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The gut microbiota is a new frontier in health and disease. Not only many diseases are
associated with perturbed microbiota, but an increasing number of studies point to a
cause-effect relationship. Defining a healthy microbiota is not possible at the current
state of our knowledge mostly because of high interindividual variability. A resilient
microbiota could be used as surrogate for healthy microbiota. In addition, the gut
microbiota is an “organ” with frontline exposure to environmental changes and insults.
During the lifetime of an individual, it is exposed to challenges such as unhealthy
diet, medications and infections. Impaired ability to bounce back to the pre-challenge
baseline may lead to dysbiosis. It is therefore legitimate to postulate that maintaining
a resilient microbiota may be important for health. Here we review the concept of
resilience, what is known about the characteristics of a resilient microbiota, and how
to assess microbiota resilience experimentally using a model of high fat diet challenge in
humans. Interventions to maintain microbiota resilience can be guided by the knowledge
of what microbial species or functions are perturbed by challenges, and designed
to replace diminished species with probiotics, when available, or boost them with
prebiotics. Fibers with multiple structures and composition can also be used to increase
microbiota diversity, a characteristic of the microbiota that may be associated with
resilience. We finally discuss some open questions and knowledge gaps.
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INTRODUCTION

The human gut harbors trillions of microbes, essentially bacteria, counting more than 3000 different
bacterial species with each individual harboring 200 to 300 species (Qin et al., 2010). This microbial
ecosystem, the microbiota, plays a crucial role in human physiology and health (Flint et al., 2012;
Gentile and Weir, 2018). Research on gut microbiota has historically focused on associations with
diseases such as Irritable Bowel Syndrome (Menees and Chey, 2018), Inflammatory Bowel Disease
(Ott et al., 2004; Manichanh et al., 2006), allergy (Ho and Bunyavanich, 2018), diabetes (Sharma
and Tripathi, 2018), cancer (Baba et al., 2017; Dahmus et al., 2018), asthma (Fujimura and Lynch,
2015), and obesity (Furet et al., 2010). A few studies have gone beyond association and suggested
causative effect of the microbiota on certain diseases, based either on fecal transplants in humans
(Vrieze et al., 2012; Philips et al., 2017; Palleja et al., 2018; Chen et al., 2019; Costello et al.,
2019; Kang et al., 2019) or on human microbiota transfer to germ-free mice (Le Roy et al., 2013;
Duca et al., 2014; Peng et al., 2014; Kelly et al., 2016; Llopis et al., 2016; Schaubeck et al., 2016;
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Routy et al., 2018; Sharon et al., 2019; Kim et al., 2020). The adult
gut microbiota is fairly stable while constantly being influenced
by the host and by multiple external factors. Triggered by
particularly strong stressors the gut microbiota may be critically
modified and this could impact individual’s health.

HIGH VARIATION OF MICROBIOTA
COMPOSITION AND HOW TO DEFINE A
HEALTHY MICROBIOTA

Defining a healthy microbiota is very important for being able to
prevent or correct dysbiosis and minimize its impact on health.
However, the composition of the microbiota is very diverse
and highly variable, depending on diet (Orwin and Wardle,
2004; Wu et al., 2011; Johnson et al., 2019), geographic location
(Gupta et al., 2017; He et al., 2018), ethnicity (Deschasaux
et al., 2018), level of exercise (O’Sullivan et al., 2015; Cook
et al., 2016; Mach and Fuster-Botella, 2017; Barton et al., 2018),
medication use including but not limited to antibiotics (Zaura
et al., 2015; Imhann et al., 2016; Jackson et al., 2018), and genetics
(Goodrich et al., 2014). In addition to these intrinsic and extrinsic
modulators, a large part of the microbiota variation between
individuals cannot be explained by any specific factor (Walker
et al., 2011; Wu et al., 2011).

The high degree of variability makes it difficult to define a
normal or healthy microbiota (Mardinoglu et al., 2018; McBurney
et al., 2019). Yet some parameters such as increased diversity,
gene richness, or proportion of butyrate producers are often
considered as features of a healthy gut microbiota (reviewed in
Lemon et al., 2012; Lloyd-Price et al., 2016). The impact on
host parameters such as the gut barrier function (Natividad and
Verdu, 2013) and immunity (Ye et al., 2018) can also be taken
into consideration when determining if the gut microbiota is
healthy or dysbiotic.

Alternatively, in case of gut microbial ecosystems, resilience
can be used as a surrogate marker of a healthy ecosystem (Allison
and Martiny, 2008; Banning and Murphy, 2008; Lozupone et al.,
2012; Greenhalgh et al., 2016; Sommer et al., 2017; Fraccascia
et al., 2018). Resilience is the property of an ecosystem to resist
changes under stress or to quickly and fully recover from the
perturbations (Ingrisch and Bahn, 2018, Box 1).

MICROBIOTA RESILIENCE

Linked together with functional and life-sustaining inter-
dependencies, bacteria inhabiting the human gut are structured
as a complex ecosystem with multiple cross-talk (Costello et al.,
2012; Coyte et al., 2015; Gilbert and Lynch, 2019). Such a gut
microbial ecosystem evolves and establishes itself during early
life from neonate to infants to toddlers (Backhed et al., 2015;
Dogra et al., 2015; Stewart et al., 2018) and stays mostly stable
in adult life (Mehta et al., 2018). External stress factors such as
extreme dietary changes (David et al., 2014; Mardinoglu et al.,
2018), infections (Hsiao et al., 2014), antibiotics usage (Jernberg
et al., 2007; Dethlefsen and Relman, 2011; Willing et al., 2011;

Palleja et al., 2018) or other medications, including members
of all therapeutic classes (Le Bastard et al., 2018; Maier et al.,
2018) perturb this ecosystem. Subsequently, this gut microbial
ecosystem may or may not return to its original state. This
is conceptually illustrated in Figure 1, inspired by Folke et al.
(2004). A resilient microbiota will return to its original state of
equilibrium after being subjected to a perturbation, whereas a
non-resilient microbiota will shift to an altered new state.

It can be argued that the microbiota of a healthy individual
with the ability to return quickly and fully to baseline after
a challenge is a healthy microbiota because this resilience
may prevent the establishment of a new equilibrium and drift
toward dysbiosis, with negative impact on the individual’s health
(Sommer et al., 2017).

The concept of gut microbiota resilience has been discussed
in several reviews and perspective articles (Relman, 2012; Lloyd-
Price et al., 2016; Sommer et al., 2017). As recently proposed, a
model combining challenge tests and biomarkers that can inform
on the dynamics of microbiota recovery allows to document
resilience as an indicator of health (Taroncher-Oldenburg et al.,
2018). However, these proposals remain theoretical and to our
knowledge, experimental validation of models for quantification
of resilience has not been reported.

WHAT ARE THE CHARACTERISTICS OF
A RESILIENT MICROBIOTA?

Diversity may be a positive contributor to resilience. Tap et al.
(2015) found that the human gut microbiota richness increases
its stability when challenged by increased dietary fiber intake.
Another human study showed that a weaker antibiotic-induced
perturbation of the microbiota is linked to higher pre-challenge
microbiota diversity (Raymond et al., 2016).

Host immune status may also affect microbiota resilience. Two
studies have shown that genetic ablation of the bacterial sensor
nod 2 in mice leads to impaired recovery of the microbiota from
antibiotic perturbation (Goethel et al., 2019; Anderson et al.,
2020). However, a third study using aroA-deficient Salmonella
as challenge did not find any effect of the nod proteins on
microbiota resilience (Robertson et al., 2016). Nod is an intra-
cellular sensor of immune signals especially sensitive to specific
peptidoglycan structures, hence reactivity may depend on the
pathogen used in the challenge. These elegant basic research
studies suggest that stability of host-microbiota symbiosis may be
another important metric to assess resilience.

BOX 1 | Definitions
Baseline is the state of an ecosystem before perturbation.

Impact is the change in the ecosystem because of a stressor.

Resilience is the property of an ecosystem to maintain its state and recover
from perturbations. The capacity of the system to persist during the impact
(resistance) and to return to baseline after the impact of disturbance (recovery)
determines overall resilience. Conceptually, this has been illustrated in
Figure 2 below.
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FIGURE 1 | Conceptual illustration depicting the native state of an ecosystem, its perturbation, the possibility of returning to its original state or transitioning to a new
state (alternative stable state) (inspired by Folke et al., 2004).

FIGURE 2 | Conceptual illustration depicting the perturbation of the gut microbiota under stress. Resilience describes the capacity of an ecosystem to maintain its
state or recover from disturbances. Resilience is determined by the capacity to reduce the impact (resistance) and to recover from the impact of disturbance
(recovery) (Ingrisch and Bahn, 2018).

A few authors have attempted to model stability and recovery
of the gut microbial ecosystem. Shaw et al. (2019) used stability
landscape frameworks to model recovery of the gut microbiota
after treatment with antibiotics. Certain other methods, such as
increased auto-correlation and variance of the variables in the
‘dominant’ groups, can be early indicators of critical transitions to
alternative stable states (Scheffer et al., 2009; Liu et al., 2015). One
study focused on defining the ‘tipping elements’ in the microbiota
by looking into the distribution of specific microbiota species and
found bi-modal distributions that associate with host parameters.
Some of the bacteria were either hardly present or quite
abundant, depending on certain host factors, and may be those
associated with the shift to an altered state (Lahti et al., 2014).

ASSESSING MICROBIOTA RESILIENCE
EXPERIMENTALLY

There are a few formulae for resilience described in the literature
(Orwin and Wardle, 2004; Banning and Murphy, 2008; Fraccascia

et al., 2018; Lourenco et al., 2018; Ye et al., 2018). Most of
these were reviewed recently and categorized into a conceptual
framework (Bahn and Ingrisch, 2018; Ingrisch and Bahn, 2018;
Yeung and Richardson, 2018). Briefly, these formulae can be
classified into three types of metrics: one describes change in
relation to the baseline from the pre-disturbance state, thereby
assessing to which extent the system gets perturbed; the other
two metrics look into recovery after disturbance. This recovery
can either be formulated as relative to baseline or relative
to magnitude of perturbation. The former emphasizes how
well the system has returned to its pre-perturbation state. The
latter emphasizes how much it has recovered from the impact
of perturbation.

In order to assess microbiota resilience experimentally, one
must apply a challenge to the microbiota and measure some or
all the above-mentioned parameters. A few studies have used
an antibiotic or dietary challenge to perturb the microbiota and
assess the impact of various interventions on this perturbation
(Engelbrektson et al., 2009; Odamaki et al., 2016; Rodriguez-
Morato et al., 2018).
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The David et al. (2014) study provides a good model to
study microbiota resilience in human trials. The challenge
it used is diet of animal origin (e.g., meat, cheese), made
of 70% fat, 0% carbohydrates, and 30% protein. Microbiota
composition changed significantly as early as after 2 days
of dietary intervention and returned to baseline 6 days
after the end of the diet challenge. The advantage of using
a dietary challenge is that it can be standardized, and
does not raise ethical issues, as using antibiotics in healthy
subjects might do.

A resilience index can be computed by using parameters
that are known to be modified by stress such as microbiota
composition, function and/or metabolites. The resilience index
can be used to give a quantitative measure of how much
the microbiota has deviated and how quickly and fully it has
recovered, thereby quantifying resilience. Such a resilience index
provides a measure which can possibly be used to compare
different stressors across studies.

Ideally, one should be able to assess the microbiota
resilience of an individual without applying a stressor. Machine
learning with comprehensive and big data may help design
algorithms based on microbiota and host parameters that can
be used to predict microbiota resilience. One such parameter is
α-diversity. This is supported by a human study showing that
a weaker antibiotic-induced perturbation of the microbiota is
linked to higher pre-challenge microbiota α-diversity (Raymond
et al., 2016). A study using microbiota transfer into germ-
free mice showed that the magnitude of antibiotic induced
perturbation was donor dependent (Lavelle et al., 2019),
giving ground to the hypothesis that it could be possible to
predict resilience by analyzing the baseline microbiota in the
absence of a challenge.

WHAT IS THE RELATIONSHIP OF GUT
MICROBIOTA RESILIENCE TO HEALTH?

As discussed above, throughout the lifetime the gut microbiota
is subjected to repeated and diverse challenges, including
unhealthy diet, medications, alcohol, intense exercise, and
pathogens, to just name some. Decreased ability to resist
these challenges or to return quickly and fully to the pre-
challenge state may lead to a new equilibrium and dysbiosis,
which may contribute to the development of chronic non-
communicable diseases (CNCDs). The diminished ability of
the microbiota to return to baseline and establishment of
a new equilibrium has been observed in human subjects
following treatment with antibiotics (Dethlefsen and Relman,
2011). Thus, intervening to maintain the microbiota in a
resilient state may constitute a measure to delay or prevent the
development of microbiota related CNCDs. It is noteworthy
that the microbiota constitutes an easily accessible “organ” for
intervention, although how to stably modulate the microbiota
may be less evident.

This theory of a link between microbiota resilience and health
is attractive but there are very few data to support it. In a human
study, Mondot et al. (2016) defined microbiota robustness as high

species richness and high inter-OTU (operational taxonomic
unit) correlation. They found that microbiota robustness was
positively associated with Crohn disease remission after ileocolic
resection (Mondot et al., 2016).

WHAT ARE THE POSSIBLE MEANS OF
INTERVENTION?

Fibers
Knowing the characteristics of a resilient microbiota will
help design the interventions aimed at increasing resilience.
While this knowledge is currently incomplete, it is already
known that diversity may be a contributing parameter (Tap
et al., 2015; Raymond et al., 2016) and dietary fibers may be
a way of increasing microbiota diversity. Dietary fibers are
carbohydrate polymers that are not digested nor absorbed in
the upper gastrointestinal tract and reach the colon where
they are subjected to bacterial fermentation. Many studies have
shown that fibers impact the composition and function of
the microbiota, especially the production of short chain fatty
acids (for review see, Holscher, 2017). Studies of humans in
different geographical locations showed that greater dietary fiber
intake is associated with increased gut microbiota diversity
(Rampelli et al., 2015) and human intervention studies have
revealed that dietary fiber and whole grain intake increase the
diversity of the gut microbiota (Martinez et al., 2013; Tap
et al., 2015). Microbiota diversity could in principle also be
increased by a complex mix of dietary fibers providing a wide
range of structures and monosaccharide units as indicated by
at least one mouse study (Cheng et al., 2017). A study in
mice has shown that fibers have a direct effect on improving
microbiota resilience. In this study, the microbiota of mice
fed with a fiber enriched diet and challenged with antibiotic
and Clostridioides (formerly Clostridium) difficile returned to
pre-challenge composition whereas the microbiota of mice fed
a low fiber diet and challenged in the same way did not
(Hryckowian et al., 2018).

Probiotics and Dietary Interventions
Boosting Certain Microbial Species
Published data on human microbiota submitted to various
challenges (Hsiao et al., 2014; Mardinoglu et al., 2018;
Palleja et al., 2018) showed a number of species that are
commonly perturbed. Those may be fragile species that could
be boosted or replenished by nutritional intervention. For
example, Bifidobacterium adolescentis is the most diminished
species with high fat diet (Mardinoglu et al., 2018). In addition,
this species is highly reduced and slow to recover following a
challenge with antibiotics (Palleja et al., 2018). It is therefore
reasonable to put forward and (i) test the hypothesis that
providing B. adolescentis as component of a probiotic blend
may improve the resilience of the microbiota and (ii) exclude
the possibility that B. adolescentis is just a bioindicator. Other
Bifidobacterium and Lactobacillus species that exist as probiotics
such as B. longum, B. bifidum, B. angulatum, and L. casei are
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also altered by challenges to the microbiota (Mardinoglu et al.,
2018; Palleja et al., 2018), although not as dramatically as B.
adolescentis, and hence, could be part of a resilience blend
nutritional solution. Not all challenge-diminished species exist
as probiotics, but ingredients known to boost those species may
also be used to prevent their decline during and after a challenge.
For example, inulin favors the growth of B. adolescentis, and
of Faecalibacterium prausnitzii (Ramirez-Farias et al., 2009).
F. prausnitzii is a beneficial species that is diminished when
the microbiota is challenged with antibiotics or high fat diet
and that is associated with recovery from diarrhea (Hsiao
et al., 2014; Mardinoglu et al., 2018; Palleja et al., 2018).
Dietary interventions aimed at boosting certain species must be
carefully dosed so that the targeted species does not become too
prominent and negatively affect α-diversity, which will be against
the desired effect.

Two studies investigated the effect of probiotics on
perturbations of the microbiota by antibiotics to determine
if they would improve resilience. One study showed no effect of
supplementation with Lactobacillus rhamnosus and Lactobacillus
helveticus on microbiota perturbations induced by the antibiotics
amoxicillin + clavulanic acid (MacPherson et al., 2018)
whereas a second older study showed that a mix of probiotics
(B. lactis Bl-04, B. lactis Bi-07, Lactobacillus acidophilus NCFM,
Lactobacillus paracasei Lpc-37, and Bifidobacterium bifidum
Bb-02), minimizes the amoxicillin + clavulanic acid-induced
disruption of fecal microbiota (Engelbrektson et al., 2009). The
probiotic group in this study, showed a strong trend for improved
recovery by random fragment length polymorphism (RFLP)
analysis, and additionally a significant increase in resistance by
bacterial culture.

Beyond repairing the microbiota composition, it is also
relevant to consider how to minimize the effects of a perturbed
microbiota on the host. Dysbiosis often leads to inflammation
(Blander et al., 2017) and increased gut permeability (reviewed
in Jandhyala et al., 2015), which in turn negatively impacts
the microbiota. To break this vicious circle, interventions
with a mix of probiotics containing species with proven anti-
inflammatory properties such as Lactobacillus rhamnosus GG
(Capurso, 2019) or shown to strengthen the gut barrier such as
Lactobacillus plantarum (Karczewski et al., 2010) may be a good
complementary approach to improving the microbiota by acting
on the host physiology.

OPEN QUESTIONS

Many questions remain to be answered on what other parameters
make a microbiota resilient. The role of keystone species must
be determined and may be important. These taxa are believed
to interact with a large number of other taxa and may help
maintain the status of the microbiota (Fisher and Mehta, 2014).
At this point the role played by keystone species in microbiota
resilience has not been clarified, and only a few candidate
keystone species [e.g., Ruminococcus bromii (Ze et al., 2012)]
have been proposed.

How about rare species? Typically, taxa with abundance below
a certain threshold are rightfully excluded from analyses because
the difference between a very low figure and zero might be due
to method sensitivity and not to a physiological difference. This
approach could be revisited for studies related to resilience, as
the disappearance of low abundance taxa may be more relevant
than a large decrease of an abundant one. If a low abundance
species providing an important function becomes extinct, this
irreversible event could shift the microbiota to a different stable
state which may be a step toward dysbiosis.

The question remains open on whether knowledge at the
species level is sufficiently reliable for intervention. The benefits
of probiotics are known to be strain dependent. Therefore,
providing a particular strain to replace a diminished species may
not work, if it is another strain with a different function that
is perturbed. Further improvements of the analysis techniques
are needed since the current shotgun metagenomic microbiota
analysis technology allows discrimination at the species level, but
rarely at the strain level.

The role in microbiota resilience of gut microbes belonging
to other kingdoms remains to be elucidated. Most studies
of the microbiota have focused on bacteria, but archaea,
eukaryotes, and viruses are also present in the gut. A few
studies have found associations between the composition of
virome, mycome or archaeome and human diseases, including
type 2 diabetes, inflammatory bowel disease, and obesity
(Blais Lecours et al., 2014; Bhute et al., 2017; Borges et al.,
2018; Ghavami et al., 2018; Ma et al., 2018; Maya-Lucas
et al., 2019; Zuo et al., 2019). Interestingly one study showed
reduced virome diversity before development of autoimmunity
in children susceptible to type 1 diabetes (Zhao et al.,
2017). Very little is known about the interactions between
kingdoms of the commensal gut microbes. To our knowledge
there are no studies that suggest a role of viruses, archaea
and fungi in mammalian gut microbiota resilience. Yet,
it is possible that other organisms beyond bacteria play
a role in resilience, especially phages since they have the
ability to infect and lyse specific bacteria, thereby possibly
controlling their numbers.

Another important question is whether the resilience of the
gut microbiota is stress specific or is the degree of resilience
similar regardless of the nature of the stress. At present this
question has not been addressed experimentally.

CLOSING REMARKS

We summarized here the many challenges for understanding
what makes a resilient microbiota and how to devise a strategy
for an effective nutrition intervention to improve resilience.
Improving microbiota resilience may have important beneficial
effects on health. The current knowledge although incomplete,
includes enough information to justify and guide the design
of human trials of first-generation solutions. As we learn
more about the mechanisms of microbiota resilience, future
new findings will be used to design the composition of next-
generation interventions.
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