
2015). Mesoscale eddies have been frequently observed in this
region (Mizuno and White, 1983; Kawamura et al., 1986; Itoh
and Yasuda, 2010). For example, the cyclonic Mindanao Eddy
(ME) exists year-round center at 7°N, 128-130°E, and impacting
water layers from 50 to 500 m (Zhang et al, 2012). Several
studies have examined the physical processes associated with
mesoscale eddies (White and Annis, 2003; Itoh and Yasuda,
2010; Kouketsu et al., 2011). Mesoscale eddies as well as other
diapycnal mixing processes provide an important mechanism
for the exchange of nutrients, dissolved gases, and particulate
matter between the shallow and deep layers (Tian et al,
2009). Under the influence of the cold eddies, new nutrients
and organic matter are brought to the DCM. This results in
changes in microbial heterotrophic activity of the water layer
relative to the surrounding area (Ewart et al., 2008). Systematic
differences in bacterial responses within and between cyclonic
and mode-water eddies have been documented in the Sargasso
Sea (Ewart et al, 2008). Bacterial community structures in
two cold-core cyclonic eddies in the South China Sea were
significantly influenced by cyclonic eddy perturbations, causing
a shift in the microbial community in the euphotic zone
(Zhang et al,, 2011). Robidart et al. (2018) conducted a mixed
experiment in the subtropical circulation of the North Pacific
and revealed that deep-water nutrients and particles had distinct
effects on key members of the surface community, including
Prochlorococcus, Synechococcus, eukaryotic phytoplankton, N-
fixing cyanobacteria, and viruses. The contribution of MGI
Thaumarchaeota to total picoplankton abundance and total
active cells increased with depth, and the contribution of MGI
in the upper mesopelagic water was greater inside the cyclonic
eddy system relative to outside the system in the South China
Sea (Zhang et al., 2009). However, little is known about how
the western Pacific mesoscale eddies influence the active archaeal
community (especially MGII) in the DCM.

Here, we conducted a set of small-scale mixing experiments
to better characterize the effect of mesoscale eddies on the
relationships in archaea communities between DCM and 400 m
mesopelagic waters. Specifically, we studied shifts in archaeal
communities of the DCM that occurred in response to vertical
mixing with 400 m water through Illumina sequencing of the
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16S rRNA gene and 16S rRNA transcripts. We hypothesized
that heterotrophic microorganisms in the DCM layer could grow
rapidly after being stimulated by fresh substrates, which were
brought from the 400 m waters and produced by autotrophic
microbes, thereby promoting the metabolism of organic matter
in DCM layer and affecting the regional carbon cycle.

MATERIALS AND METHODS

In situ Seawater Sample Collection

A culture experiment was conducted during the R/V Kexue
cruise (October 15th, 2017-November 16th, 2017) in the western
Pacific Ocean (Figure 1). DCM (90 m) and mesopelagic (400 m)
seawater samples were collected and stored in sterile barrels at
7.75° N, 130° E on October 31, 2017.

Vertical Mixing Culture Experiment

The mixed culture experiment in this study simulated mixing of
deep seawater (400 m) and the surface DCM layer (90 m) by
mesoscale cyclonic cold eddies in the western Pacific. Compared

with the DCM layer, the 400 m layer is a high-pressure, low-
temperature marine environment with little sunlight. Sixty liters
of DCM seawater and 10 L of 400 m seawater were collected
on October 31, 2017 (Figure 1). Among these samples, 45 L of
DCM seawater and 3 L of 400 m seawater were filtered with a
0.22 pm Nuclepore polycarbonate membrane filter (Whatman,
NJ, United States) to remove microorganisms, yielding the
“DCM ultrafiltrate.” Next, 10 L of DCM seawater and 3 L of
400 m seawater were filtered with a 1.2 wm GF/C membrane
(Whatman, NJ, United States) to remove phytoplankton, yielding
the “DCM microbes” or “400 m microbes”, respectively. All
filtered water samples were kept in dark, sterile barrels before
mixing. A total of four groups were set up in this microcosm
experiment, with three parallel in each group: (1) only DCM
ultrafiltrate (= Blk); (2) DCM ultrafiltrate + DCM microbes
at a 4:1 v/v ratio (= Con); (3) DCM ultrafiltrate + DCM
microbes + 400 m ultrafiltrate in a 3:1:1 v/v ratio (= DCM);
and (4) DCM ultrafiltrate + 400 microbes in a 4:1 v/v ratio
(= MSW). The volume of each parallel after mixing was
4.5 L (Figure 2). The mixed samples were all placed in a
temperature-controlled laboratory at 18°C for 24 h and shaken

—_— = — —
125'E

T120€

Temperature

Cultivation station Y

10°N

Cultivation station

FIGURE 1 | Map showing the sampling station (A), sea surface height (B), and distribution of temperature (C), salinity (D), and potential density anomaly ot (E) in the
upper 1000 m. KC, Kuroshio Current; NEC, North Equatorial Current; NECC, North Equatorial Countercurrent; ITF, Indonesian throughflow; NGCC, New Guinea
Coastal Current; ME, Mindanao Eddy; HE, Halmahera Eddy. Dataset of sea surface height was downloaded from Archiving Validation and Interpolation of Satellite
Oceanographic Data, AVISO; http://www.aviso.altimetry.fr/
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FIGURE 2 | Simulation of the water mixing cultivation experiment. DCM seawater means DCM seawater filtered through a 0.2 wm polycarbonate filter, DCM microbe
means DCM seawater filtered through a 1.2 wm glass microfiber filter, 400 m seawater means 400 m seawater filtered through a 0.2 wm polycarbonate filter, 400 m
microbe means 400 m seawater filtered through a 1.2 wm glass microfiber filter. Each culture system was 4.5 L in volume, and three parallel experiments were
conducted. Seawater and microbes were always mixed in a 4:1 ratio. Blk was checked for the removal of microorganisms from seawater. The number in the arrow
represents the mixing ratio. All experiments were performed at 18°C in the dark for 24 h.

once in the middle of the incubation to ensure that samples
remained evenly mixed.

All the samples were filtered through 0.22 pm Nuclepore
polycarbonate membrane filters (Whatman, NJ, United States) at
the end of the incubation experiment. These membrane samples
were stored in liquid nitrogen until RNA/DNA extraction.
Approximately 2 L of each sample was filtered through 0.22
wm Nuclepore polycarbonate membrane filters (Whatman,
NJ, United States) at the end of the incubation experiment.
These membrane samples were stored in liquid nitrogen until
RNA/DNA extraction. Because of the limitations associated with
the field culture experiment conditions, we could only use one of
the three parallel groups for RNA extraction, and the other two
are used for DNA extraction for 16S rRNA, amoA, and accA gene
detection, while monitoring the parallel experimental groups.
Dissolved organic carbon (DOC) samples were filtered through
0.4 pm nylon filters (Rephile, Shanghai, China), and nutrient
samples were filtered through 0.4 wm Nuclepore polycarbonate
membrane filters (Whatman, NJ, United States); samples were
then stored in a freezer at —20°C.

Chemical Parameter Analysis

After the DOC samples were acidified, oxygen was purged
to remove dissolved inorganic carbon, and samples were
analyzed with a total organic carbon (TOC) analyzer (TOC
L-CPH, Shimadzu, Japan) using the high-temperature catalytic
oxidation method. Nutrients (silicate, phosphate, and nitrite)
were determined photometrically by an auto-analyzer (Model:
Skalar SANPI™S) with precision of < 5-10%. Seawater references
were run with each batch of samples to check the precision of
nutrient analysis.

DNA and RNA Extractions

Total DNA was extracted from two randomly selected replicate
filters from the 24 h (T24) samples using a MoBio PowerSoil®
DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA,
United States). Total RNA was extracted from the last filter
from the 24 h (T24) samples using an E.ZN.A. Soil RNA
Mini Kit (Omega Bio-Tek, Norcross, GA, United States).
The RNA was subsequently converted to ¢cDNA using the
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HiScript™ Q RT SuperMix for qPCR (4 gDNA wiper) Kit
(Vazyme Biotech, China). Final concentrations and purity of the
DNA and cDNA were measured spectrophotometrically with a
NanoDrop ND2000 (Thermo Fisher Scientific, Wilmington, DE,
United States). The extracted DNA and cDNA were stored at
—80°C until further analysis.

PCR Amplification, lllumina MiSeq
Sequencing, and Sequence Data

Processing

To decrease polymerase chain reaction (PCR) bias, we performed
the minimum number of PCR cycles required to produce
a product; furthermore, three independent PCR mixtures
were pooled for each sample. The V4-V5 hypervariable
regions of the archaeal 16S rRNA genes were amplified
using the primers 524F10extF (5-TGYCAGCCGCCGCGGTAA-
3’) and Arch958RmodR (5'-YCCGGCGTTGAVTCCAATT-3')
(Pires et al., 2012) and the following amplification conditions:
denaturation at 95°C for 3 min; 35 cycles of denaturation
at 95°C for 30 s, annealing at 55°C for 30 s, and extension
at 72°C for 45 s; and an extension at 72°C for 10 min
and cooling at 4°C. The V4-V5 hypervariable regions of
the bacterial 16S rRNA gene were amplified using the
primers 515F (5-GTGCCAGCMGCCGCGG-3') and 907R (5'-
CCGTCAATTCMTTTRAGTTT-3) (Xiong et al., 2012) and the
following amplification conditions: denaturation at 95°C for
2 min; 25 cycles of denaturation at 95°C for 30 s, annealing at
55°C for 30 s, and extension at 72°C for 30 s; and an extension at
72°C for 10 min and cooling at 4°C. The Archaeal amoA gene
fragments were amplified using the primers Arch-amoAF and
Arch-amoAR (5-GCGGCCATCCATCTGTATGT-3) (Francis
et al, 2005) and the following amplification conditions:
denaturation at 95°C for 3 min; 35 cycles of denaturation at 95°C
for 30 s, annealing at 55°C for 30 s, and extension at 72°C for
45 s; and an extension at 72°C for 10 min and cooling at 4°C. The
accA gene fragments were amplified using primers Cren529F (5'-
GCWATGACWGAYTTTGTYRTAATG-3") and Cren981R (5'-
TGGWTKRYTTGCAAYTATWCC-3') (Yakimov et al, 2009)
and the following amplification conditions: denaturation at 95°C
for 4 min; 35 cycles of denaturation at 95°C for 40 s, annealing at
51°C for 40 s, and extension at 72°C for 90 s; and an extension at
72°C for 10 min and cooling at 4°C.

For Illumina MiSeq sequencing, PCR products were purified
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
United States) per the manufacturer’s protocol and then
quantified by QuantiFluorTM-ST (Promega, United States).
Reaction mixtures were pooled in equimolar ratios and paired-
end reads were generated on an Illumina MiSeq PE250 (Majorbio
Bio-Pharm Technology Co., Ltd., Shanghai, China).

Sequence Data Processing, OTU

Clustering, and Taxonomic Assignment

Raw Illumina FASTQ files were demultiplexed, quality-filtered,
and analyzed using Quantitative Insights into Microbial Ecology
(QIIME) (version 1.17) (Caporaso et al., 2010) using criteria
described previously (Li et al., 2014). Operational taxonomic

units (OTUs, 97% similarity cutoff) were clustered using
UPARSE (version 7.1)'. Chimeric sequences were screened
using UCHIME. The abundances of OTUs from each sample
were determined by OTU clustering. Reads from each sample
were assigned to each OTU, and an OTU table was generated
using the “usearch_global” command. To obtain the taxonomic
information for each species corresponding to an OTU, the
Ribosomal Database Project (RDP) Classifier’ was used for
taxonomic analysis of representative OTU sequences. The
community composition of each sample was calculated at
the genus level.

Phylogenetic Analyses

The sequences of the representative OTUs in this study
were blasted against GenBank by BLAST® to obtain reference
sequences. The sequences of representative OTUs and selected
reference sequences from the database were aligned using Clustal
W. A maximum likelihood phylogenetic tree was generated in
MEGAG6 using the neighbor-joining method with 1000 bootstrap
replicates (Tamura et al., 2013) and was visualized in iTOL
(Letunic and Bork, 2007).

Statistical Analyses

Alpha diversity metrics, principal coordinates analyses (PCoAs)
using Bray-Curtis distances, and inter-group differential species
test based on chi-square test were performed using the free online
Majorbio I-Sanger Cloud Platform®.

Nucleotide Sequence Accession

Numbers

Sequence data in this study were entered into the NCBI Sequence
Read Archive (SRA) under BioProject ID PRJNA511510
and PRJNA634930.

RESULTS

Description of Site Environmental
Characteristics

The sampling collection station was located close to a mesoscale
eddy center (ME, 7°N, 128-130°E). In situ physical profiles
(i.e., temperature and salinity as a function of depth) were
obtained from CTD information. In the area affected by ME
at 130°E, the sea level was lower than the surrounding areas,
and the temperature, salinity, and density lines were markedly
increased (Figure 1 and Supplementary Table S1). At 90 m, the
temperature was 24.0°C, salinity was 34.8, oxygen concentration
was 5.2 mg/L, and the concentration of DOC was 59 pmol/L.
In contrast, the region at 400 m was a low-temperature and
high-pressure environment. The temperature dropped to 7.7°C,
the salinity changed slightly (34.5%o), and the oxygen and DOC

Uhttp://drive5.com/uparse/
Zhttp://rdp.cme.msu.edu/
*https://blast.ncbi.nlm.nih.gov/Blast.cgi
“www.i-sanger.com
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concentration decreased to 3.1 mg/L and 47 wmol/L, respectively.
In addition, the concentrations of nutrient (nitrate, silicate, and
phosphate) in 400 m seawater was higher than that in 90 m
seawater (Supplementary Table S1).

Varies in Chemical Parameters During

Cultivation

Since the DCM and MSW groups consisted of seawater from
the 400 m layer, initial nutrient concentrations were higher than
those in the Con group. After 24 h incubation experiments, the
concentration of DOC decreased in the three groups. Compared
with Con, DOC in DCM and MSW decreased significantly,
especially in the DCM group (by 23 wmol/L). Mixing resulted
in higher initial nitrate content in the DCM combined MSW
group than those in the other three groups, and after 24 h,
nitrate was consumed in the DCM group and accumulated in the
MSW group. In addition, silicate and phosphate levels remained
relatively stable throughout the experiment (Figure 3).

Distribution and Composition of Total
(DNA) and Active (RNA) Archaeal

Communities in Each Mixing Group

PCR was successfully performed with DCM, MSW, and Con
samples, but no PCR products were obtained from Blank
(Blk) samples (Supplementary Table S2). PCoA analysis based
on the sequencing data showed consistent clustering of DNA

samples in each group (Figure 4), indicating that the culture-
based experiments were highly replicable. There were significant
differences (p < 0.01) between RNA and DNA in both the Con
and DCM groups, whereas the total and active communities
were clustered in the MSW group. Our results revealed possible
archaeal community in the DCM layer with and without vertical
mixing. Furthermore, the sequencing results of the functional
genes on the PCoA distribution distinguished the three groups
clearly, and 16S rRNA, amoA, and accA showed similar
distribution trends. Specifically, the compositions of MSW in 16S
rRNA, amoA, and accA were significantly different from those in
the other two groups (p < 0.01) (Supplementary Figure S1).

After sequencing, we obtained a total of 413,804 high-quality
archaeal V4-V5 Illumina sequences from both total (DNA) and
active (RNA) communities. There were 31,051 archaeal reads per
sample after subsampling. Based on the 97% similarity cutoff,
there were 94 archaeal OTUs in the complete OTU dataset, and
Euryarchaeota (20.3%) and Thaumarchaeota (78.9%) were the
main phyla detected. The main families within Euryarchaeota
were MGII and MGIII, and the most abundant class within
Thaumarchaeota was MGL

Figure 5 shows that there were some variations in the
percentage compositions among the groups at the genus level. For
total archaeal communities, Nitrosopelagicus was the dominant
genus in the Con (87.0%) and DCM (97.1%) samples, and
uncultured MGII members made up 12.2 and 1.6% of the
archaeal sequences in the Con and DCM groups, respectively.

DOC (umolL) NO;™ (molL)

100 siid N T=0h
% * o 9.00 BN T=24h
80 200
70 200
60 i
0 5.00
40 400
30 3.00
20 2.00
10 1.00

' oo N
Blk Con DCM AW Blk Con DCM MW
PO4** (umolL) SiO3% (umolL)

1.00 10.00

0.90 9.00

0.80 8.00
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0.60 600

0.50 5.00

0.40 400

0.30 3.00

020 2,00

0.10 1.00 ﬂ ll

0.00 0.00

Blk Con DCM MSW Bk Con DCM MSW
FIGURE 3 | Chemical parameters in each group; DOC, dissolved organic carbon; * indicates a significant difference.
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FIGURE 4 | Principal coordinates analysis (PCoA) based on a Bray-Curtis distance matrix representing differences in the community structure of six groups at the
OTU level. The first and second principal components (PCo1 and PCo2) are shown, explained 71.23 and 23.95% of the variance in the dataset, respectively.
Triangles and circles indicate control active (RNA) and total (DNA) archaeal communities, respectively. Con, DCM, and MSW groups are represented by red, blue and
green, respectively.
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FIGURE 5 | Distributions of genus-level taxa. Bars represent the relative abundance of lllumina sequences representative of each genus. Bacterial taxa represented
by less than 1% of reads are pooled as “others.” “Uncultured” means that the specific archaeal taxa cannot be classified at the genus level. The R before the sample
group name represents RNA (active), and D stands for DNA (total). The proportion of each sequence in DNA samples is the mean value of duplicate analyses.

However, uncultured MGIII members and Nitrosopumilus were
almost absent from these two groups (<1%). In the MSW
group, uncultured MGI (87.6%) members was the most abundant
genus; Nitrosopelagicus (6.4%) and uncultured MGII members
(5.9%) were two other abundant genera; and Nitrosopumilus and
uncultured MGIII members were less abundant than these three
genera (<1%). In contrast to the total archaeal communities,

the active MGII archaea represented 46.6 and 72.5% of reads
in the Con and DCM samples, respectively, and active MGIII
made up 9.2% (Con sample) and 6.8% (MSW sample) of the
sequences in total archaeal community. Uncultured MGI (86.8%)
members were the most abundant archaea in the MSW group,
demonstrating that the active archaeal communities of the MSW
group were quite different from those of the DCM or Con groups.
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Distribution of MGl in Each Group

Eight MGI OTUs possessed more than 1% of the reads
from either a single sample or from multiple samples. These
OTUs formed three distinctive clusters (Figure 6). OTU92
in MGI cluster 1 had 99.5% similarity with Candidatus
Nitrosopelagicus brevis strain CN25 (CP007026), an ammonia-
oxidizing enrichment culture collected from a depth of 25m in the
northeastern Pacific (35.46°N, 124.91°W) (Jung et al., 2018). This
OTU was predominant in both DCM and Con samples at the
DNA level, and the relative abundance of OTU92 reached up to
42.39% in the Con-RNA sample, whereas OTU92 accounted for
19.42% of the total DCM-RNA at the end of the culturing period.
OTU10 in MGI cluster 2 included 4.45% of the total sequences
from the MSW-RNA sample and displayed 99.1% similarity with
Nitrosopumilus cobalaminigenes strain HCA1 (NR_159206) (Qin
et al., 2017). The five OTUs in MGI cluster 3 were closely
related to MGI clones from an archaeal community at 670 m
in the mesopelagic zone of the North Pacific Subtropical Gyre
(Hansman et al., 2009), and the sequences of OTU2, OTU3,
OTUS8, OTU14, and OTU42 possessed > 99.3% similarity with
the corresponding sequences in these clones. Sequences of these
five OTUs contributed the most to either active (83.11% of total
sequences) or total (79.36% of total sequences) communities in
400-m deep water but were seldom recovered from all of the
tested DCM and Con samples (Table 1).

Diversity of MGl in Each Group
Six MGII OTUs were abundant (>1% and present in at least
one sample) (Table 1). Among these OTUs, OTU90 had the

highest relative abundance in the DCM-RNA sample (up to
52.14%), which was approximately three times higher than that
in the Con-RNA sample (19.55%). This OTU represented only
0.32% of the total sequence abundance in the MSW-RNA sample.
OTU90 was phylogenetically associated (100% similarity) with
the clone CWP-B5 from the Ontong Java Plateau from the center
of the western Pacific warm pool (HQ529815) and the clone
KM3-85-F5 (99.5% similarity) from the deep Mediterranean,
which was clustered in subcluster O of MGIIb (Galand et al,,
2010). OTU90 had a 96% similarity with the metagenomic
fosmid clone MedDCM-OCT2007-C57 from the Mediterranean
DCM, which is named Candidatus Thalassoarchaea mediterranei
(KP211789) and belongs to the class Thalassoarchaea. In
addition, three other OTUs (OTU68, OTU73, and OTUS87)
had 96.8-98.2% similarity with Ca. Thalassoarchaea mediterranii
(Figure 6).

Diversity of Archaeal amoA and accA

Genes

We analyzed seven representative OTUs of the AOA amoA
gene (> 1% and appeared in at least one sample). These
OTUs fell into two distinct phylogenetic clusters (Supplementary
Figure S2). Four OTUs (OTU77, 78, 47, and 82) within the
WCA cluster dominated in the DCM group (Table 2 and
Supplementary Figure S3). OTU77 had a 99.3% similarity
with Ca. Nitrosopelagicus brevis strain CN25 (CP007026), an
ammonia-oxidizing enrichment culture collected from a depth
of in the northeastern Pacific (35.46°N, 124.91°W). The relative
abundances of this OTU reached 85.23% in Con and 85.04%
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TABLE 1 | Relative abundance (%) of 16 OTUs represented by more than 1% of the reads from at least a single sample and their closest matches retrieved

from NCBI GenBank.

Phylogenetic group

Relative abundance (%)

Closest matches to 16S rRNA
genes in NCBI database

Con DCM MSW
Class Family Genus oTuU RNA DNA RNA DNA RNA DNA Clone or culture (accession no.)  Similarity
Thermoplasmata MGl OTU90 19.55 5.08 52.14 1.05 0.32 1.14  CWP-B5 (HQ529815) 100%
OTU73 8.17 1.95 1298 0.39 0.84 0.75 CWP-C7 (HQ529853) 100%
oTus7? 3.65 1.06 2.69 0.06 0 0.29 AU1369-69 (JQ181909) 99.8%
OTuUB8  10.38 2.54 1.84 0.05 0.038 3.30 CWP-A10 (HQ529782) 100%
OTU75 1.42 1.13 0.62 0.04 0 0.08 HF70_59C08 (DQ156348) 100%
OTU71 1.85 0.07 0.35 0.00 0 0.08 155D1_1456_BagjC (KJ608346) 100%
MGill OoTuU9 7.47 0.61 5.31 0.16 0.53 0.05 AD1000-40-D7 (EU686628) 99.3%
OTUA 1.44 0.18 1.32 0.02 0.24 0.01  AU1370-28 (JQ181946) 99.8%
MGl Uncultured MGI OTUS 0.02 0.01 0.46 0.89 63.68 57.77 670m_Arch6 (EU817638) 99.3%
OoTu2 0 0 0 0 8.24 8.11  670m_Arch10 (EU817640) 99.8%
OoTuU14 0 0 0.04 0.08 6.90 9.63 670m_Arch1 (EU817636) 99.8%
OTuU12 0 0 0.01 0 3.72 3.46 2A-015 (FJ980947) 100%
OTu8 0 0 0.16 0.14 2.76 1.47  670m_Arch17 (EU817641) 100%
oTu42 0 0 0 0 1.53 2.38  670m_Arch7_0.5 (EU817645) 99.5%
Nitrosopumilus QoTuU10 0.22 0.00 0.07 0 4.45 0.06  Nitrosopumilus cobalaminigenes 99.1%
strain HCA1 (NR_159206)
Ca. Nitrosopelagicus  OTU92 42.39 84.44 19.42 96.72 4.99 6.07  Candidatus Nitrosopelagicus brevis 99.5%

strain CN25 (CP007026)

Two DNA parallel averages were used to calculate the relative abundance values in the table.

in DCM, but only 12.08% in MSW. In contrast, three OTUs
(OTU48, 54, and 63) within the WCB cluster dominated in
the MSW group, but they are almost absent in Con and DCM
(Table 2 and Supplementary Figure S3). Three representative
OTUs retrieved from MSW were identical to clones in the same
depth (400 m) from different oceans. For example, OTU54

TABLE 2 | Relative abundance (%) of seven amoA OTUs represented by more
than 1% of the reads from at least a single sample and their closest matches
retrieved from ammonia-oxidizing archaea (AOA) amoA genes in the Fungene
and NCBI databases.

OoTU Relative abundance Closest matches to AOA amoA genes
(%) in Fungene and NCBI database
Con DCM MSW Clone or culture Similarity

(accession no.)

OTU77  85.23 84.04 12.08 Candidatus Nitrosopelagicus 99.3%
brevis strain CN25 (CP007026)

QoTu78 441 504 1.38  Candidatus Nitrosopelagicus 98.6%
brevis strain CN25 (CP007026)

oTuU47 4.7 3.41 0.43  608-75-amoA29 (GU181598) 100%

oTU82 3.02 3.29 0.34  MW_AamoA_100m_06 100%
(AB703976)

OTU54 0 0.65 15.16 712-400-amoA22 (GU181561) 100%

oTu48 0 0 13.08 6-400m_07 (KC596418) 100%

OTUB3 0 0 4.72  a109.400.46d (JF272642) 100%

Two parallel averages were used to calculate the relative abundance values in the
table.

had 100% similar with clone 712-400-amoA22 (GU181561) in
the 400 m layer from the East China sea, and the other two
OTUs (OTU48 and OTU63) had 100% similarity with clone
6-400m_07 (KC596418) and clone a109.400.46d (JF272642) in
the 400 m water from the North Pacific and the Arctic Baffin
Bay, respectively.

Based on the top three abundant OTUs of the accA gene in
at least one sample, the phylogenetic tree showed two distinct
clusters - one with sequences from Con and DCM and the
other with sequences from MSW (Supplementary Figure S3) -
a topology consistent with that for 16S rRNA and amoA genes.
In the DCM group, OTU11 had the highest relative abundance
in Con (59.29%) and DCM (53.40%) but was seldom detected
in MSW (0.65%) (Table 3). OTU11 had 99.8% similar with
the uncultured thaumarchaeote clone S100 accA 21 (GQ507517)
found at a depth of 100 m from the South China Sea. The
second most abundant OTU71 had 98.8% similarity with an
uncultured thaumarchaeote clone (MF137423) from the East
China Sea. In the MSW group, OTU21 showed 99.3% similarity
with the uncultured thaumarchaeote clone D5-450m-accA-61
collected at a 450-m depth in the Gulf of Mexico, which
was the most abundant in MSW (64.77%). Approximately
5.52% sequences in the DCM sample belonged to OTU21,
but this OTU was not detected in the Con group (Table 3).
Compared with OTU21, OTU15, and OTUS55 had lower relative
abundance but similar distribution trend (Table 3). Additionally,
no closest match of OTU86 from the DCM layer was detected
in the NCBI database, indicating that OTU86 may represent
a novel species.

Frontiers in Microbiology | www.frontiersin.org

9 September 2020 | Volume 11 | Article 571199


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Dai et al.

Vertical Mixing Stimulates DCM MGlIb

TABLE 3 | Relative abundance (%) of 12 accA OTUs represented by the top three
abundant reads from at least a single sample and their closest matches retrieved
from NCBI GenBank.

OoTU Relative abundance Closest matches to accA genes in
(%) NCBI database
Con DCM MSW Clone or culture Similarity
(accession no.)

OTU11  59.29 53.40 0.65 S100accA 21 (GQ507517) 99.8%
OTU71  30.52 2255  0.12 2014SepS39093 (MF137423) 98.8%
OoTuU21 0 552 64.77 D5-450m-accA-61 (KC349506) 99.3%
OTU15 0 0.36  7.66 Z500 accA 31 (GQ507619) 97.0%
OTU55 0 0.19 511 2014SepS6800118 (MF137701) 99.6%
OTU86 215 298 0 No match

Two parallel averages were used to calculate the relative abundance values in the
table.

Distribution of Total (DNA) Bacterial

Community in Each Mixing Group

After subsampling, we obtained 51,569 bacterial reads per
sample in the total (DNA) community. Based on the 97%
similarity cutoff, there were 107 OTUs in the complete
OTU dataset. Alphaproteobacteria was the dominant class in
all samples, ranging from 64.5 to 78.3% of the sequences.
Gammaproteobacteria was the second most abundant class in
all samples (15.9-24.4%). Class Flavobacteriia constituted 2.3-
10.6% of the bacterial sequences. Less than 50 of the 51,569
sequences of the phylum Cyanobacteria were recovered in each
group. Furthermore, no reads affiliated with known marine NOB,
including phylum Nitrospinae and Nitrospirae, were detected in
both datasets (Supplementary Figure S4).

DISCUSSION

Niche Differentiation of MGl Between the
DCM Layer and the 400 m Deep Water

In the open ocean, depth is a significant factor controlling the
distribution of AOA (Francis et al., 2005; Mincer et al., 2007;
Smith et al., 2016; Santoro et al., 2017). Phylogenetic analysis of
thaumarchaeal amoA divided the marine Thaumarchaeota into
two main clades based on depth: the shallow, water column “A”
(WCA) (Francis et al., 2005; Hallam et al., 2006) ecotype and
the deep, water column “B” (WCB) ecotype (Smith et al., 2016).
The WCA clade is generally detected at all depths, with the peak
abundance of the WCA amoA gene located near the top of the
nitracline (Santoro et al., 2017), whereas the WCB clade was
detected primarily below the photic zone (Beman et al., 2008;
Santoro et al.,, 2010). Ca. Nitrosopelagicus brevis strain CN25
was the only cultivated representative of the shallow, WCA clade.
There are currently no enrichments or isolates of the deep, WCB
clade (Santoro et al., 2019). In our study, sequences related to the
Ca. Nitrosopelagicus brevis strain CN25 were abundant in the
total and active DCM archaeal communities, indicating that the
WCA clade inhabited the DCM layer. Sequences of the six MGI
OTUs belonging to the distinct uncultured MGI cluster were

abundant in both active and total archaeal communities in the
400-m deep water sample. Closest relatives of these OTUs have
been collected from 670 m of the North Pacific Subtropical Gyre
(Hansman et al., 2009). These uncultured MGI archaeal groups
were reported that adapted to thrive in mesopelagic waters and
might possess an inorganic carbon fixation pathway (Hansman
et al., 2009). Our data on the niche differentiation of MGI are
consistent with previously observed ecotype-specific AOA in the
water column of the Pacific (Smith et al., 2016; Jing et al., 2017;
Santoro et al., 2017).

Stimulation of MGl in the DCM Layer by
Vertical Mixing With Deeper Waters

Phylogenetic analyses have identified the presence of two major
groups within MGII, and these groups are referred to as MGlla
and MGIIb (Massana et al., 2000; Martin-Cuadrado et al., 2008;
Galand et al., 2009; Belmar et al., 2011). Previous work suggests
that the abundances of MGIla and MGIIb vary seasonally and
that these two groups partition niches. For example, Galand
et al. (2010) found that MGIIb members developed in nutrient-
enriched waters during winter mixing, when phytoplankton
blooms occurred. In contrast, MGIIa members were abundant in
nutrient-depleted waters during summer stratification when the
phytoplankton stocks were relatively low. Furthermore, MGII is
relatively abundant in surface waters (DeLong, 2006) and within
DCM layers (Martin-Cuadrado et al., 2015; Orsi et al., 2015)
in oligotrophic seas. Our findings revealed that active MGIIb
members were predominant in the DCM in early November after
additional substrates had been brought from 400 m waters.
Although there are no cultured representatives of MGII
Euryarchaeota, metagenomic sequencing provides a powerful
strategy for uncovering the metabolic potential of MGIIa and
MGIIb. For example, two draft genomes of thalassoarchaeal
fosmid clones from the DCM in the Mediterranean Sea indicated
that these taxa have a non-motile photoheterotrophic lifestyle
(Martin-Cuadrado et al., 2015). Zhang et al. (2015) summarized
the key metabolic functions of MGII, with an emphasis on MGII
metabolic genes for the TCA cycle. A relatively high abundance
of sequences representing active Ca. Nitrosopelagicus brevis
strain CN25 was observed in Con-RNA (42.39%) and DCM-
RNA (19.42%) samples; this strain actively fixes inorganic carbon
via the 3HP/4HB cycle, which leads to the production of acetyl-
CoA (Santoro et al, 2010). Thus acetyl-CoA can serve as a
precursor for the TCA cycle in MGII members. In our study, five
dominant MGI-related OTUs (OTU2, OTU3, OTUS, OTU14,
and OTU42) in either MSW-RNA or MSW-DNA samples had
99.3-100% similarity with clones retrieved from the free-living
microbial community at a depth of 670 m at a Pacific site (Table 1
and Figure 6). The radiocarbon signatures of thaumarchaeal
DNA demonstrated that MGI members derive the majority of
their carbon from inorganic carbon fixation from the same
site (Hansman et al., 2009). A recent quantitative study of the
amoA and accA genes in the western Pacific revealed similar
distributional trends at depths greater than or equal to 100 m
as those documented in our study (Zhang et al,, 2020). Our
sequencing data showed that in 400 m, the distribution trend
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of 16S rRNA, amoA, and accA genes was highly consistent,
confirming that the ammonia oxidation process of AOA and the
fixation of carbon dioxide were mutually coupled in our culture
experiments (Supplementary Figure S1). The growth of certain
heterotrophic MGII members in DCM-RNA samples could be
quickly stimulated by obtaining fresh organic carbon after being
mixed with 400 m deep waters. We also found that these five
MGI OTUs were almost absent from DCM-RNA and Con-RNA
samples, which may explain why the relative abundance of MGII
in the DCM-RNA sample was at least threefold greater than
that in the controls at 24 h. The DOC in the DCM group was
dramatically consumed (Figure 3), indicating that MGII also
promoted the degradation of organic matter in the DCM layer
after being stimulated. Our results are consistent with previous
observations of MGIIb bloomed in the DCM layer after water
column mixing during the winter (Martin-Cuadrado et al., 2015).
We infer that the marked changes in specific MGII taxa in the
DCM-RNA sample occurred in response to vertical mixing.

Active MGIll Members in the DCM Layer
With or Without Vertical Mixing

There were two OTUs represented by more than 1% of the reads
from only active archaeal communities in the DCM layer, either
with or without vertical mixing (Table 1). Panoceanic OTUs
are defined as clones that have identical or nearly identical 16S
rRNA genes that have been collected from distant geographical
locations (Martin-Cuadrado et al., 2008). OTU9 shared 99.3%
similarity with the low-GC genomic clone AD1000-40-D7
collected from a depth of 1000 m in the Adriatic Sea (EU686628).
Clone AD1000-40-D7 belonged to the panoceanic OTU D and
has a global distribution (Martin-Cuadrado et al., 2008). OTU1
had 99.8% similarity with clone AU1370-28 (JQ181946), which
was from surface seawater in the South Pacific Gyre and was the
only MGIII clone of the 38 total archaeal clones (Yin et al., 2013).

The first two MGIII clones were retrieved from 500 to
3000 m depths in the Northeastern Pacific in 1997 (Fuhrman
et al, 1992). Until Galand et al. (2009, 2010) reported
the presence of MGIII Euryarchaeota in the photic zone,
MGIII members had generally been considered low-abundance
members of archaeal communities in deep mesopelagic and
bathypelagic waters (Massana et al., 2000; Lopez-Garcia et al.,
2001; Martin-Cuadrado et al., 2008). As no representative of
MGIII Euryarchaeota has been cultivated to date, our knowledge
of the metabolic capacity of deep-sea MGIII taxa has been based
on comparative metagenomic analyses (Martin-Cuadrado et al,,
2008) or constructed partially to nearly completed genomes and
transcriptomes (Li et al., 2015). The epipelagic MGIII genomes
not only contain numerous photolyase and rhodopsin genes but
also harbor enzymes for glycolysis, the carboxylic acid cycle, and
the uptake and degradation of peptides and lipids, indicating
a photoheterotrophic lifestyle (Haro-Moreno et al,, 2017). In
our study, MGIII OTUs 1 and 9 had low relative abundances
in the total archaeal communities, and incubation with or
without vertical mixing resulted in similar shifts in these two
representative MGIII OTUs in the DCM layer (Table 1). Thus,
if these specific MGIII taxa prefer to utilize substrates provided

by other microbes in the DCM layer, vertical mixing might not
greatly stimulate the growth of these MGIII members.

Potential Link Between AOA and MGllb

The fixation of CO, by marine microbes through
chemoautotrophic pathways is an important process for
providing fresh organic carbon in the deep sea, and the ammonia
oxidation process of AOA may be an important energy source
for the fixation of deep-sea organic carbon (Herndl et al., 2005;
Reinthaler et al., 2010; Konneke et al., 2014). The amoA gene
encodes the alpha subunit of a key enzyme in the ammonia
oxidation process: AMO (Jung et al., 2014). The amoA gene has
stronger specificity and higher resolution than the 16S rRNA gene
and can more accurately reflect the community structure and
distributional characteristics of AOA in environmental samples
(Mosier and Francis, 2008; Dang et al., 2010). In the genomes of
“Candidatus Nitrosopelagicus brevis strain CN25,” “Candidatus
Nitrosopumilus maritimus,” and “Candidatus Cenarchaeum
symbiosum,” a new autotrophic carbon fixing mechanism was
identified, the 3-hydroxypropionate/4-hydroxybutyrate pathway
(Hallam et al., 2006; Walker et al., 2010; Hu et al., 2011b; Santoro
et al., 2015). The accA genes encoding acetyl-CoA (acetyl-CoA)
carboxylase (one of the key enzymes in this pathway) have been
used as phylogenetic markers that reflect the ecological function
of MGI. qPCR studies have shown that accA gene abundance
is related to the abundance of amoA across the entire ocean
water column (Hu et al., 2011a) and also to the abundance of
thaumarchaeal 16S rRNA and the CO, fixation rate (Bergauer
et al.,, 2013; Zhang et al., 2020). In our experiment, the parallel
niche differentiation of autotrophic archaea and an AOA was
confirmed by these genetic markers (aacA and amoA), showing
that the DCM layer and the 400-m layer were dominated by
different AOA groups (Figure 4 and Supplementary Figure S1).

The photoautotrophic cyanobacteria (Flombaum et al., 2013)
and chemolithoautotrophic AOA (Karner et al., 2001) represent
two major groups of marine planktons that are responsible for a
considerable fraction of primary production in the global ocean.
In our incubation systems, almost no marine cyanobacterial
sequences were detected (Supplementary Figure S4), and AOA
was the main microbial group making organic matter available
for heterotrophic microorganisms. Since the MGII metabolic
genes include coding functions related to the TCA cycle,
the intermediate acetyl-CoA produced during carbon fixation
through the 3HP/4HB pathway can be directly involved in
the metabolism of MGII as a precursor (Zhang et al., 2015).
The stimulation of MGII growth and DOC degradation were
observed in our culture experiment (Figures 3, 5). In contrast
to the Control and MWS treatments, two specific MGIIb taxa
within the DCM group, OTU90 and OTU73, grew rapidly after
receiving fresh substrate from 400 m water (Figure 6); this growth
coincided with a rapid decline in DOC in the DCM group
compared with the other two groups in the culture experiment
(Figure 3). Phylogenetic analysis revealed that OTU90 and 73
are photoheterotrophs of the Ca. Thalassarchaeaceae family
in the genera Ol and O4, respectively (Rinke et al, 2019).
Given the distinct AOA communities in the DCM and 400 m
layers, we hypothesize that the AOA in these two layers might
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FIGURE 7 | The possible mechanism by which the growth of Marine Group Il Euryarchaeota is stimulated by carbon flow affected by mesoscale eddies. Particulate
organic matter (POM) produced in the upper ocean enters the ocean interior by sedimentation and physical mixing and releases NH,+ under the action of
heterotrophic microorganisms. MGl Thaumarchaeota couples the oxidation of ammonia with carbon fixation in HCOz ™~ through the 3HP/4HB pathway, and the
intermediate acetyl-CoA can act as a precursor of the TCA cycle and participate in the metabolism of MGIl. Much organic matter produced by ammonia-oxidizing
archaea stored in mesopelagic water is brought into the DCM layer by the mesoscale process. This new organic carbon provides a carbon source for heterotrophic
MGII members and rapidly stimulates the growth of specific MGl taxa. The CO» produced during degradation is released into the atmosphere by sea-air exchange

= With stimulation
= Without stimulation

Marine group II

release different kinds of organic compounds into surrounding
waters and that the vertical mixing process helped pump
these substantial substrates from deep water to DCM layers
for the growth of certain members of MGIIb in the DCM
layer. Recent studies examining the metabolic interactions
between marine AOA and heterotrophic bacterial groups support
our speculations (Bayer et al, 2019ab; Reji et al, 2019).
Our results highlight the potential role of vertical mixing in
linking the uncultured AOA in mesopelagic water and MGIIb
in the DCM layer.

Possible Mechanism of Marine Group i
Euryarchaeota Stimulation by Mesoscale
Eddy-Fueled Organic Carbon

The particulate organic matter produced in the upper ocean
enters the interior of the ocean (below the euphotic layer) by
sedimentation and physical mixing (Eppley and Peterson, 1979;
Ducklow et al.,, 2001) and releases NH4T under the action of
heterotrophic microorganisms (Karl et al., 1984; Kuypers et al.,
2018). MGI Thaumarchaeota couple the oxidation of ammonia
with carbon fixation so that organic matter is synthesized
and stored in the interior of the ocean (Figure 7). CO, is
fixed in the form of HCO3~ through the 3HP/4HB pathway,
and the intermediate acetyl-CoA can act as a precursor of
the TCA cycle and participate in the metabolic processes of

MGII (Santoro et al., 2010; Li et al., 2015; Zhang et al., 2015).
Much organic matter produced by AOA that is only stored
in mesopelagic water is brought into the DCM layer by the
mesoscale eddies, and this new organic carbon provides a carbon
source for heterotrophic MGII members, rapidly stimulating the
growth of MGII members. CO, produced during degradation is
released into the atmosphere by sea-air exchange or is supplied
to the plankton of the DCM layer (Offre et al., 2013; Zhang
et al,, 2015). Niche partitioning of either MGI or MGII was
observed in this study, and the mesoscale eddies are considered
the main mechanism by which organic matter from the interior
of the ocean is brought to the DCM layer. Therefore, the
simulation of this physical process would facilitate predictions of
regional carbon flow under the influence of mesoscale eddies and
how the flow might affect biogeochemical processes in regional
and global oceans.

CONCLUSION

In this study, we demonstrated the distinct niches occupied by
autotrophic MGI Thaumarchaeota between the DCM layer and
mesopelagic water. We have shown that new substrates obtained
by the upwelling of seawater by mesoscale cold eddies quickly
stimulated the growth of specific MGIIb euryarchaeal taxa at
the DCM layer. Given the non-motile lifestyles of MGI in the
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open ocean (Lehtovirta-Morley et al., 2011) and MGII in the
DCM layer (Martin-Cuadrado et al., 2015), we hypothesize that
this physical process is the major contributor bringing this new
organic matter from the interior of the ocean into the upper
layer. Our results provided novel insights into the mechanisms
underlying shifts in active archaeal community composition
by vertical mixing in the western Pacific Ocean. Additional
studies of the enrichment and isolation of representative AOA
and MGII as well as metagenomics analysis will strengthen
our understanding of how the interaction between these
two significant archaeal groups responds to mesoscale eddy
perturbations in the open ocean.
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