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Biofilms are generally defined as communities of cells involved in a self-produced
extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive
to host defense mechanisms and antimicrobial agents, due to multiple strategies,
that involve modulation of gene expression, controlled metabolic rate, intercellular
communication, composition, and 3D architecture of the extracellular matrix. These
factors play a key role in streptococci pathogenesis, contributing to therapy failure
and promoting persistent infections. The species of the pyogenic group together
with Streptococcus pneumoniae are the major pathogens belonging the genus
Streptococcus, and its biofilm growth has been investigated, but insights in the genetic
origin of biofilm formation are limited. This review summarizes pyogenic streptococci
biofilms with details on constitution, formation, and virulence factors associated
with formation.
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INTRODUCTION

In nature, bacteria can exist in the planktonic form, where cells live freely in solution, but
the sessile form, where a community grows enclosed in an extracellular polymer matrix while
attached to a biotic or abiotic surface, is far more common (Donlan, 2002). This phenotype
corresponds to a biofilm and can occur on virtually all types of surfaces (Garrett et al., 2008;
Flemming and Wingender, 2010; Jamal et al., 2018). The biofilm consists of a tri-dimensional
complex community of genetically similar or distinct cells that produce a matrix of extracellular
polymeric substances (EPS), which accounts for 80% of the structures. The EPS contains a
mixture of alginates, extracellular teichoic acid (TA), proteins, poly-N-acetyl glucosamine, lipids,
phospholipids, polysaccharides, and extracellular DNA (e-DNA). About 97% of the EPS is
composed of water, which is found as a solvent, dictating viscosity and mobility (Sutherland, 2001;
Lu and Collins, 2007; Flemming and Wingender, 2010; Kumar et al., 2017; Jamal et al., 2018).

Biofilm formation is part of a defense mechanism that bacteria adopt to achieve a favorable
environment, keep nutrients and increase the chances of survival (Chen and Wen, 2011;
Young et al., 2016; Del Pozo, 2018; Jamal et al., 2018; Khatoon et al., 2018).

It is known that biofilms play an important role in streptococci pathogenesis, namely species that
belong to the microbiota flora of animals and humans, but also species that are restricted human
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pathogens. These can cause opportunistic infections, that under
appropriate conditions give rise to localized and systemic
infections, with considerable implications on public health and
veterinary industry (Pires et al., 2005; Rato et al., 2013; Barnett
et al., 2015; Peters, 2017). Streptococci are divided into groups
based on 16S rRNA gene sequence analysis: “Pyogenic,” “Sanguis,”
“Bovis,” “Mutans,” “Mitis,” “Anginosus,” and “Salivarius” (Lal
et al., 2011). Afterward, the “Downei” group was created to
accommodate Streptococcus downei and Streptococcus criceti.
However, some relationships between groups are not fully
understood. This probably reflects the effect of horizontal gene
transfer (HGT) during the early diversification of these clusters
(Richards et al., 2014). In Table 1, a description of Streptococcus
species with clinical and veterinary relevance is presented. The
pyogenic Streptococci as Streptococcus pyogenes, Streptococcus
agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae (SDSD),
and Streptococcus dysgalactiae subsp. equisimilis (SDSE),
together with Streptococcus pneumoniae are the major pathogens
belonging the genus Streptococcus (Parks et al., 2015).

Pyogenic bacteria are responsible for causing purulent
respiratory tract and skin infections; among these are
pharyngitis, septicemia, necrotizing fasciitis, bacteremia,
meningitis, pneumonia, septic arthritis, rheumatic streptococcal
toxic shock syndrome, acute rheumatic fever/rheumatic heart
disease, scarlet fever, as described in Table 1 and references
therein. The actual burden of pyogenic infections is difficult to
trace due to the variety of settings and the level of severity of the
manifestations, which can go from mild symptoms as sore throat,
escalating to severe, life-threatening, conditions. According to
Carapetis and coworkers 2005 estimation, “there are at least
517 000 deaths each year due to severe Streptococcus pyogens
diseases” (Carapetis et al., 2005).

Biofilm growth of streptococci has been investigated, but
insights in the genetic origin of biofilm formation are limited.
Although most pyogenic streptococci are able to develop
biofilms, there is substantial heterogeneity in biofilm formation
among individual strains (Konto-Ghiorghi et al., 2009; Trappetti
et al., 2011; Marks et al., 2014a; Genteluci et al., 2015; Rosini
and Margarit, 2015; Young et al., 2016; Alves-Barroco et al.,
2019). Avoiding failure of antimicrobial therapy in the pyogenic
streptococcal group requires an in depth knowledge of these
singularities and the integration of chemical and physical
methods to prevent/control/eradicate the biofilm formation.
This review summarizes pyogenic streptococci biofilms with
details on the constitution, formation, and virulence factors
associated with formation.

BIOFILMS FORMATION AND DISPERSAL

Biofilm formation is a complex multi-step process, where
adhesive and disruptive forces interplay (Jefferson, 2004;
Chen and Wen, 2011; Young et al., 2016; Del Pozo, 2018).
The formation of a biofilm is typically described in three
stages: (a) initiation, where attachment occurs (which can be
reversible and irreversible), (b) maturation, with microcolonies
development, and (c) dispersal, where cells detach (Donlan, 2001;

Garrett et al., 2008; Kumar et al., 2017; Jamal et al., 2018;
Khatoon et al., 2018; Figure 1).

Several streptococci virulence factors have been described as
associated with biofilms formation (Table 2). In the next sections
we will highlight some of them.

Regulatory Factors That Control Biofilm
Development
Quorum-sensing (QS) is an intercellular communication system
used by bacteria to control social behavior, intrinsically
dependent on cell density. QS regulates both cooperation
and competition within an interspecies bacterial community
(Abisado et al., 2018). Several products, as proteases or toxins,
are produced by individual cells but can be used by any member
of the community, in a common good philosophy. QS has
been implicated in all stages of biofilm development, namely
by modulating initiation, maturation and dispersal (Parsek and
Greenberg, 2005; Dickschat, 2010). Generally, QS relies on the
production and sensing of extracellular signals. These systems are
composed of two proteins and a signaling molecule; one of the
proteins generates the signaling molecule, and the other protein
acts as a sensor, activating the expression of other proteins. In the
case of Gram-positive bacteria, the signal can be a linear or cyclic
peptide, while the sensor is a two-component signal transduction
system composed of a membrane-bound histidine kinase, and an
intracellular response regulator (Kleerebezem et al., 1997).

In Streptococcus, the QS systems can be categorized into
three main types: (i) Regulator of glucosyltransferase (Rgg), (ii)
Streptococcal invasion locus (Sil), and (iii) LuxS/AI-2.

The Rgg family is composed of transcription regulators widely
disseminated among Gram-positive bacteria, that respond to
signaling peptides. These have been shown to modulate genetic
determinants associated with virulence, competence, and biofilm
establishment, maturation and dispersion in S. pyogenes, S.
pneumonia, Streptococcus gordonii, Streptococcus mutans, and
Streptococcus intermedius (Loo et al., 2000; Li et al., 2002; Petersen
et al., 2004; Suntharalingam and Cvitkovitch, 2005; Mashburn-
Warren et al., 2010; Junges et al., 2017). S. pyogenes contains
four Rgg paralogs: RopB (Rgg1), Rgg2, Rgg3, and ComR (Rgg4)
(Cook et al., 2013). RopB, the most studied Rgg, is required
for transcription of the streptococcal pyrogenic exotoxin B
(speB) gene that targets several different host proteins important
for resistance (namely interleukins, antimicrobial peptides, and
components of the extracellular matrix). The highest expression
levels of speB are observed in the stationary phase, which suggests
that gene activation by RopB requires high cell density (Cook
et al., 2013). The role of the Rgg2 and Rgg3 systems to the
S. pyogenes life cycle and pathogenesis has not been completely
elucidated. Studies have demonstrated that these regulators
respond to small hydrophobic peptides – SHP2 and SHP3,
controlling differential gene expression and biofilm development.
S. pyogenes Rgg2 is an activator of genes, while Rgg3 inactivate
its expression; they compete for binding to the same regions
on gene promoters, upstream of shp2 and shp3. In this way,
Rgg2 and Rgg3 regulate the same function in antagonistic ways
(Chang et al., 2011; Lasarre et al., 2012).
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TABLE 1 | Streptococcus species of clinical and veterinary importance.

Group Species Lancefield
group

Main host Clinical manifestations References

Anginosus S. anginosus A, C, F, G Human Bacteremia Giuliano et al., 2012; Noguchi et al.,
2015

S. intermedius A, C, F, G Dogs Bacteremia and abscesses with active periodontal Tran et al., 2008

Bovis S. bovis D Bovine Endocarditis, bacteremia, meningitis, septicemia, inflammatory
gastrointestinal

Dekker, 2016

Mitis S. pneumonia Viridans Human Acute conjunctivitis, meningitis, otitis media, pleural empyema,
pneumonia, septic arthritis, septicemia

Henriques-Normark and Tuomanen,
2013

S. mitis Viridans Human Throat infection, bacteremia, endocarditis Shelburne et al., 2014; Basaranoglu
et al., 2019

S. oralis Viridans Human

Mutans S. mutans Viridans Human Dental caries, bacteremia, endocarditis, septicemia Kojima et al., 2012

S. sabrinus Viridans Human Berlutti et al., 2010

Pyogenic S. pyogenes A Human Pharyngitis, septicemia, necrotizing fasciitis, bacteremia,
meningitis, pneumonia, septic arthritis, rheumatic streptococcal
toxic shock syndrome, scarlet fever

Carapetis et al., 2005; Cole et al.,
2011; Reglinski and Sriskandan,
2014; Isaacs and Dobson, 2016

S. agalactiae B Human and
Bovine

Human: cellulites, septicemia, pneumonia, meningitis, tract
infection, puerperal sepsis, endometirosis, cystitis, bacteremia,
Bovine mastitis

Rajagopal, 2009; Zadoks and
Fitzpatrick, 2009

SDSD C, G Human and
Bovine

Bovine mastitis, bacteremia Koh et al., 2009; Park et al., 2012;
Rato et al., 2013; Jordal et al., 2015

SDSE C Human Pharyngitis, bacteremia, septicemia, septic arthritis,
endocarditis, meningitis

Brandt and Spellerberg, 2009

Salivarius S. salivarius K Human bacteremia, meningitis Shewmaker et al., 2010

Sangui S. sanguinis Viridans Human Bacteremia, endocarditis, septicemia, meningitis. Zhu et al., 2018

S. gordonii Viridans Human Bacteremia, endocarditis Krantz et al., 2017

ComR-ComS (Rgg4) system has been reported to regulate
streptococci competence genes in natural genetic transformation
phenomenon. ComR – cytoplasmatic effector and ComS – the
precursor of the competence pheromone, were first identified in
Streptococcus thermophilus and Streptococcus salivarius (Gardan
et al., 2013). The potential number of transformable Streptococcus
was increased by the identification of orthologous in all available
sequenced streptococci species (Fontaine et al., 2010).

It was experimentally proven that ComR-ComS system
strongly induces ComX (also known as sigma factor σX or
sigX) expression which leads to, consequently, natural DNA
transformation in several species of the Streptococcus genus
(Gardan et al., 2009; Fontaine et al., 2010; Khan et al., 2012;
Marks et al., 2014b). In the early phase, comX rises in his
net abundance inducing the X-state in cells, a transcriptional
reprogramming (Claverys et al., 2006). When the cell reaches
the late phase, σX associates itself with RNA polymerase core,
making the target a specific target named σX-box, DNA-
binding motif or Cin-box which regulates the expression of
the regulon - typically consisting of fourteen critical late
competence gene encoding the transformasome and many
species-specific dispensable genes as the ones involved in the
methylation of the exogenous ssDNA (Claverys and Martin, 2003;
Petersen et al., 2004; Johnston et al., 2013).

Chemically defined medium with free amino acids and no
complex oligopeptides seems optimal for the induction of comX
by ComR-ComS. Some of the strains tested can be spontaneously
transformable in similar conditions, but others being only

transformable when growing as biofilm (Gardan et al., 2009;
Fontaine et al., 2010; Marks et al., 2014a). In fact, in Streptococcus,
the competence pheromones are produced in response (induced)
to specific environmental stresses, including acidification of the
medium, oxidative or temperature stress, mutagens, or nutrition
stress (Fontaine et al., 2015).

In 2014, Marks et al. (2014a) reported the observation
of S. pyogenes naturally competence in vitro in the form of
biofilm structures, on epithelial cells and in biofilm colonization
in vivo (BALB/cByJ mice). This was the first report of natural
transformation in the pyogenic streptococcal group. ComR-
ComS system orthologous genes are present in S. agalactiae
and S. dysgalactiae subspecies, and it may, therefore, be a
question of replicating the physiological model, like biofilm,
to observe natural competence (Fontaine et al., 2015). ComR
has dual functionality – in the growth of biofilms and natural
transformation – which seems to point to a relation between these
two processes (Marks et al., 2014a).

The Sil system is an important QS mechanism found in
S. pyogenes that has been investigated for its potential role in
biofilm formation through regulation of cell adhesion to surfaces
(Young et al., 2016). The core sil system is encoded in a putative
15–17 kbps genomic island harboring six genes, silABCDE and
silCR, and a much higher GC content compared to the rest
of the genome. The locus includes a two-component system
(silA and silB), putative ATP-binding cassette transporters (silD
and silE), and silC that together with silC/R regulate the sil
locus transcription (Jimenez and Federle, 2014). The silC/R
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FIGURE 1 | The three stages of biofilm formation and main events involved: (i) initiation, when bacteria attach to the surface; (ii) maturation, when microcolonies are
formed, adhered to the surface and embedded by the EPS matrix; and (iii) dispersion, when some members of the community are released from the biofilm entering
the planktonic phenotype. Maintenance of the biofilm ensures the community survival (Vasudevan, 2014).

encode a small 41-aa pro-peptide, and this pheromone has
been identified to be signal peptide associated with modulation
of expression of various uncharacterized genes in S. pyogenes
(Jimenez and Federle, 2014).

LuxS protein is present in several Gram-negative and Gram-
positive bacteria and is responsible for the production of the
autoinducer-2 (AI-2), which has been identified as a universal
signaling molecule for interspecies communication. Previous
studies have demonstrated that the LuxS/AI-2 system influence
the expression of various virulence determinants, and biofilm
development in S. species, including S. gordonii, S. intermedius,
and S. pyogenes (Galante et al., 2015). It was found to be necessary
for the proper formation of biofilms in S. mutans, by regulating
the expression of glucosyltransferases (Merritt et al., 2003). The
same system in S. pneumoniae, regulates the initial stages of
biofilm formation through regulation of the LytA (autolysin)
expression and pneumolysin (Vidal et al., 2011).

Environmental Factors That Control
Biofilm Initiation
Bacteria generally adopt the planktonic phenotype when
nutrients are available namely, in a nutrient rich medium

like the ones used in the laboratory. However, in nature,
nutrients are not so abundant, and bacteria will then opt to
grow in a phenotype where the growth rate is slower and
less demanding metabolically, like the biofilm phenotype. This
biofilm protects from dynamic environments and antimicrobial
agents (Garrett et al., 2008; Olsen, 2015). The interplay between
the planktonic phenotype and the biofilm state is regulated
by several genetic determinants and transcription factors in
response to environmental stimuli; these impact enzymatic
and structural components of the cell that are required for
biofilm development (Garrett et al., 2008; Kostakioti et al., 2013;
Fiedler et al., 2015). Among the environmental factors, nutrient
availability, temperature and pH variations, concentration of
metals and osmolytes, redox potential, interaction with the host’s
immune system are the most common. These factors affect
bacterial cell properties, namely gene regulation and cell surface
physicochemical characteristics, which may have a profound
effect on cell–cell interaction and hence, on biofilm development
(Garcia-Gonzalo and Pagán, 2015).

Several in vitro studies show that environmental factors
influence the ability of streptococci pyogenic strains to form
biofilms. Baldassarri et al. (2006) evaluated the influence of
temperature and atmospheric conditions in the ability of
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TABLE 2 | Streptococci virulence factors involved in biofilm formation.

Protein Function and/or substrate Species References

Adhesion protein - AdcA Cell adhesion; Zinc ion transport – Contributes
to the infection process

S. pyogenes, SDSE, SDSD, SESZ, S.
pneumoniae, S. canis, S. agalactiae

Moulin et al., 2016; Cao et al., 2018

Collagen-like protein 1 (scl-1) Promotes adhesion and biofilm formation,
decreases bacterial killing by neutrophil
extracellular traps

S. pyogenes, S. agalactiae, S.
pneumoniae, and S. equi.

Oliver-Kozup et al., 2011; Döhrmann
et al., 2014; Lukomski et al., 2017

Collagen-like protein SclB (sclB) S. pyogenes, S. uberis, SDSE, SDSD,
S. agalactiae, S. pneumoniae, and S.
equi.

Rato et al., 2011; Lukomski et al., 2017

FbaA Fibronectin and laminin-binding protein S. pyogenes; S. parasanguinis Chen et al., 2020

FbaB/PFBP/PrtF2 Fibronectin and laminin-binding protein S. pyogenes Rohde et al., 2011; Brouwer et al., 2016;
Šmitran et al., 2016

Fbp54 Fibronectin and fibrinogen-binding protein S. pyogenes Raynes et al., 2018

FbsA, FbsB Fibronectin and fibrinogen-binding protein S. agalactiae Rosenau et al., 2007

FnbA, FnbB Fibronectin-binding proteins SDSD; SDSE O’Neill et al., 2009; Alves-Barroco et al.,
2018

GfbA Fibronectin-binding proteins SDSE Lindgren et al., 1994; Oppegaard et al.,
2018

Glyceraldehyde-3-phosphate
dehydrogenase (plr)

Plasmin and Fn-binding protein S. pyogenes, SDSE, SDSD, S. suis,
S. agalactiae, S. uberis

Seifert et al., 2003; Rato et al., 2011;
Reinoso, 2017

Hyaluronic acid (HA) capsule Immune evasion upon colonization of host
tissues; adhesion to the surface of the host cell

S. pyogenes Falaleeva et al., 2014; Vyas et al., 2019

Laminin-binding protein (lmb) Laminin-binding surface proteins S. pyogenes, SDSE, SDSD, SESZ, S.
pneumoniae, S. canis, S. agalactiae

Al Safadi et al., 2010; Rato et al., 2011

Lipoteichoic acid (LTA) Adherence to epithelial cells of host
Biofilm formation

S. pyogenes, S. uberis, SDSE, SDSD,
S. agalactiae, S. pneumoniae, and S.
equi, S. gordonii

Courtney et al., 2009; Rato et al., 2011;
Shiraishi et al., 2016; Lima et al., 2019

M protein (emm) Adherence to epithelial cells of host;
Plasminogen, fibronectin and
Fibrinogen-binding proteins; Ig-binding proteins

S. pyogenes, SDSE, SDSD, SDSZ, S.
canis

Courtney et al., 2009; Rato et al., 2011;
McNeilly and McMillan, 2014; Frost et al.,
2018M-like protein (enn) complexe

Pili, fimbriae, fibrils Biofilm formation Coaggregation, biofilm
formation, phagocyte resistance; multiple
substrates

S. pyogenes, S. agalactiae, SDSE,
S. pneumoniae

Manetti et al., 2007; Proft and Baker,
2009; Rajagopal, 2009; Konto-Ghiorghi
et al., 2009; Genteluci et al., 2015; Ma
et al., 2017

R28 Promotes adhesion to host cells via direct
binding to integrins

S. pyogenes, SDSE, SDSD Rato et al., 2011; Weckel et al., 2018;
Eraso et al., 2020

SfbI/PrtF1 Fibronectin-binding proteins; Ig-binding protein S. pyogenes Šmitran et al., 2016

SfbX Fibronectin-binding proteins S. pyogenes Brouwer et al., 2016; Šmitran et al., 2016

HtrA Serine protease; Degrades proteins in response
to stress; bility to adhere to the extracellular
matrix that enable adhesion to host tissues

S. pneumoniae, S. pyogenes, SDSD,
SDSE

Lyon and Caparon, 2004; Kim and Kim,
2005

speB Targets several different host proteins, namely
interleukins, antimicrobial peptides, and
components of the extracellular matrix

S. pyogenes Doern et al., 2009; Roberts et al., 2010a;
Connolly et al., 2011; Carothers et al.,
2020

DNases Degradation of NETs that are produced by the
host’s immune system cells (like neutrophils)

S. pyogenes, S. agalactiae, SDSD,
SDSE

Rato et al., 2010, 2011; Genteluci et al.,
2015; Remmington and Turner, 2018

Biofilm regulatory proteins A
BrpA

Biofilm formation, autolysis, and cell division S. pyogenes, S. agalactiae, S.
mutans, SDSD, SDSE

Bitoun et al., 2012, 2014; Alves-Barroco
et al., 2018; Patras et al., 2018

S. pyogenes clinical strains to form biofilms. While temperature
appeared to have no effect on the biofilm formation, there was
a significant increase in biofilm formation under anaerobiosis
(Baldassarri et al., 2006). An increased biofilm formation was
also observed when S. pyogenes and S. agalactiae were grown
in media supplemented with 1.5% (v/v) glucose as a result of
medium acidification due to metabolism (Manetti et al., 2010;
Rinaudo et al., 2010; Thenmozhi et al., 2011). D’Urzo et al. (2014)
showed evidence that acidic pH and not glucose concentration

is the environmental signal to S. agalactiae biofilm formation.
However, some opposing results have been observed in several
in vitro studies regarding the influence of pH in the biofilm
formation by S. agalactiae. Some studies show an increased ability
to form biofilms by S. agalactiae strains at pH 6.5 when compared
to pH 4.2 (Kaur et al., 2009; Borges et al., 2012; Yang et al.,
2012), by contrast, Ho et al. (2013) showed that low pH induced
biofilm formation. These discrepancies can possibly be explained
by the different strains intrinsic variability and ability to survive
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in an acidic environment. In vivo, exposure of S. agalactiae to the
acidic environment of the vagina can be the signal sensed by the
bacteria to grow in biofilm. From this perspective, changes in the
growth of S. agalactiae strains were observed in a mouse model
of vaginal colonization (Carey et al., 2014) and has also been
reported in humans (Hansen et al., 2004). An increased ability to
form biofilms in vivo was also observed by S. pyogenes and SDSE
strains when compared to in vitro (Marks et al., 2014a; Genteluci
et al., 2015). In this context, it is likely that apart from carbon
sources, modified atmosphere, pH, and responses of the host’s
immune system might trigger biofilm development in vivo.

Vajjala et al. (2019) characterized an in vitro model of
S. pyogenes biofilm formation on mammalian cells that mimic
a mouse model of human necrotizing fasciitis. The authors
showed that the expression of secreted S. pyogenes streptolysins
induced endoplasmic reticulum stress in the host. In vivo, the
streptolysin null mutant is attenuated in biofilm formation and
bacterial spread, revealing an important role of streptolysin
in endoplasmic reticulum stress and the association with the
formation of biofilms and necrotizing fasciitis disease progression
(Vajjala et al., 2019).

Attachment Factors Involved in Initiation
Biofilm development starts when individual cells adhere/attach to
abiotic or biotic surfaces. Attachment is mediated through several
structures and molecules present at the surface of the bacterial
cells, like motility elements as the flagellum or proteinaceous
structures like the pili (type-IV pili), and other elements like
lipopolysaccharides, TAs, surface proteins, and extracellular
proteins (Schumacher-Perdreau et al., 1994; Hussain et al., 1997).

In S. pyogenes, attachment is suggested to occur in a two-
step process with different molecules coming into play. The first
step is dependent on lipoteichoic acids (LTA); in the second
step bacteria cells adhere to specific receptors on the host
cell (namely human) via bacterial surface components known
as microbial surface components recognizing adhesive matrix
molecules (MSCRAMMS), which include M protein, fibronectin-
binding protein, serum opacity factor, etc. (Morath et al., 2005;
Weidenmaier and Peschel, 2008; Rohde and Cleary, 2016).

While the first step is a very dynamic process, with an on/off
kinetic effect, and relying on hydrophobic, ionic, and electrostatic
forces responsible for an initial attachment, the second step
of adhesion is more specific and complex since the strong
affinity between several MSCRAMMS and host cells promote
irreversible and species-specific interactions. S. pyogenes can
adhere to human cells by interacting with different MSCRAMMS
simultaneously, which strengthens biofilm initiation but hampers
the detection of streptococcal adhesins (Šmitran et al., 2016).

Lipoteichoic Acids
Teichoic acids constitute the main class of anionic glycopolymers
that are composed of phosphodiester-linked polyol units and are
divided into two types: LTAs, and wall teichoic acids (WTAs;
Armstrong et al., 1958; Ward, 1981; Brown et al., 2013). The
difference between the two types is their connection to cell, with
WTAs being covalently attached to the peptidoglycan, and LTAs
are anchored in the cell membrane. LTA has been characterized

in most Gram-positive bacteria including Staphylococcus aureus,
S. agalactiae, S. pyogenes, and Lactobacillus plantarum (Kang
et al., 2016). WTA has been less characterized in the pyogenic
group and detailed studies revealing its importance are missing
in the literature. With the growing number of pyogenic isolates
available, future developments are expected in this topic.
Teichoic acids biosynthesis is a complex multistep mechanism,
and different WTAs/LTAs compositions and modifications
are observed in different species (Poxton, 2014). The main
chain of these biopolymers can be further modified by D-
alanylation, by adding D-alanyl esters, and glycosylation, by
adding mono- or oligosaccharides. These modifications impact
several functions of the TAs.

Lipoteichoic acids are long, linear, anionic glycopolymers
of phosphodiester-linked poly-glycerol phosphate (poly-GroP)
repeating units, anchored to the plasma membrane of the
cell through a glycolipid (Figure 2; Morath et al., 2005;
Weidenmaier and Peschel, 2008; Shiraishi et al., 2016). LTAs
are known to be major players in biofilm formation – studies
estimate that 60% of initial adherence to epithelial cells is
mediated by LTA (Šmitran et al., 2016) – however, other
physiological roles are attributed to this amphipathic molecule:
control of autolytic enzymes, maintain membrane integrity,
cation homeostasis, and ions/nutrients trafficking (Fischer, 1988;
Neuhaus and Baddiley, 2003; Poxton, 2014).

The amphipathic nature of LTAs is crucial for pyogenic
bacteria to surmount the repulsive electrostatic forces between
bacteria and the attaching surface; LTA hydrophobic moieties are
made accessible to the bacteria surface when LTA form stable
complexes with surface proteins (see description of M proteins
in the next section) while the anionic character achieved by
the presence of phosphate and amino groups is important for
interaction with cell receptors (as type I macrophage scavenger
receptor) mediating bacteria-host adhesion (Dunne et al., 1994).

Several studies suggest that among the S. pyogenes strains the
formation of complexes with M proteins provide anchoring LTA
on the surface contributing to hydrophobicity and to biofilm
formation (Courtney et al., 2009). Protein M is practically
ubiquitous among S. pyogenes isolates, being expressed on the
surface of the bacterial cell. Studies show that M proteins provide
adhesion to different human cell lines, and the tropism for
different cells demonstrates the heterogeneity of this protein
(Tylewska et al., 1988; Caparon et al., 1991; Rohde and Cleary,
2016). It has also been demonstrated that M protein mediates
initial surfaces interactions during biofilm formation (Cho and
Caparon, 2005; Courtney et al., 2009). It was suggested that
interactions between M protein of S. pyogenes and LTA expose
the ester fatty acids of LTA, increasing bacterial hydrophobicity
providing LTA–host cell interactions (Courtney et al., 2009). This
structural conformation of the LTAs fosters biofilm development
since it allows auto-aggregation and surface adhesion (Cho and
Caparon, 2005; Lembke et al., 2006; Courtney et al., 2009; Young
et al., 2016), which consequently influences the ability of some
members of this species to form biofilms. This hypothesis is
also supported by studies with M-protein defective mutants that
showed a decrease in biofilm development regarding wild type
strains (Cho and Caparon, 2005; Courtney et al., 2009). On the
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FIGURE 2 | General structure of lipoteichoic acids (LTAs) showing the membrane anchoring moiety (A) and the most common repeating unit (B). LTAs repeating unit
is more conserved than WTAs; Opposite to WTAs, LTAs are not bound to peptidoglycan but anchored to the membrane via the fatty acid.

other hand, the studies by Courtney et al. (2009) suggest that the
M-protein–LTA interaction may be specific to strains expressing
only one M protein family member.

Protein M homologs (Mrp and Enn proteins) genetically
and functionally related are present in most S. pyogenes strains.
Despite considerable similarities among M, Mrp, and Enn
proteins, the M-like proteins remain less studied. The current
state of knowledge for M, Mrp and Enn proteins, is based on
studies on function and immunogenicity, interactions between
M-like proteins and host ligand proteins, and analysis of the
genetic data supporting these interactions (reviewed in Frost
et al., 2018). Overall, the similarity of protein M, the M-like
proteins have been shown to be involved in the maintenance
of LTA which may aid in the formation of biofilms and in
colonization of the oropharynx (Beachey et al., 1983; Courtney
et al., 2009). M-like proteins have been identified among SDSE

strains (McNeilly and McMillan, 2014); however, their role in the
formation of biofilms is not yet determined.

Streptococcal Pili
Pili (or fimbriae) are long filamentous structures that are
extending from the surface of several bacterial cells, including
SDSE (Genteluci et al., 2015; Ma et al., 2017), S. pyogenes (Manetti
et al., 2007) and S. agalactiae (Konto-Ghiorghi et al., 2009;
Rajagopal, 2009). Many functions can be attributed to pili; besides
adhesive structures, they have been implicated in gene transfer,
biofilm development, host cell invasion, twitching motility, and
biofilm development, in the latter case by stimulating bacterial
aggregation and attachment to the surfaces of host cells (Proft and
Baker, 2009; Rohde and Cleary, 2016).

Streptococcus pyogenes pilus proteins have a C-terminal
LPTXG-like motif attached to the host cell wall (Mora et al., 2005)
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and in pilus-defective mutants, a reduced biofilms formation
ability was observed in different surfaces (Manetti et al., 2007).
The role of pili in S. pyogenes virulence has also been evaluated
in vivo in a humanized mouse by the deletion of AP1 gene,
encoding the ancillary proteins (Lizano et al., 2007). This
clearly shows the importance of pili in the initial stages of
host colonization by S. pyogenes (Danne and Dramsi, 2012).
In another study it was observed that pilus promote the
recruitment of immune system cells, mainly neutrophils that
provide neutrophil extracellular traps (NETs), which results
in the decrease of S. pyogenes virulence in murine models
(Crotty Alexander et al., 2010).

Streptococcus agalactiae strains encode two genomic islands,
pilus islands-1 (PI-1) and -2 (PI-2), which includes the two
variants PI-2a and PI-2b in separate loci and both flanked by
direct repeats of conserved genes, where all genes responsible
for pilus machinery are located. These genomic islands harbor
three genes encoding protein essential for pilus assembly and
accessory proteins (AP1 and AP2). Besides these, there are also
two genes encoding sortase responsible for polymerizing the
protein chains and cell wall attachment (Dramsi et al., 2006;
Rosini et al., 2006). The importance of the genomic islands for
bacteria–host cell interaction and biofilm formation in abiotic
structures was revealed by previous studies with isogenic mutants
lacking pilus 2a structures or the sortase enzymes demonstrated
the role of pili in the interaction of bacteria with the host cell
and biofilm establishment on abiotic surfaces (Rinaudo et al.,
2010). Rinaudo et al. (2010) also used antibodies directed against
the pilus 2a and its ancillary protein, or antibodies against
small ancillary proteins present at the base of the pilus. The
results showed that the first repressed biofilm development
in a dose-dependent manner while the latter had no effect,
suggesting that PI-2a pili are more relevant for biofilm adherence
and formation in these bacteria then the other components
(Rinaudo et al., 2010).

The presence of fibrillary-like structures was also observed
on scanning electron microscopy in biofilm-grown SDSE strains.
The increased expression of coding genes was observed in strong
biofilm-producing strains (Genteluci et al., 2015). Oppegaard
et al. (2017) showed that genetic alterations in the pilus-
region (also known as the FCT-region – Fibronectin and
Collagen binding, and T-antigen) were associated with bacteria’s
propensity to adhere to different surfaces, which could also be
related to the expression of a wide range of adhesins putatively
encoded in this region, including proteins predicted to adhere
to collagen and fibronectin. Interestingly, although they are
genomic closely related, the presence of fibrillary-like structures
was not observed in SDSD strains. Probably, the absence of
fibrillary-like structures in this subspecies can be compensated
by the expression of another protein with similar functions
(Alves-Barroco et al., 2019).

Adhesins
The strategies for adhesion are complex and variable, and
the expression of specific-adhesin is considerably modulated
by microenvironment conditions (Rohde and Chhatwal, 2013).
Several fibronectin-binding proteins are extensively expressed

in streptococci, with different binding properties and affinities,
giving rise to a great variety of protein–protein interactions;
in some specific strains the fibronectin-binding proteins have
high affinity to soluble fibronectin, whereas other strains require
immobilized fibronectin for binding. Due to their importance,
eleven different fibronectin-binding proteins are expressed in
S. pyogenes, including SfbI/F1, FbaA, FbaB, FBP54, protein
F2, serum opacity factor, and several M proteins (Rohde
and Cleary, 2016). Streptococcal fibronectin-binding protein I
(SfbI or protein F1) takes part in the adhesion to different
surfaces and recently was found to bind to host collagen
facilitating the bacterial aggregation, colonization, and evasion
to the host immune system (Dinkla et al., 2003). Fibronectin-
binding proteins have also been described in SDSE, including
FnbA, FnbB, FnB, and fibronectin-binding protein A (GfbA).
These proteins provide streptococcal adherence to human skin
fibroblasts, consequently contributing to biofilm development
in vivo and persistence of infection (Collin and Olsén, 2003;
Brandt and Spellerberg, 2009).

Adhesion to different surfaces are largely conditioned by the
physicochemical substratum characteristics, including surface
charge and hydrophobicity (Donlan and Costerton, 2002).
These characteristics could be further modified by other
environmental factors, such as temperature variations, and
sub-inhibitory concentrations of antimicrobials (Garcia-Gonzalo
and Pagán, 2015; Ranieri et al., 2018; Šmitran et al., 2018).
As expected, bacterial cells with hydrophobic characteristics
adhere to hydrophobic surfaces, cells with hydrophilic properties
adhere to hydrophilic surfaces. Additionally, hydrophobic cells
are more able to attach to surfaces than hydrophilic (Garcia-
Gonzalo and Pagán, 2015). During initiation, the attachment
step is followed by a so-called “accumulative phase,” where
the cells start to adhere to each other forming clusters
(microcolonies). Cell–cell adhesion mechanisms mediate this
multistep process through different factors. One of these
factors is the glucosamine-based polysaccharide intercellular
adhesin (PIA), or poly-N-succinylglucosamine (PNSG). The
biosynthesis of PIA starts with the expression of the IcaA
protein, the first product of the ica operon (Cue et al., 2012).
Orthologous genes of the IcaA protein are found in two
S. agalactiae strains (data from BioCyc database). The IcaA
protein is a N-glycosyltransferase – glycosyltransferases are
responsible for the production of exopolysaccharides necessary
for the production of the EPS matrix and establishment of
microcolonies, and are found in S. mutans (Koo et al., 2010).
Recently, Matysik and Kline (2019) proposed a microcolony-
independent mechanism for the S. pyogenes clinical strain, JS95.
In this alternative mechanism, instead of forming microcolonies
the cells will sediment and attach to the surface, with the
capsule being of crucial importance. The role of the capsule
in biofilm formation has been elusive in the past, with its
presence being associated with biofilm inhibition. The same
study suggests a dual role for the capsule that is growth stage
dependent. At the early exponential growth, the capsule will
mask the surfaces adhesins, inhibiting biofilm formation, while
at later growth phases the capsule will promote biofilm formation
(Matysik and Kline, 2019).
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Disruptive Factors and Biofilm Dispersal
The presence of disruptive factors is of extreme importance for
the proper development of the biofilm. These factors help the
biofilm to reach its mature structure, with the creation of water
channels and cavities; without these features the biofilm structure
will be impaired at several levels, as the EPS matrix will not have
the right properties. Also, factors with hydrolytic properties play
important roles in the turn-over of the adhesive factors, allowing
them to be replaced. This way the structure of the biofilm is
maintained. Another very important function of the disruptive
factors is their involvement in the return of the cells to the
planktonic phenotype (dispersal stage). Proteases, together with
DNases, are responsible for the degradation of the polymeric
matrix of biofilms its tight regulation ensures the maintenance
of the biofilm structure since high levels of these enzymes lead to
disruption of the 3D architecture of the biofilm and ultimately, to
its dispersion (Fiedler et al., 2015).

Proteases
The streptococcal pyogenic exotin B (SpeB), a cysteine protease,
is known to play a substantial role in S. pyogenes virulence.
Studies show that SpeB can destabilize the extracellular matrix of
the host cell, complement system molecules, immunoglobulins,
interleukin, antimicrobial peptides, and serum protease
inhibitors (Hytönen et al., 2001). SpeB is also responsible
for the ability of S. pyogenes to colonize host cells since it is
involved in adhesion to glycoproteins. However, with high
levels of active SpeB the biofilm enters the dispersion phase
and its development is prevented (Doern et al., 2009). Several
transcriptional regulators associated to the transcription of speB
have also been found to regulate the formation and maturation
of biofilms in S. pyogenes. RopB (Rgg family) and the sugar
metabolism regulator CcpA are positive regulators that directly
interact with promoter of the speB gene (Chang et al., 2011),
while the transcriptional regulator Srv down-regulates this gene.
When Srv is inactivated, an increase of the expression of SpeB
is observed and the consequence is biofilm dispersal (Doern
et al., 2009; Roberts et al., 2010a; Connolly et al., 2011). Roberts
et al. (2010a) demonstrated that Srv regulates SpeB transcription
in the initial step of the adhesion, that is, Srv represses SpeB,
which allows for biofilm development. In response to external
environmental signals, Srv decreases this repression, thereby
providing SpeB production and consequent biofilm dispersion
with the colonization of new sites. The response regulator
CovR of the CovRS two-component system interacts with speB
promoter, acting as a transcriptional repressor.; again, repression
of speB by CovR allows the biofilm development (Doern et al.,
2009; Roberts et al., 2010b; Connolly et al., 2011). CodY is
another regulator associated with biofilm formation, involved
in response to nutrient deprivation. in vitro studies with CodY
deletion mutants demonstrated a reduction in the ability of
biofilm formation by S. pyogenes (Fiedler et al., 2015).

The high-temperature requirement protein A (HtrA) is a
protease widely distributed among streptococci that contains a
transmembrane domain responsible for anchoring the enzyme
to the cell surface. As SpeB, HtrA degrades other proteins in
response to stress. Homologs of the HtrA identified in other

Gram-positive bacteria degrade abnormal proteins in response
to adverse environmental conditions (Kim and Kim, 2005).
An equivalent role of this protein suggested for streptococci
since the deletion of htrA in S. mutans decreased its ability
to tolerate environmental stress (Diaz-Torres and Russell,
2001), and altered biofilm appearance, becoming more granular
than wild type (Biswas and Biswas, 2005). Additionally, in
S. pyogenes, the expression of virulence determinants was affected
(Lyon and Caparon, 2004). In addition to the proteolytic
properties of these enzymes, they share an ability to adhere
to the extracellular matrix that enable adhesion to host tissues
(Lyon and Caparon, 2004; Kim and Kim, 2005).

Extracellular DNases
Despite its abundance among Streptococcus species, the biologic
role of e-DNA in biofilm development is not completely
understood. The DNases of the S. pyogenes are the best
characterized so far; six of the genes encoding DNases in this
species were found in prophage regions (sda1, sda2, spd1,
spd3, spd4, and sdn) and two other genes were found in the
chromosome (spnA and spdB). Homologs of S. pyogenes DNases
associated with prophage and chromosomally encoded have been
found in other streptococcal species, as SDSD and SDSE (Rato
et al., 2010, 2011; Remmington and Turner, 2018). The existence
of extracellular nucleases in S. agalactiae has been proposed since
the 1980’s. The major DNase in this species is encoded by the
gene gbs0661, and the protein is named Nuclease A (NucA;
Derré-Bobillot et al., 2013).

The focus in studying streptococcal DNases is the degradation
of extracellular niches that are produced by the host’s immune
system cells (like neutrophils), to capture and eliminate bacteria.
Neutrophils secrete long, entangled, e-DNA chains called
Neutrophil extracellular traps (NETs) that are enriched with
antimicrobial molecules, small peptides and proteases. These
traps imprison and degrade invasive cells. The DNA-based
structure of the NTEs is not affected by the host proteolytic
activity but can be hydrolyzed by the bacterial eDNases, releasing
bacteria from the trap (Brinkmann and Zychlinsky, 2012;
Remmington and Turner, 2018).

Streptococci DNases may also be involved in managing the
biofilm since eDNA is one of the important components of
the EPS matrix (Sharma and Pagedar Singh, 2018). By cleaving
eDNA chains, DNases are involved in QS, regulation of biofilm
formation, disruption of competitive biofilms and bacterial
clearance (Sharma and Pagedar Singh, 2018).

Studies show that DNase is effective in removing Streptococcal
biofilms on several substrates (Genteluci et al., 2015).
The regulatory mechanism that control the protease SpeB,
CovR/CovS, Rgg, and CodY, together with the systems PerR and
Ihk/Irr, regulate the expression of DNases (Sumby et al., 2006;
Anbalagan and Chaussee, 2013; Wang et al., 2013). Depending on
the DNase the system might up- or down-regulate its expression.
Yet, further research is required to fully elucidate the mechanism
of regulation of DNases (Remmington and Turner, 2018).

The same disruptive forces necessary for the proper
maturation of the biofilm are crucial for the detachment of
bacterial cells from an established biofilm. This dispersal step
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usually leads to a modification in gene expression and allows
the colonization of bacterial pathogens in other infection spots,
and for this reason, the development of new biofilms, leading to
the systemic diffusion of infection (Donlan, 2001; Kaplan, 2010;
Kostakioti et al., 2013; Jamal et al., 2018).

The biofilm dispersion can be initiated by the bacterial
community, called active dispersal, or by external forces –
fluid shear, bacteriocin, and human intervention – called
passive dispersal (Kaplan, 2010; Kostakioti et al., 2013). The
mechanisms in which pyogenic streptococcal actively regulates
biofilm dispersal is not yet completely understood. Overall,
the presence of DNA and protein in the matrix of pyogenic
streptococcal biofilms suggest that uncharacterized DNase or
protease may participate in the regulation of biofilm dispersal
(Doern et al., 2009; Genteluci et al., 2015; Young et al., 2016;
Guilhen et al., 2017; Alves-Barroco et al., 2019).

Studies suggest that the streptococcal regulator of virulence
(Srv) and the streptococcal pyrogenic exotin B (SpeB) play
a significant role in the dispersion of S. pyogenes biofilm.
in vivo and in vitro studies demonstrated that the deletion
of srv coupled with an increase of SpeB results in decreased

biofilm production. When the srv is active, SpeB levels
increase, promoting degradation of components in the biofilm
matrix allow biofilm cells to return to a planktonic form
(Doern et al., 2009; Roberts et al., 2010a,b; Connolly et al., 2011).

EPS Matrix
The biofilm is a dynamic and heterogeneous environment that
allows bacterial cells to reach homeostasis, and to use all available
nutrients (Sutherland, 2001; Flemming and Wingender, 2010).
The EPS matrix composition is extremely important for the
properties of the biofilm since it offers cohesion and a three-
dimensional scaffolding structure that holds the microbial cells
close and provides mechanical integrity to the biofilm (Figure 3)
(Wilking et al., 2011). Overall, the nature of the biofilm matrix
will depend on the microbial cells present, their physiological
status, the nutrients available, and the environmental/physical
conditions (Costa et al., 2018; Florez Salamanca and Klein, 2018).

Whether a microbial biofilm will form on biotic/abiotic
surfaces or not, is a consequence of the EPS matrix formed
and how it responds to stress. To ensure spreading, survival,
and adaptation to changing environments, the biofilm creates

FIGURE 3 | Schematic representation of the extracellular polymeric substances (EPS) matrix, showing the biofilm water channels, surfactants, the short and long
sugar chains, the different proteins/enzymes and extracellular DNA (eDNA). This intricate 3D net of biomolecules is responsible for the chemical/physical and
mechanical characteristics of the biofilm, allowing cell–cell communication, nutrients/gas diffusion and antimicrobial tolerance.
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spatial heterogeneity of extracellular components and generates
different types of forces: (i) elastic tension, due to polymeric
chains with weak hydrogen bonding; (ii) viscous damping
due to friction of polymeric compounds and hydrogen
bond breakage, and (iii) alignment of the polymers in
the shear direction. Since biofilms are composed by cells
and a polymeric gel, they have features of both solids
and liquids and hence are considered an active viscoelastic
material, exhibiting time-dependent response to mechanical
stress (Wilking et al., 2011). Such properties change with
increasing temperatures (Sutherland, 2001; Garrett et al., 2008;
Flemming and Wingender, 2010).

The main component of biofilm is water. Representing 97%
of the EPS matrix (although, as with all aspects of biofilms, this
depends on the system under examination), the water establishes
a hydrated environment that protects the bacterial community
from desiccation. The EPS is an intricate 3-D network of long
polymeric chains of sugars and e-DNA, decorated with enzymes
and structural proteins, and filled with water. Acting as solvent,
the water content dictates viscosity, mobility, and mechanical
response; water is organized within the fine structure of the
biofilm, and while filling the internal channels of the biofilm,
mediates nutrients transport throughout the colonies, potentially
mitigating starvation (Sutherland, 2001; Lu and Collins, 2007;
Flemming and Wingender, 2010; Kumar et al., 2017; Jamal
et al., 2018). Increasing evidence suggests that the extracellular
matrix of pyogenic streptococcal biofilms is rich in proteins
and, as in other organisms, these play an essential role in
biofilm development, maintenance, and spreading (Genteluci
et al., 2015; Rosini and Margarit, 2015; Young et al., 2016;
Alves-Barroco et al., 2019). Within the proteinaceous group are
the structural proteins and the enzymes, which can be further
divided into (digestive) enzymes and EPS modifying enzymes
(Flemming and Wingender, 2010).

Enzymes present in the EPS matrix can degrade it; a biofilm is
a microconsortium of microorganisms and enzymes participate
in the extracellular digestive system, by supplying low molecular
mass products arising from the breakdown of biopolymers. This
metabolic activity contributes decisively for the maturation of the
biofilm by forming channels and pores that allow diffusion, but
also for the detachment of bacteria from the biofilm during the
dispersal step. Usually, these enzymes are maintained close to
the cells through interactions with the exopolysaccharide chains,
enhancing nutrients uptake, and protecting the enzymes from
denaturation and proteolysis (Schumacher-Perdreau et al., 1994;
Wingender et al., 1999).

The EPS modifying enzymes help in the maintenance of
the EPS matrix but also in mechanisms of proliferation and
adaptation, by targeting different elements of the matrix to be
modified. Epimerases modify the structural conformation of
the polysaccharides, influencing the intermolecular interactions
within the biofilm and its 3D architecture (Whitfield et al., 2015).
Hydrolases and transferases and add or remove functional groups
as acetyls, glyceryls, pyruvyls, lactyls to the exopolysaccharide
chains, controlling the polymer’s electrostatic potential and
solubility. These modifications protect bacteria cells against
ROS produced by host immune cells, antimicrobial peptides,

bacteriocins produced by competing bacterial, ultimately
contributing to fixation, and establishment of colonization and
infection. Acetylation has been shown to play a critical role in
S. pneumoniae – the presence of acetyl-decorated polysaccharides
in S. pneumoniae clinical isolates seemed to be advantageous for
the bacteria to resist recognition by innate immune mechanisms,
making them more virulent than modification-free biofilms
(Vuong et al., 2004; Rajam et al., 2007; Melin et al., 2010).

Structural proteins have a pivotal role in keeping the EPS
matrix intact (Lasa and Penadés, 2006). Extracellular lectins,
which are carbohydrate-binding proteins, are bridging the
polysaccharide chains and cell surface-associated proteins, acting
as cross-linking elements. Amyloid fibbers are also extensively
formed in biofilms; long, ordered, and H-bonded beta-sheets
of proteins or peptides self-assemble to form functional fibbers,
that contribute to biofilm architecture and integrity (Fowler
et al., 2007; Besingi et al., 2017). Furthermore, these low-energy
protein structures, with a tensile strength comparable to steel, are
resistant to degradation by detergents and proteases (Higgins and
Novak, 1997; Van Schaik et al., 2005; Otzen and Nielsen, 2008).
S. mutans is responsible for biofilm formation in the oral cavity,
and amyloid fibbers are detectable in dental plaque. Inhibition
of the biofilm is obtained using inhibitors of the amyloid-fibril
forming proteins as adhesin P1 (Ag I/II, PAc) or wall-associated
protein A (WapA; Oli et al., 2012; Besingi et al., 2017).

The EPS matrix is also composed of long chains of
homo/heteropolysaccharides. The type of sugar residues, the net
charge, the presence of organic functional groups or inorganic
substituents (Ca2+ and other ions), and the internal glycosidic
bonds present, affect the physical and, as a consequence, the
biological properties of the matrix. Bacteria produce different
polysaccharides along the “life-cycle” of the biofilm, and
these polysaccharides have competent ability to interact with
themselves, the biotic/abiotic substratum, and the other players
of the biofilm arena, gaining an important role regarding
function and structure. This might explain why many bacteria
require exopolysaccharides to form a mature biofilm. Aggregative
polysaccharides are essential for initial attachment, microcolony
and macrocolony formation, and detachment or disassembly.
Protective polysaccharides create a barrier that obstructs the
entrance of antimicrobial agents, giving microcolony time to
respond to the stimuli by upregulating protective genes. Capsular
polysaccharides are covalently bound to the bacteria cell surface
and grant chemical and structural variability to the cell and is one
of the most effective strategies to deceive the host immune system
(Wessels, 2016).

Polysaccharides of the EPS are often covalently bound to
lipids. These lipopolysaccharides are slightly negatively charged,
shield off the hydrophobic antimicrobial agents, and form a
protective gelatinous layer at the bacteria surface.

Extracellular DNA is a structural element of the EPS and a
source of genetic material. It arises from cell lysis, but also from
specific mechanisms (autolysis, active secretion mechanisms, or
formation of membrane vesicles) that allow DNA damage repair
and HGT, and provide symbiotic competitive advantages to the
community (Ibáñez de Aldecoa et al., 2017). The eDNA releasing
mechanisms are modulated by quorum sensing – a cell-to-cell
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communication system that allows a coordinated response of
the microorganisms. This is the case for S. pneumoniae, where
a certain level of cell density triggers the lysis of a subpopulation,
allowing the release of genomic DNA (for details, see Ibáñez de
Aldecoa et al., 2017 and references therein). Genetically encoded
systems have been found to control programmed cell death for
the release of bacterial DNA (Bayles, 2007). In 2007, Bayles (2007)
described a system that works based on a holin-like (CidA)
and antiholin-like (LrgA) proteins, responsible for regulating
programmed cell death (PCD). Holins are membrane proteins
that promote lysis and antiholins counteract holins. PCD is
extremely important for biofilm formation, and this regulatory
system is virtually ubiquitous to all bacteria. It is proposed to
be associated with antibiotic resistance: like what happens in
drug-resistant cancers when Bcl-2 is overexpressed, it seems that
in biofilms, cells will resist to death because the system will be
preventing cell death. Studies where cidA or lrgA genes were
deleted or mutated strongly suggest this point.

Recently, it was demonstrated, the capacity of Streptococcus
dysgalactiae subs. dysgalactiae to produce biofilms and the
multifactorial nature of their composition (Alves-Barroco et al.,
2018). Confocal laser scanning, fluorescence microscopy and
scanning electron microscopy were used to analyze the SDSD
biofilm structure. The results achieved demonstrated that
there are differences in biofilms produced among different
SDSD strains, and in some cases, the presence of mucus-like
extracellular material covering the cell surface was observed in
the biofilms. This material corresponded to eDNA and proteins
since in the presence of proteinase K, biofilm production by
SDSD strains is inhibited (Alves-Barroco et al., 2019).

Doern et al. (2009) examined S. pyogenes strains from different
clinical origins and showed that DNA and proteins are the major
structural components of the biofilm, while carbohydrates had
a modest role (Doern et al., 2009). This is in contrast to SDSE,
which requires the presence of several different polysaccharides
(Genteluci et al., 2015). Also, adding a carbohydrate oxidant as
sodium metaperiodate to SDSE biofilm indicated the presence of
an exopolysaccharide, similarly to what was observed for different
biofilms of S. mutans (Liao et al., 2014) and S. intermedius
(Nur et al., 2013).

The importance of eDNA was also demonstrated by
disruption of the biofilm structure of SDSE strains after treating
with DNase I. The authors suggest that eDNA is essential for
the initial stage of adhesion and the biofilm development. The
secondary role of proteins in the biofilm structure was proposed
by the low protein content, 12.14%, and its disruption upon
treatment with proteases (Genteluci et al., 2015).

CLINICAL AND VETERINARY
RELEVANCE OF PYOGENIC BIOFILM

The significance of this bacterial phenotype in clinical settings is
often underestimated (Hall-Stoodley et al., 2004; Chen and Wen,
2011; Kumar et al., 2017). Several different surfaces in clinical
environments are prone to develop biofilms, consequently
increasing the risk of infection (Garnett and Matthews, 2012;

Garnett et al., 2012). Some characteristics of the human body
as shear forces caused by teeth, blood pressure, or the innate
immune system, actually trigger the bacterial cells to adopt the
biofilm phenotype, as they resemble some of the stimuli that
induce biofilm formation in challenging environments (Stewart
and Costerton, 2001; Jefferson, 2004; Gupta et al., 2016).

The main requirements for successful infection of different
tissues is the ability of bacteria to adhere and to remain attached
to the host cells. In these environments, the development
of biofilm enhances resistance to host defenses and to
nutrient privation, improving bacterial survival (Hall-Stoodley
et al., 2004; Melchior et al., 2006; Kumar et al., 2017).
From a clinical point of view, there is a considerable
relationship between the ability to form biofilms and resistance
to conventional antibiotics (Sharma et al., 2019).According to
the National Institute of Health, in humans, biofilms account
for up to 80% of the total bacterial infections, including
endocarditis, periodontitis, sinusitis, meningitis, osteomyelitis,
chronic wounds, and prosthesis and implantable devices related
infections (Khatoon et al., 2018). In many of these cases,
infection arises from implantable medical devices, such as
catheters, implants, and implantable electronic devices (Khatoon
et al., 2018; Narayana and Srihari, 2019; Pelling et al., 2019)
that become contaminated with bacteria, usually biofilms of
staphylococci, streptococci, Gram-negative bacteria, and fungi
(Kokare et al., 2009; Marks et al., 2014b; Rosini and Margarit,
2015; Gomes et al., 2016; Young et al., 2016; Castilho et al., 2017;
Stewart and Bjarnsholt, 2020).

Streptococcus pyogenes biofilm was first detected in the skin
(Akiyama et al., 2003) and accepted to occur in other sites
of infection (Lembke et al., 2006; Swidsinski et al., 2007).
Pyogenic bacteria can integrate the host natural microbiome or
form its own biofilm during infection. Apart from person to
person contact, contaminated airborne droplets are the most
common way of transmitting the pathogen within humans.
Bacterial colonization occurs in mucosal membranes of the
oropharynx and non-intact skin; for disease to develop, bacterial
cells first adhere and later internalize the host cells (Fiedler
et al., 2015). Very recently, Siggins showed that in severe invasive
infections, S. pyogenes reach the bloodstream using efferent
postnodal lymphatic vessels through sequential draining lymph
nodes (Siggins et al., 2020). The authors also showed that
while traveling form the primary site of infection, the bacteria
remains extracellular. Self-healing or severe invasive infections
are dependent on several different factors, namely the formation
of biofilm. In 2013, Fiedler et al. (2013) demonstrated that
S. salivarius and Streptococcus oralis – abundant species in the
oral cavity – can form mixed-species biofilm with S. pyogenes; in
this case, S. pyogenes is in the upper layer. The biofilm phenotype
can be correlated with asymptomatic carrier persons, recurrent
infections, systemic dissemination of the infection and antibiotic
failure (Fiedler et al., 2013, 2015).

In veterinary settings, the production of biofilms can
significantly affect the effectiveness of the treatment of bovine
mastitis. Besides increased resistance to different antibiotics, the
biofilm promotes adherence and colonization of mammary tissue
(Wallis et al., 2018). In bovine mastitis, the most prevalent
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species of the pyogenic group are S. agalactiae, Streptococcus
uberis, and SDSD (Rato et al., 2013; Rosini and Margarit, 2015;
Pang et al., 2017; Klaas and Zadoks, 2018; Kaczorek et al., 2017;
Tomazi et al., 2018).

Streptococcus uberis and SDSD were initially classified as
environmental, meaning that infection occurs mainly from
environmental sources. However, molecular epidemiology
studies suggested that infections occur predominantly in a
cow-to-cow fashion. S. agalactiae has been considered an
extremely contagious mastitis pathogen for several years, and an
important human pathogen. It was reported that some clonal
complexes of S. agalactiae were shared between cows and farm
personnel, indicating the zoonotic potential of this species
(Cobo-Angel et al., 2019). These pathogens are also producers of
biofilms (Gomes et al., 2016; Reinoso, 2017; Alves-Barroco et al.,
2019; Horiuk et al., 2019), and this virulence characteristic has
been associated with persistent infections and development of
antibiotic resistance (Olson et al., 2002; Ruppen et al., 2017).

INCREASED TOLERANCE AND
RESISTANCE AGAINST ANTIMICROBIAL
AGENTS

Overall, upon biofilm formation, there is a delayed internalization
of the antimicrobial through the biofilm matrix, as the primary
physical and/or chemical diffusion barrier prevents the entrance
of polar and charged antibiotics (Mah and O’Toole, 2001; Patel,
2005; Høiby et al., 2010). Additionally, the heterogeneous growth
of the biofilm cells and activation of the stress response genes
contribute to the resistance phenotype (Bjarnsholt et al., 2013a,b;
Macià et al., 2014). Besides, studies show that a biofilm-specific
phenotype is induced in a subpopulation, and it results in
the differential expression of active mechanisms to combat the
effects of antimicrobial agents (Konto-Ghiorghi et al., 2009;
Genteluci et al., 2015).

The role of biofilm in evading conventional antimicrobials
for the treatment against streptococcal infections is not yet
entirely understood, although several studies have shown
that streptococcal biofilms survive after treatments with high
concentrations of antibiotics (Ogawa et al., 2011; Horiuk et al.,
2019). Overall, this resistance mechanism is the consequence
of the multicellular and matrix nature of biofilms, which leads
to the antibiotic resistance of biofilm communities, along with
the known conventional resistance mechanisms, such as, efflux
pumps, modifications of the antimicrobial target, and enzyme
inactivation (Rosini and Margarit, 2015; Young et al., 2016).
The main mechanisms of resistance in pyogenic streptococci are
revised in Alves-Barroco et al., 2020. Several in vitro studies
demonstrated that when enclosed and protected by a biofilm,
bacteria are 10–1000 times more resistant to antimicrobial drugs
when compared to the planktonic counterpart (Olson et al., 2002;
Baldassarri et al., 2006; Shen et al., 2013; Chadha, 2014; Wu
et al., 2015; Boonyayatra and Pata, 2016; Singh et al., 2017).
Macià et al. (2014) proposed a method for selecting antibiotics
against biofilm bacteria which can also be used for developing

new antimicrobial agents. This strategy is based on assessing six
pharmacodynamic parameters:

i minimal inhibitory concentration (MIC), can be defined as
the lowest concentration of an antimicrobial that inhibits
the growth of planktonic cells;

ii minimal biofilm inhibitory concentrations (MBIC), which
is the lowest concentration of an antimicrobial that results
in a difference of 1 log in growth after six h of incubation;

iii minimal bactericidal concentration (MBC) is the lowest
concentration of an antimicrobial that killing 99.9% of the
colony-forming units (CFUs);

iv biofilm bactericidal concentration (BBC) is the lowest
concentration of an antimicrobial producing a 99.9%
reduction of the CFUs from a biofilm culture when
compared to the control;

v minimum biofilm eradication concentration (MBEC) is
the lowest concentration of an antimicrobial that inhibits
visible after to collect biofilm cells;

vi biofilm-prevention concentration (BPC) is the similar as
the MBIC, but bacterial inoculation and antimicrobial
exposure co-occur (Macià et al., 2014).

To the best of our knowledge, the information available
regarding the MBEC of pyogenic streptococcal is scarce.
However, some studies indicate that biofilms produced by
pyogenic streptococci are resistant to various antibiotics (Conley
et al., 2003; Baldassarri et al., 2006; Pichichero and Casey, 2007;
Horiuk et al., 2019), suggesting that most of the antibiotics
evaluated would be ineffective as antimicrobial agents.

The β-lactams (mainly penicillin) have been universally
accepted as the antibiotics of choice for pyogenic streptococci
infections; however, therapeutic failures have been reported
and attributable to different causes, including biofilm formation
(Pichichero and Casey, 2007; Bonofiglio et al., 2018; Moroi
et al., 2019). Conley and coworkers reported penicillin treatment
failure in 32% of case-patients with S. pyogenes infection. The
authors first reported in vitro S. pyogenes insensitivity to penicillin
by MBEC assay (Conley et al., 2003). Torretta et al. (2012)
reported pharyngitis treatment failure 37% of children to have
biofilm producer S. pyogenes and with increased MBEC.

Macrolides are considered antibiotics of choice in human
therapy for the treatment of pneumonia, sinusitis, and otitis in
cases where patients are allergic to β-lactams (Kanoh and Rubin,
2010), and lincosamides are used as alternative to penicillin G
against anaerobic bacteria and streptococci strains (Greenwood
and Irving, 2012). However, therapeutic failures of macrolide
have been suggested as a consequence of the formation of biofilms
by S. pyogenes, resulting in clonal spread (Baldassarri et al., 2006).
Some antibiotics, such as fluoroquinolones, and aminoglycosides,
are not active in anaerobic conditions, affecting only the outer
part of the biofilm (Borriello et al., 2004).

Ruppen and coworker compared MICs and MBECs using
penicillin, gentamicin, and a combination of both among
S. agalactiae biofilm-forming strains. The results showed reduced
susceptibility to penicillin, and that the concentration of
gentamicin against S. agalactiae biofilm cannot be achieved in
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bone with systemic administration, only administered locally
(Ruppen et al., 2017).

Horiuk and coworkers analyzed resistance to antimicrobials
among bovine mastitis pathogens biofilm producers. The results
showed resistance to penicillin, aminoglycosides, and macrolides,
emphasizing the necessity of alternative approaches and develop
new antibiotics to effectively treat bovine mastitis (Horiuk
et al., 2019). In addition, the indiscriminate administration of
antibiotics in dairy cows various for the promotion of growth
and treatment provides substantial residues of antibiotics that are
released through milk of dairy and significant effects on human
health (Sachi et al., 2019).

HORIZONTAL GENE TRANSFER IS
INCREASED IN BIOFILMS

Biofilms increase HGT rates among community cells, by 16,000
times, due to high cell density and/or accumulation of genetic
elements, either by transformation, conjugation or transduction,
(Savage et al., 2013; Kragh et al., 2016; Emamalipour et al.,
2020). Besides the genes involved in mobility, regulation or
maintenance, mobile genetic elements (MGEs) provide the
conditions for the uptake of antibiotic-resistant genes and
virulence factors (Haenni et al., 2010). Thus, HGT has been found
to be a major mechanism in generating gene diversity through
intragenic and intergenic recombination, which can modulate
host-pathogen interactions and extending the host range. Such
gene transfer events frequently occur within the pyogenic group,
particularly in S. pyogenes, S. agalactiae, Streptococcus canis,
SDSD, SDSE, Streptococcus equi subsp. equi, Streptococcus equi
subsp. zooepidemicus, and S. uberis (Baiano and Barnes, 2009;
Haenni et al., 2010; Rato et al., 2010; Wong and Yuen, 2012;
Richards et al., 2014; Rohde and Cleary, 2016).

In S. pyogenes the lateral exchange of virulence genes,
mediated by bacteriophage infection, is a very important factor
in the diversification of the species (McShan and Nguyen, 2016).
Bacteriophages may convey genes that are advantageous to the
hosts, thus fostering their own dissemination (Von Wintersdorff
et al., 2016). An extreme case is presented by S. pyogenes
in which almost all major gaps in the alignment of different
M serotypes could be traced to prophage integration events
(Canchaya et al., 2004).Marks and coworkers demonstrated that
the biofilm microenvironment of S. pyogenes populations results
in the induction of competence genes; therefore, it is more
conducive to HGT. This study shows for the first time that
S. pyogenes can be naturally transformed in the presence of
exogenous DNA when grown as biofilms both in vitro and in vivo
(Marks et al., 2014a).

Horizontal gene transfer also appears to play a role in
the evolution and population structure of SDSE. Studies have
revealed that HGT and recombination occur between S. pyogenes
and SDSE, indeed, the two share several virulence factors and are
coexist in the human host (McNeilly and McMillan, 2014).

We reported in previous studies for the first time the
ability of milk udder SDSD isolates containing phage-encoded
S. pyogenes genes to adhere and internalize primary human

keratinocytes (Roma-Rodrigues et al., 2016) and niches of
colonization/infection of S. pyogenes from the respiratory track:
Detroit 562, a cell line derived from the metastatic site of pharynx
carcinoma, primary Bronchial/Tracheal Epithelial Cells (BTEC),
and A549, a cell line derived from a human adenocarcinoma
of the alveolar basal epithelial cells (Alves-Barroco et al., 2018).
Several genes are responsible for the increased virulence of these
subspecies, providing the dissemination to a different host and
propagating the infection persistent (Rato et al., 2011; Alves-
Barroco et al., 2018). This subspecies has been considered by
some authors as an emerging zoonotic pathogen (Chennapragada
et al., 2018). Moreover, their biofilm-producing ability (Alves-
Barroco et al., 2019) can make them highly difficult to eradicate.

The successful treatment of biofilm-associated streptococcal
infections is troubled due to high antibiotic resistance.
Conventional antibacterial therapy is unable to fully eradicate
biofilms cells. Therefore, to overcome the resistance of biofilm,
alternative strategies and antibiofilm agents have been studied.

EMERGENT ALTERNATIVES TO FIGHT
BIOFILM INFECTION

Despite the increasing recognition of the impact of pyogenic
infections, namely when adopting the biofilm phenotype,
recurrent infections, uncontrolled contagion, therapeutic failure
and morbidity, motivated scientists to find new solutions for this
old problem. Some alternatives of antibiotics to combat biofilm-
based infections are reviewed in Alves-Barroco et al. (2020). In
the next paragraphs we want to give special attention to the
protective effect of probiotic bacteria against pyogenic bacteria.

The use of live organisms as therapeutic agents has been
accepted for many years, with more emphasis on the gut and
oral cavity pathologies (Hoare et al., 2017). Since the last decade,
studies have emerged describing how streptococcal infection
can be overwhelmed by non-pathogenic bacteria, namely the
resident bacterial species that form the microbiome. In 2013,
the in vitro studies of Fiedler et al. (2013) showed that in direct
contact experiments, S. salivarius and S. oralis in the planktonic
phenotype eliminated the growth of S. pyogenes, and reduced its
cell adhesion to eukaryotic laryngeal epithelial cell line (Hep2). In
fact, the authors suggest that it is the structure of the S. salivarius
biofilm covering the eukaryotic cells that protects them from
the pathogen through steric hindrance. Recently, Lactobacillus
plantarum, Lactobacillus acidophilus, and S. salivarius were tested
for inhibition toward S. pyogenes cultures in deferred antagonism
agar assays. The results show that these strains have anti-biofilm
effects, especially S. salivarius (Humphreys and McBain, 2019).
The antagonistic effect was not dependent on cell–cell contact
since the pathogen and the probiotic were not in direct contact,
but separated by a semi-permeable membrane that allowed
diffusion of bacteriocins as salivaricin A2 (SalA2) and salivaricin
B (SboB) in the case of S. salivarius K12 (Hyink et al., 2007),
acidocins (Acedo et al., 2015) and plantaricins (Lages et al., 2015),
in the case of of L. acidophilus and L. plantarum, respectively
(in all cases, the acidification of the media was not observed).
Effectiveness of the probiotic Streptococcus salivarius K12 for
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the treatment and/or prevention of sore throat was recently
reviewed due to the large number of studies reporting the use
of this agent in the treatment/prevention of upper respiratory
tract infections (Wilcox et al., 2019). Despite describing
S. salivarius K12 as being safe and well tolerated, the main
conclusion of this systematic review of the literature is that
this organism might have a prophylactic/therapeutic effect
on sore throat in adults and children (namely derived from
streptococcal infections), but more reliable and unbiased trials
are required to establish this relation and boot this probiotic for
regular use.

New targets for the development of new drugs are also gaining
scientists attention. The LytR-A-Psr (LCP) family of proteins, are
responsible for the insertion of WTAs and other anionic polymers
into the peptidoglycan and have been associated with host cell
adhesion and biofilm development (Chatfield et al., 2005). The
brpA-like gene encoding the biofilm regulatory proteins A –
homologous of the LytR protein – is a member of the LCP family
(Shemesh et al., 2007). The brpA gene encodes a membrane
associated protein (BrpA – biofilm regulator protein A) that
has been implicated in biofilm formation, autolysis, and cell
division in S. mutans. The deficiency of BrpA decreases the
ability of the response to oxidative stress, cell envelope stress,
and pH alteration. In vitro, the BrpA-deficient mutant can
adhere to the surface, but its ability to form mature biofilm
decreases considerably (Bitoun et al., 2012, 2014). Recently,
we have reported that brpA-like gene is harbored by SDSD
biofilm-producing strains, and its expression levels are associated
with the biofilm-forming ability (Alves-Barroco et al., 2019).
Structural and functional data on these and similar proteins
will be an asset for the development of new antimicrobials
with high specificity toward pyogenic infection, decreasing

biofilm formation, affecting bacteria viability and decreasing
antibiotic tolerance.

In addition, many pyogenic streptoccocci adhesins have been
studied as antigens to vaccine potential, the most advanced
candidates, having entered clinical trials, are based on the
M and M-like proteins, while fibronectin-binding proteins
and components of the pilus are in pre-clinical development
(Frost et al., 2018; Raynes et al., 2018).

CONCLUSION

Biofilms play an essential role in streptococci pathogenesis,
contributing to therapy failure and promoting persistent
infections. Although the influence of variations in environmental
conditions has been extensively studied on planktonic phenotype,
further information about how these variations modulate
streptococci biofilm development is needed. It is known
that multiple virulence factors modulate biofilm formation by
pyogenic streptococci; however, there are missing pieces about
biofilm formation and its impact on streptococcal disease.
Details on mechanical, chemical, physical, genetic, and structural
properties of pyogenic streptococci biofilm will allow envisioning
new therapeutic strategies to prevent biofilms formation or to
eradicate mature biofilm.
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(2018). Influence of subinhibitory antibiotic concentration on Streptococcus
pyogenes adherence and biofilm production. Acta Microbiol. Immunol. Hung.
65, 229–240. doi: 10.1556/030.65.2018.026
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