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The recruitment and activation of polymorphonuclear neutrophils (PMNs) are of
central importance for the elimination of pathogens in bacterial infections. We
investigated the Streptococcus pneumoniae-dependent induction of the transcription
factor Krüppel-like factor (KLF) 4 in PMNs as a potential regulator of PMN
activation. We found that KLF4 expression is induced in human blood-derived
PMNs in a time- and dose-dependent manner by wild-type S. pneumoniae and
capsule knockout mutants. Unencapsulated knockout mutants induced stronger
KLF4 expression than encapsulated wild types. The presence of autolysin LytA-
competent (thus viable) pneumococci and LytA-mediated bacterial autolysis were
required for KLF4 induction in human and murine PMNs. LyzMcre-mediated
knockdown of KLF4 in murine blood-derived PMNs revealed that KLF4 influences
pneumococci killing and increases the release of the proinflammatory cytokines
tumor necrosis factor α and keratinocyte chemoattractant and decreases the
release of the anti-inflammatory cytokine interleukin-10. Thus, S. pneumoniae
induces KLF4 expression in PMNs, which contributes to PMN activation in
S. pneumoniae infection.
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INTRODUCTION

Streptococcus pneumoniae is the main causative agent of community-acquired pneumonia and
meningitis in children younger than 5 years and adults older than 65 years (van de Beek et al.,
2006; Pletz et al., 2012; Prina et al., 2015). S. pneumoniae can give rise to a variety of local (e.g.,
sinusitis and otitis media) or invasive (e.g., pneumococcal sepsis) infections. Different serotypes
are responsible for different organ manifestations (Orihuela et al., 2003). The emergence of
multidrug-resistant S. pneumoniae strains has increased the mortality and morbidity associated
with pneumococcal infections (Van Bambeke et al., 2007). Available pneumococcal vaccines
such as the polysaccharide vaccine or the pneumococcal conjugate vaccine provide insufficient
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immunization (Feldman and Anderson, 2020). Taken together,
S. pneumoniae is responsible for approximately 40,000 deaths
per year in the United States alone (Brooks and Mias, 2018).
It is thus of utmost importance to unveil the molecular
mechanism underlying pneumococcal infections to develop new
therapeutic strategies.

Streptococcus pneumoniae has various virulence factors that
are responsible for its pathogenicity. The capsule forms the
outermost layer and protects, among other things, against
phagocytosis (Kadioglu et al., 2008). Anchored in the underlying
cell wall, S. pneumoniae expresses several proteinergic virulence
factors: of particular importance is the group of choline-binding
proteins comprising the pneumococcal surface protein (Psp)
A (prevents complement C3 binding) (Tu et al., 1999), the
choline-binding protein (Cbp) A (mediates docking to epithelial
cells) (Hammerschmidt et al., 1997), and the autolysins (mediate
bacterial lysis, e.g., for proliferation or release of intracellular
components) (López and García, 2004). Autolysin LytA is the
main autolysin in S. pneumoniae. LytA functions as a murein
hydrolase and releases upon cleavage of covalent cell wall bonds
intracellular virulence factors (such as pneumolysin) and cell
components [such as lipoteichoic acid (LTA), teichoic acid (TA),
and bacterial DNA fragments] (Moscoso and Claverys, 2004;
Mellroth et al., 2012). These pneumococcal components are
recognized as pathogen-associated molecular patterns by pattern
recognition receptors (PRRs) expressed in innate immune cells
[e.g., macrophages and polymorphonuclear neutrophils (PMNs)]
and other cell types (e.g., epithelial and endothelial cells)
(Takeuchi and Akira, 2010). Among the various PRRs, the group
of Toll-like receptors (TLRs) plays a major role in the recognition
of S. pneumoniae (Koppe et al., 2012). Pneumococcal LTA and
TA activate TLR2 (Schröder et al., 2003), whereas TLR4 probably
recognizes pneumolysin (Malley et al., 2003) or, more likely, host
cell danger-associated patterns after cell lysis by pneumolysin
(Erridge, 2010), and TLR9 recognizes pneumococcal DNA
(Hemmi et al., 2000). Upon activation of PRRs, regulation of
transcription factors initiates the immune response.

Our group previously showed that recognition of
S. pneumoniae induces the expression of the transcription
factor Krüppel-like factor (KLF) 4 in human bronchial epithelial
cells (Zahlten et al., 2013) and murine bone marrow (BM)-
derived macrophages (Herta et al., 2018). In bronchial epithelial
cells, KLF4 induction is mediated via TLR9 after recognition
of pneumococcal DNA (released via LytA-dependent autolysis)
and activates anti-inflammatory signaling pathways (Zahlten
et al., 2013; Zahlten et al., 2015). In macrophages, KLF4 is
induced upon direct contact with viable pneumococci and
free (prokaryotic or eukaryotic) DNA, again involving LytA-
dependent bacterial autolysis and DNA recognition via TLR9
(and a hitherto unknown DNA sensor). In contrast to epithelial
cells, KLF4 activates proinflammatory signaling pathways in
macrophages (Herta et al., 2018). PMNs form an important
part of the innate immune system and may be referred to as
spearheads of the host defense against bacterial infections. They
are recruited to the site of infection and activated upon release
of cytokines such as interleukin (IL)-8 and tumor necrosis
factor α (TNF-α) (Suzuki et al., 1996; Craig et al., 2009; Vieira

et al., 2009). After recognition of bacterial components by PRRs
(Thomas and Schroder, 2013), PMNs release proinflammatory
cytokines (thereby amplifying the immune response) and
eliminate pathogens mainly by phagocytosis, spanning of
neutrophil extracellular traps, and release of antimicrobial
compounds such as reactive oxygen species (ROS) (Brinkmann
et al., 2004; Mayadas et al., 2014). To date, only one study has
shown that KLF4 regulates PMN activation after induction of
expression by lipopolysaccharide (LPS) or the Gram-negative
bacterium Escherichia coli. In this study, KLF4-deficient murine
PMNs exhibited reduced production of proinflammatory
cytokines and ROS, impaired degranulation, and impaired
bacterial killing and clearance (Shen et al., 2017). Here, we
examined the induction of KLF4 in human PMNs by the
Gram-positive bacterium S. pneumoniae. Furthermore, we
studied the function of KLF4 in murine PMNs after infection
with S. pneumoniae.

MATERIALS AND METHODS

Chemicals
CpG (ODN M362) was purchased from Invivogen
(United States), MALP-2 from Alexis Biochemicals
(United States), and LPS from Salmonella minnesota from
Enzo Life Sciences GmbH (Germany). All chemicals used were
of analytical grade and received from commercial sources.

Bacterial Strains and Bacterial Products
For the present study, the S. pneumoniae serotype 2 wild-type
strain D39, the unencapsulated D39 mutants D391cps and R6×,
and the unencapsulated and autolysin LytA-deficient mutant
R6×1lytA were used. For infection of the cells, the bacterial
strains were plated on 5% sheep blood Columbia agar plates
supplemented with kanamycin for the mutant strains. The plates
were incubated overnight at 37◦C with 5% CO2. The next day,
single bacterial colonies were transferred to THY and allowed to
grow until mid-log phase at 37◦C with 5% CO2. The bacteria
were centrifuged at 1,800 g for 10 min, and the pellets were
resuspended in RPMI 1640 with 2% fetal calf serum and 1%
glutamine to the required concentration for the infection of cells.
For the isolation of the bacterial DNA pellets, samples were
resuspended in TES, and lysozyme and mutanolysin were added
and incubated at 37◦C for 1 h for cell lysis. RNase was added for
15 min at 37◦C, followed by a 30-min incubation with proteinase
K at 30◦C. Then, 10% N-lauroylsarcosine sodium salt (in 250 mM
EDTA) was added for 1 h at 37◦C. To precipitate the DNA, phenol
and sodium acetate were added. The DNA pellet was dissolved in
TE buffer after a washing step with ethanol.

Isolation of Human Blood PMNs
Human PMNs used in this study were isolated from buffy
coats obtained from the German Red Cross blood transfusion
service Berlin (Germany) using an EasySepTM direct human
neutrophil isolation kit (StemcellTM Technologies) following the
manufacturer’s instructions. The isolated cells were resuspended
in RPMI 1640 (Gibco, United States) supplemented with 2%
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fetal bovine serum (GE Healthcare, United States) and 1% L-
glutamine (Sigma–Aldrich, United States).

Animals
C57BL/6 ERT-cre + /−/KLF4loxP/loxP mice and C57BL/6
ERT-cre−/−/KFL4loxP/loxP mice (a kind gift from Gary K.
Owens, Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville) and B6.129P2-
Lyz2tm1(cre) Ifo mice (Charles River, United States) were
mated to generate myeloid KLF4 knockout mice (C57BL/6
LyzMcre+/+/KLF4loxP/loxP mice, referred to as KLF4−/−) and
KLF4 control mice (C57BL/6 LyzMcre−/−/KLF4loxP/loxP mice,
referred to as KLF4+/+). Heterozygous myeloid KLF4 knockout
mice (C57BL/6 LyzMcre+/−/KLF4loxP/loxP) are referred to as
KLF4+/−.

Isolation of Murine Bone Marrow PMNs
and Murine Blood PMNs
To obtain BM-derived PMNs, mice were anesthetized with
xylazine and (Rotexmedica, France) ketamine intraperitoneally
and exsanguinated via the vena cava caudalis. Femurs and tibias
were detached, and soft tissue was removed. BM was flushed
out with sterile phosphate-buffered saline (PBS), BM-cells were
isolated as described in Swamydas et al. (2015), and BM-PMNs
were selected using the MACS mouse anti-Ly-6G Microbead
Kit (Miltenyi Biotech, Germany) following the manufacturer’s
instructions. Selected BM-PMNs were resuspended in RPMI
1640 supplemented with 2% fetal bovine serum and 1% L-
glutamine. To obtain murine blood PMNs, blood was collected
from the vena cava caudalis after injection of 50 µL of heparin.
Before the PMNs were isolated, the composition of the cells
was analyzed using the Scil Vet ABCTM Hematology Analyzer.
The main blood cell fractions were lymphocytes (70%), PMNs
(10%), and monocytes (5%). The remaining 15% were platelets
and other granulocytes. There were no differences between the
blood cells found in control (KLF4+/+) and myeloid KLF4
knockout (KLF4−/−) mice (data not shown). Red blood cells
(RBCs) were lyzed with RBC lysis buffer (155 mM NH4Cl, 10 mM
KHCO3, 10 nM EDTA-Na; pH 7.4), and PMNs were selected
using the MACS mouse anti-Ly-6G Microbead Kit. Blood PMNs
and the remaining white blood cells (referred to as WBC1PMNs)
were separately resuspended in RPMI 1640 with 2% fetal bovine
serum and 1% L-glutamine. To obtain enough PMNs for one
experiment, the blood of 10–11 mice per group was pooled to
obtain approximately 1× 106 blood-derived PMNs.

Stimulation of Human and Murine PMNs
Human and murine PMNs were stimulated with S. pneumoniae
bacterial suspensions [1 × 106 colony-forming units (CFU)/mL
or 1 × 108 CFU/mL for multiplicity of infection (MOI) 1,
10, or 100] for 3 or 6 h, or 5 µg/mL isolated R6× DNA,
0.05 ng/µL MALP-2, 10 ng/µL CpG, or 0.1 ng/µL LPS for
6 h in RPMI 1640 supplemented with 2% fetal bovine serum
and 1% L-glutamine for Western blot experiments. For enzyme-
linked immunosorbent assay (ELISA) experiments, murine
blood-derived PMNs were stimulated with D39 MOI 1 for

16 h. Supernatants were harvested, centrifuged, and subjected
to analysis.

Western Blot
Cells were lyzed in lysis buffer containing NP40. Forty
micrograms of total protein was subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (using 10% gels)
and transferred to Hybond-ECL membranes (GE Healthcare,
United States). Membranes were blocked with Odyssey blocking
buffer (LI-COR Biosciences, United States) for 2 h at room
temperature and incubated with primary antibodies against KLF4
(catalog #sc-20691, Santa Cruz Biotechnology, United States)
or β-actin (catalog #sc-130656, Santa Cruz Biotechnology,
United States) each 1:1,000 overnight at 4◦C. Membranes
were washed with PBST (1 × PBS + 0.01% Tween-20) and
incubated with the respective secondary antibodies anti-rabbit
Cy5.5 (1:2,000) or anti-goat IRDye800 (1:2,000) purchased
from Rockland (United States) for 1 h at room temperature.
Protein levels were detected and quantified using a LI-COR
Odyssey 2.0 infrared imaging system (LI-COR Biosciences,
United States). The quantification of the KLF4 and β-actin bands
was performed with strict regard to the methodical requirements
as described in Taylor et al. (2013).

CFU Assay
Streptococcus pneumoniae strains D39 and R6× were grown to
midlogarithmic phase as described above. The bacterial pellet
was resuspended in Hanks balanced salt solution (HBSS) with
calcium and magnesium (Gibco, United States). Ten microliters
of 1 × 108 CFU/mL of the bacterial suspension was opsonized
with 40 µL of serum from the respective mouse strain for 30 min
at 37◦C and added to the murine PMNs at a concentration of
1 × 107 CFU/mL (MOI 100) for 1 or 3 h at 37◦C. Lysis buffer
(10% Triton X-100 in HBSS) was then supplemented into the
medium and incubated for 10 min at 37◦C. Serial dilutions were
plated on Columbia agar plates containing 5% sheep blood (BD
Biosciences, United States) and incubated overnight at 37◦C. The
next day, colonies were counted, and CFUs were calculated. The
results were shown as CFU in percent of input (set to 100%).

ELISA
Mouse TNF-α, keratinocyte chemoattractant (KC), IL-1β, and
IL-10 in the supernatants of stimulated cells were measured
using TNF-α (eBioscienceTM, United States), KC, IL-1β, and
IL-10 (R&D Systems, United States) ELISA kits following the
manufacturer’s instructions.

Data Analysis
Statistical analysis was performed using GraphPad Prism 6
(GraphPad, United States). The results were compared using
the Kruskal–Wallis test [non-parametric one-way analysis of
variance (ANOVA)] with Dunn multiple-comparisons test, non-
parametric two-way ANOVA with Bonferroni post hoc test, or
unpaired t-test as specified in the figure legends. P < 0.05 was
considered statistically significant.
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RESULTS

KLF4 Is Induced in Human PMNs by
S. pneumoniae and Requires the
Presence of LytA-Competent
Pneumococci
We previously showed that S. pneumoniae induces KLF4 in
murine macrophages via TLR9, the TLR adapter proteins MyD88
and TRIF, and a hitherto unknown host cell DNA sensor (Herta
et al., 2018). Nothing is known about the S. pneumoniae-
dependent induction of KLF4 in PMNs. Therefore, we stimulated
PMNs isolated from human blood with wild-type S. pneumoniae
and the two capsule-deficient mutants D391cps and R6× for
3 h (Figure 1A) or 6 h (Figures 1A–D) with different MOIs
(MOI 1, Figures 1A–E and Supplementary Figure 1, or MOI

10 and MOI 100, Figures 1C,D). We found that unstimulated
human PMNs did not express KLF4, whereas D39, D391cps,
and R6× induced KLF4 expression. While R6× induced KLF4
already after 3 h of infection with an MOI of 1, higher MOIs
(10 and 100) and longer infection times (6 h) were needed
with D39 and D391cps. Cells were then stimulated with the
TLR2 agonist MALP-2, the TLR4 agonist LPS, or the TLR9
agonist CpG for 6 h. However, no induction of KLF4 was
detectable (Figure 1B). As pneumococcal DNA released by
autolysin LytA-dependent autolysis is required for the induction
of KLF4 in human lung epithelial cells (Zahlten et al., 2015)
and murine macrophages (Herta et al., 2018), we stimulated
human blood PMNs with R6×, the autolysin LytA-deficient R6×
mutant R6×1lytA, or R6× DNA alone or in combination with
R6×1lytA (MOI 1 for 6 h) (Figure 1E). While KLF4 was not
induced by R6×1lytA and R6× DNA alone, the combination

FIGURE 1 | Induction of KLF4 expression in human blood-derived PMNs by S. pneumoniae requires LytA-dependent bacterial autolysis. PMNs isolated from human
blood were stimulated with D39, D391cps, or R6× pneumococci with different MOIs (1, 10, or 100) for 3 or 6 h (A–D), with 0.05 ng/µL MALP-2 (M-2), 10 ng/µL
CpG, or 0.1 ng/µL LPS for 6 h (B), or with R6×, R6×1lytA (MOI 1), or 5 µg/mL R6× DNA alone or in combination with R6×1lytA (MOI 1) (E). Cell lysates were
collected after stimulation and analyzed for KLF4 expression using Western blotting. β-Actin confirmed equal protein loading. The densitometries of the KLF4 and
β-actin bands were quantified using an Odyssey 2.0 infrared imaging system. The ratios of the KLF4 and β-actin densitometries were calculated and shown as the
fold change of induction to unstimulated PMNs (control, C). Quantifications show the mean with standard deviation of at least three (A–D) or four (E) independent
experiments. Statistics: Two-way ANOVA with Bonferroni post hoc test (A). Kruskal–Wallis test with Dunn multiple-comparisons test (B–E). *p < 0.05; ***p < 0.001.
Each experiment was performed with PMNs isolated from the buffy coat of a different donor.
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of R6×1lytA and R6× DNA partly restored KLF4 induction.
We observed a similar induction mechanism in murine blood-
derived PMNs (Supplementary Figure 1). Thus, S. pneumoniae
induces KLF4 in human and murine PMNs. This induction
is not exclusively mediated via TLR2, TLR4, or TLR9. It
requires the presence of intact S. pneumoniae and the autolysin
LytA-dependent release of intracellular bacterial components
(e.g., bacterial DNA).

KLF4 Knockout in Murine PMNs
Influences Pneumococcal Killing
To study the function of KLF4 in murine PMNs, myeloid-
specific KLF4 knockout mice with a C57BL/6 background
were used. PMNs were isolated from the blood and BM of
these animals and stimulated with R6× (MOI 1 for 6 h)
to assess KLF4 knockout efficacy. While KLF4 induction
by R6× did not differ in BM-derived PMNs (Figure 2A)
and other remaining white blood cells after PMN isolation
(WBC1PMNs, Figure 2B) obtained from control (KLF4+/+)
and myeloid KLF4 knockout (KLF4−/−) mice, we found a strong
(>80%) reduction in KLF4 expression in blood KLF4−/− PMNs
(Figure 2B) after stimulation with R6×. Thus, KLF4 knockout
was developed only in mature but not premature myeloid PMNs
in LyzMcre mice.

Given that bacterial killing is an important function
of PMNs in innate immunity, we tested whether KLF4
deficiency in PMNs alters pneumococcal killing properties.
Blood-derived PMNs from control (KLF4+/+) and myeloid
KLF4 knockout (KLF4−/−) mice were incubated for 1
and 3 h with opsonized S. pneumoniae D39 (MOI 100)
(Figure 2C) or R6× (MOI 100) (Figure 2D) to perform
CFU assays. KLF4+/+ PMNs showed natural killing activity
of ∼90–95% (which corresponds to ∼1.5 log scales) for
both bacterial strains. KLF4−/− PMNs showed a significant
lower killing of D39 and a tendency toward reduced killing
of R6× pneumococci compared to KLF4+/+ PMNs after
3 h of incubation, although differences between KLF4+/+

and KLF4−/− PMNs did not exceed 1 log scale for both
bacterial strains. Thus, the loss of KLF4 reduces pneumococci
killing in PMNs.

KLF4 Knockout in Murine PMNs Leads to
Reduced Secretion of TNF-α and KC and
Increased Secretion of IL-10 When
Stimulated With S. pneumoniae
Cytokines such as TNF-α, KC, IL-1β, and IL-10, released, among
others, by PMNs, orchestrate the innate immune response in
bacterial infections (Borish and Steinke, 2003; Turner et al.,
2014). We previously showed that knockout of KLF4 in murine
macrophages reduces the release of proinflammatory cytokines
and increases the release of the anti-inflammatory cytokine IL-10
after stimulation with S. pneumoniae (Herta et al., 2018). To
investigate whether KLF4 modulates pneumococci-dependent
proinflammatory and anti-inflammatory cytokine release in
murine PMNs, we stimulated blood-derived PMNs and other
WBC1PMNs from control (KLF4+/+) and myeloid KLF4

knockout (KLF4−/−) mice with S. pneumoniae D39 (MOI 1
for 16 h) and measured proinflammatory TNF-α, KC, and IL-
1β as well as anti-inflammatory IL-10 cytokine release using
ELISAs. The release of TNF-α and KC was significantly reduced,
and the release of IL-10 increased in KLF4−/− blood-derived
PMNs compared to the respective control cells (Figures 3A,B,D),
whereas WBC1PMNs showed no difference in TNF-α, KC,
and IL-10 release (Figures 3E,F,H). The release of IL-1β was
unaffected in PMNs and WBC1PMNs (Figures 3C,G). Thus,
KLF4 increases proinflammatory TNF-α and KC but not IL-1β

release and decreases anti-inflammatory IL-10 release in murine
PMNs when stimulated with S. pneumoniae.

DISCUSSION

In the present study, we identified the transcription factor KLF4
as a potential mediator of PMN activation in S. pneumoniae
infection. The following observations support this finding: (i)
while KLF4 was not detectable in unstimulated murine and
human PMNs, stimulation with S. pneumoniae induced the
expression of KLF4. Interestingly, the induction mechanism in
PMNs is partly similar to the one we described in macrophages
(Herta et al., 2018) and epithelial cells (Zahlten et al., 2013, 2015);
in all cell types, autolysin LytA-mediated bacterial autolysis was
necessary to induce KLF4. The activation of single TLRs by TLR
agonists (MALP-2, LPS, and CpG) was not sufficient to foster
KLF4 expression, neither in macrophages nor in epithelial cells
or PMNs. In macrophages and PMNs, the abolished or reduced
induction of KLF4 expression by LytA-deficient pneumococcal
mutants could at least partly be restored by the addition of free
(bacterial) DNA. In both cell types, encapsulated pneumococci
induced a weaker KLF4 expression, which might indicate that
(in addition to free bacterial DNA) the recognition of a so far
unidentified pneumococcal cell wall component (partly covered
by the capsule) is necessary to induce KLF4. As macrophages
and PMNs arise from common myeloid precursors, both cell
types share several characteristics, such as similar transcriptional
profiles and overlapping expression of PRRs (Silva, 2010; Prame
Kumar et al., 2018). Thus, a similar induction mechanism of
KLF4 by S. pneumoniae in both cell types is in line with these
observations. Shen et al. (2017) support our finding, as they
reported a strong induction of KLF4 in murine BM-derived
PMNs when stimulated with E. coli. However, they also found an
induction of KLF4 after stimulation with the TLR4-ligand LPS.
A possible explanation for this conflicting result might be the
use of human (in this study) or murine PMNs (Shen et al., 2017)
for LPS stimulation. TLR4’s function with respect to intracellular
regulation of signaling pathways upon stimulation with LPS may
vary between different species (Vaure and Liu, 2014). Moreover,
the affinity and sensitivity of TLR4 for its ligand LPS are different
in mice and humans, as the ligand-binding domain exhibits
considerable sequence divergence (Werling et al., 2009). This is
potentially important as LPS from different sources was used
(S. minnesota versus E. coli), and the induction of KLF4 was
assessed with techniques that differ in sensitivity and kinetics of
regulation (protein level by Western blotting versus mRNA level
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FIGURE 2 | LyzMcre KLF4 knockout develops in mature but not premature murine PMNs and reduces the killing of S. pneumoniae in murine blood-derived PMNs.
PMNs were isolated from bone marrow (A) or blood (B) of control (KLF4+/+, black bars), heterozygous myeloid KLF4 knockout (KLF+/−, white bars), and
homozygous myeloid KLF4 knockout (KLF4−/−, gray bars) mice and stimulated with R6× pneumococci (MOI 1 for 6 h). Cell lysates were collected after stimulation
and analyzed for KLF4 expression using Western blotting. β-Actin confirmed equal protein loading. The densitometries of the KLF4 and β-actin bands were
quantified using an Odyssey 2.0 infrared imaging system. The ratios of the KLF4 and β-actin densitometries were calculated and are shown as the fold change of
induction to control (KLF4+/+) PMNs. Quantifications show the mean with standard deviation of three independent experiments. Blood-derived PMNs from control
(KLF4+/+, black lines) and KLF4 knockout (KLF4−/−, gray lines) mice were stimulated with opsonized D39 (C) or opsonized R6× pneumococci (D) (MOI 100 for 1
and 3 h, input, dashed lines) for the CFU assay. Graphs show mean with standard deviation of CFU in percent of input (set to 100%) of three independent
experiments. Statistics: Kruskal–Wallis test with Dunn multiple-comparisons test (A,B) or two-way ANOVA with Bonferroni post hoc test (C,D). ****p < 0.0001;
*p < 0.05; n.s., not significant.

by quantitative PCR). Neutrophils are relatively non-responsive
to a single stimulus, but exposure to one stimulus (e.g., LPS)
enhances the ability to mount a strong activation in response to
a second stimulus (referred to as PMN priming) (Swain et al.,
2002; Mayadas et al., 2014). As KLF4 is a potential mediator of
PMN activation (discussed below), the necessity of more than

one stimulus to induce KLF4 expression (as we observed with
S. pneumoniae) is explainable. Overall, KLF4 is induced in PMNs
in response to pathogen stimulation (S. pneumoniae, E. coli). (ii)
KLF4 expression is involved in PMN activation in S. pneumoniae
infection by increasing the release of proinflammatory cytokines
and reducing the release of the anti-inflammatory cytokine IL-10.
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FIGURE 3 | Knockout of KLF4 decreases the pneumococci-induced proinflammatory and increases the anti-inflammatory cytokine response in murine
blood-derived PMNs. Blood PMNs and other white blood cells after PMN isolation (WBC1PMNs) derived from control (KLF4+/+, black bars) and myeloid KLF4
knockout (KLF4−/−, gray bars) mice were stimulated with D39 pneumococci (MOI 1 for 16 h). Supernatants were collected, and TNF-α (A,E), KC (B,F), IL-1β (C,G),
and IL-10. (D,H) ELISAs were performed. Graphs show the mean with standard deviation of three independent experiments. Statistics: unpaired t-test. **p < 0.01;
***p < 0.001; ****p < 0.0001; n.s., not significant; N.D., not detectable.

To study the function of KLF4 in PMNs, the LyzMcre system
was applied to generate myeloid-specific KLF4 knockout mice.
In line with Clausen et al. (1999), we found that knockout
of KLF4 was developed in mature (blood-derived) but not
premature (BM-derived) PMNs or in the remainder of the
WBC fraction after PMN isolation in our system. Thus, mature
blood-derived PMNs from control (KLF4+/+) and myeloid
KLF4 knockout (KLF4−/−) mice were used to assess KLF4
function. Again, similar to macrophages (Herta et al., 2018),
knockdown of KLF4 in murine blood-derived PMNs strongly
reduced the release of the proinflammatory cytokines TNF-α
and KC (the murine homolog of human IL-8) and increased
the release of IL-10 in response to S. pneumoniae stimulation.
Shen et al. (2017) support this finding, as they observed blunted
transcription of TNF-α in KLF4-deficient murine PMNs. The
release of the proinflammatory cytokine IL-1β was not affected
by KLF4 knockout in murine PMNs. As the production of
IL-1β is regulated by inflammasomes [while TNF-α and KC
strongly depend on nuclear factor κB (NF-κB)] (Liu et al.,
2017; Chan and Schroder, 2020), KLF4 might influence the
release of NF-κB-dependent but not inflammasome-dependent
proinflammatory cytokines. As expected, we could not observe
any changes in the cytokine response in pneumococci-stimulated
WBCs1PMNs. The main fraction of these cells is lymphocytes
that are not affected by the LyzMcre-mediated knockdown of
KLF4 (Clausen et al., 1999).

Because of their robust reactivity with potential host tissue-
damaging activity (Nathan, 2006), PMNs are typically not
resident in tissue and organs. Instead, they circulate as quiescent
cells in the blood, are ready to become recruited to the site
of infection, and are activated by cytokines (Prame Kumar
et al., 2018). The importance of TNF-α and KC/IL-8 for PMN
recruitment and activation is well known (Vieira et al., 2009;
Mayadas et al., 2014). The source of these cytokines was believed
to be tissue resident immune and non-immune cells. However,
the view of PMNs as terminally differentiated effectors solely
regulated by external signals is changing (Mayadas et al., 2014).
PMNs, upon activation, produce a variety of mediators and
cytokines (including TNF-α, KC/IL-8, and IL-10) with regulatory
effects on the immune response, including their own activation
and recruitment (Sadik et al., 2011; Tecchio et al., 2014). Thus, we
reason that KLF4 (among other transcription factors) mediates
PMN activation in S. pneumoniae infection by increasing the
release of TNF-α and KC/IL-8 and reducing the release of IL-10.

In line with Shen et al. (2017), KLF4 might influence
pneumococci killing in PMNs. However, in contrast to previous
results with E. coli (Shen et al., 2017), pneumococci killing
activity was reduced by less than 1 log scale after knockdown
of KLF4. PMNs dispose of several intracellular and extracellular
mechanisms for bacterial killing, dependent on oxygen and
its reactive intermediates (e.g., ROS) or oxygen-independent
mechanisms (e.g., antimicrobial peptides, granule proteases,
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lysozymes) (Hampton et al., 1998; Nauseef, 2007). Pathogens
differ in their sensitivity to these mechanisms. S. pneumoniae
successfully evades the respiratory burst response in PMNs
(Schaper et al., 2003; Marriott et al., 2008) but is sensitive to
granule proteases (Standish and Weiser, 2009), whereas E. coli
is strongly targeted by ROS (Phan et al., 2018). KLF4 might
thus influence oxygen-dependent but to a lesser extent oxygen-
independent bacterial killing mechanisms in PMNs.

In summary, the obtained results underline the importance
of the transcription factor KLF4 as a regulator of the innate
immune response in S. pneumoniae infection. While KLF4 in
PMNs and macrophages (Herta et al., 2018) activates the release
of proinflammatory and inhibits the release of anti-inflammatory
cytokines, it counteracts this effect in epithelial cells by inhibiting
the release of proinflammatory and activating the release of anti-
inflammatory cytokines (Zahlten et al., 2013, 2015). We therefore
speculate that KLF4 induction in myeloid cells promotes
S. pneumoniae elimination, whereas KLF4 induction in epithelial
cells acts as an anti-inflammatory safety mechanism to prevent
hyperinflammation and host tissue destruction in S. pneumoniae
infection. The present study, together with our previous findings
in macrophages and epithelial cells, provides a rationale to further
investigate the role of KLF4 in S. pneumoniae infection in vivo.
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