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Global usage of electronic nicotine delivery systems (ENDS) has been increasing in the
last decade. ENDS are non-combustible tobacco products that heat and aerosolize a
liquid containing humectants, with added flavorings and often nicotine. Though ENDS
are promoted as a less harmful alternative to smoking, current evidence links their
use to a wide range of deleterious health effects including acute and chronic lung
damage. ENDS can elicit an inflammatory response and impair the innate immune
response in the lungs. Exposure to ENDS flavorings results in abnormal activation of
the lung epithelial cells and β-defensins, dysfunction of the macrophage phagocytic
activity, increased levels of mucin (MUC5AC) and abnormal activation of the neutrophilic
response (NETosis). ENDS menthol flavorings disrupt innate immunity and might be
associated with allergies and asthma through activation of transient receptor potential
ankyrin 1 (TRAP1). Recent studies have expanded our understanding of the relationship
between the homeostasis of lung innate immunity and the immunomodulatory effect
of the host-microbiota interaction. Alterations of the normal respiratory microbiota have
been associated with chronic obstructive pulmonary disease (COPD), asthma, atopy
and cystic fibrosis complications which are strongly associated with smoking and
potentially with ENDS use. Little is known about the short-and long-term effects of ENDS
on the respiratory microbiota, their impact on the innate immune response and their link
to pulmonary health and disease. Here we review the interaction between the innate
immune system and the respiratory microbiota in the pathogenesis of ENDS-induced
pulmonary dysfunction and identify future areas of research.

Keywords: e-cigarettes, vaping, microbiota, host-microbiota interaction, innate immunity, lung injury

INTRODUCTION

Global usage of electronic nicotine delivery systems (ENDS) has increased in the last decade,
especially among youth and young adults (Besaratinia and Tommasi, 2019). The prevalence
of ENDS among middle- and high-school students in the United States was 10.5 and 27.5%,
respectively, in 2019 (Cullen et al., 2019). ENDS are non-combustible tobacco products that
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heat and aerosolize a liquid containing humectants and solvents,
mainly propylene glycol (PG) with or without vegetable glycerin
(VG), with added flavorings and often nicotine (Cheng, 2014;
Beauval et al., 2017). Though ENDS are promoted as a less
harmful alternative to smoking, current evidence links their
use to a wide range of deleterious health effects. A growing
body of evidence supports the association between ENDS use
and addiction (Primack et al., 2018), cardiovascular disease
(D’Amario et al., 2019; MacDonald and Middlekauff, 2019),
cancer (Wu et al., 2020), and respiratory disease, including acute,
and chronic lung damage (Gotts et al., 2019).

The recent outbreak of electronic cigarettes, or vaping,
product use-associated lung injury (EVALI) raised national
concern about the harmful effects of ENDS products and
constituents (Krishnasamy, 2020). Similar to smoking, ENDS
flavoring chemicals can elicit an inflammatory response in the
lungs and might be associated with asthma, chronic obstructive
pulmonary disease (COPD) and adult respiratory disease
syndrome (Gerloff et al., 2017). In addition, the risk of wheezing
and other respiratory symptoms is greater in ENDS users as
compared to non-users and lower when contrasted to smokers
(Li et al., 2019; Xie et al., 2020). Moreover, evidence suggests that
ENDS flavorings impair the innate immune response in the lungs
(Clapp et al., 2017; Gerloff et al., 2017).

The respiratory microbiota has also shown to play a crucial
role in the lung innate immunity and inflammatory response
in health and disease (Segal et al., 2016; Dickson et al.,
2018). Recent pivotal studies have expanded our understanding
of the relationship between the homeostasis of lung innate
immunity and the immunomodulatory effect of the host-
microbiota interaction. In addition, previous reports have
linked the respiratory microbiota to the inflammatory response
against environmental exposures such as smoking (Jaspers,
2014) and household coal burning products (Hosgood et al.,
2014). Further, early studies are reporting that flavors might
enhance the antibacterial activity from ENDS liquids and
might potentially induce microbial dysbiosis in the airways
(Fuochi et al., 2020), disrupting the immunomodulatory effect
of the microbiota. Thus, existing, and emerging evidence
suggest a relationship among exposure to ENDS flavorings,
changes in the respiratory microbiota, and lung disease,
specifically the pathogenesis of flavor vaping induced lung
dysfunction. Here we will discuss the associated innate-immune
mechanisms in relation with the respiratory microbiota in the
pathogenesis of ENDS-induced lung dysfunction and identify
future areas of research.

THE RESPIRATORY MICROBIOTA
SHAPES LUNG INNATE IMMUNE
RESPONSES

Since the first published report challenging the lung sterility
paradigm (Hilty et al., 2010), researchers’ attention has
focused on the investigation of the respiratory microbiota,
i.e., the commensal respiratory microbial community in the
human airways (Charlson et al., 2011; Beck et al., 2012;

Pezzulo et al., 2013). The respiratory tract harbors a low biomass,
low diversity bacterial community that play an important role
on maintaining lung homeostasis and as part of the local innate
immune response (O’Dwyer et al., 2016). In healthy individuals,
members of the respiratory microbiota are cell-associated
(Dickson et al., 2014) and correspond to four bacteria phyla:
Bacteroidetes (including Prevotella spp.), Firmicutes (including
Streptococcus spp. and Veillonella spp.), Proteobacteria, and
Actinobacteria (Segal et al., 2016; Dickson et al., 2017), and the
less studied fungi (Eremothecium, Systenostrema, and Malassezia)
and viral communities (Anelloviridae family) (Cui et al., 2015;
Young et al., 2015).

The Airways Microbiota and the Oral
Microbiota Share Similar Bacterial
Membership in Healthy Individuals
The microbial community membership in the respiratory tract
reflects the net effect of three factors: (a) microbial immigration
from the oropharynx (micro-aspiration or inhalation) (Bassis
et al., 2015; Dickson and Huffnagle, 2015); (b) microbial
elimination through innate and adaptive immune responses
(cough reflex, mucociliary clearance) (Dickson and Huffnagle,
2015); and, (c) local growth conditions at specific sites, e.g.,
temperature, pH, partial pressure of oxygen, and nutrient
availability (Dickson and Huffnagle, 2015; Dickson et al., 2018).
Initial studies reported differences in the microbiota throughout
the upper respiratory tract (URT) and the lower respiratory
tract (LRT) in healthy individuals; however, recent reports
have shown that bacterial members of the URT and LRT are
similar to those from the oral microbiota (Dickson et al., 2017),
except by the presence of Tropheryma whipplei in the LRT
(Beck et al., 2015) and the higher microbial density in the
URT (Charlson et al., 2011). A unified airway theory developed
to explain the similarities observed between the microbiota
in the upper and lower airways and how this relates to
respiratory diseases including COPD, cystic fibrosis, and asthma
(Hanshew et al., 2017).

The Crosstalk Between the URT
Microbiota and the Host-Immune
Interface Depends on the Airway’s
Epithelium Integrity
The airways epithelium provides a biophysical protective
barrier (Parker and Prince, 2011; Galeas-Pena et al., 2019)
and a site of interaction with the respiratory microbiota.
The respiratory microbiota have been shown to influence the
lung architecture (Yun et al., 2014) and respiratory system
maturation and development (Man et al., 2017). The complex
and dynamic respiratory microbiota colonizes the epithelial
surface area (Boyton et al., 2013) and plays a crucial role
in orchestrating innate and adaptive immune responses (Wu
and Segal, 2018) against pathogenic microorganisms, pollutants,
toxins, or nanoparticles (Mathieu et al., 2018; Wu and Segal,
2018; Invernizzi et al., 2020). The epithelium barrier provides
a checkpoint to balance immunomodulatory actions and
proinflammatory activities, and to regulate tissue remodeling.
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In conditions such as COPD and asthma, epithelial dysfunction
might dysregulate the immunological response to the respiratory
microbiota and trigger a chronic inflammation (Yang et al.,
2020). Further research is needed to understand the mechanisms
involved in the two-way host-microbiota interaction; however,
the airways’ epithelial integrity maintained by the tight junctions-
constitutes a critical factor in the host-microbiota interplay
and in the lung innate immune and inflammatory responses
(Schneeberger and Lynch, 1992; Macia et al., 2012).

The Respiratory Microbiota Promotes an
Immunotolerant Environment in the
Respiratory Tract
According to Sommariva et al. (2020), the respiratory microbiota
promotes an “immunotolerant environment” in the respiratory
tract by interacting with the resident and recruited immune cells
and controlling the inflammatory responses at the respiratory
air-liquid interface (Segal et al., 2016). The pattern recognition
receptors (PRRs) located in the airway epithelium, dendritic
cells and alveolar macrophages recognize commensal and
pathogenic microbial molecules and differentiate “danger” and
“safe” signals through (1) cooperatively interacting with other
receptors and, (2) eliciting downstream signaling mechanisms to
release cytokines and chemokines (Matzinger and Kamala, 2011;
Swiatczak and Cohen, 2015). Furthermore, repeated exposure to
pathogen-associated molecular patterns and damage-associated
molecular patterns from members of the respiratory microbiota
induces PRRs tolerance, through the toll-like receptors in
the dendritic cells and alveolar macrophages (Butcher et al.,
2018; Zeng and Jewell, 2019). Moreover, disturbance of
the airways microbiota might exacerbate inflammation and
impair phagocytic activity (Man et al., 2017). For instance,
Dicker et al. (2018) showed that neutrophil extracellular trap
(NET) complexes were correlated with low microbial diversity,
impaired neutrophil phagocytic activity, and higher abundance
of Haemophilus species in patients diagnosed with COPD.
Thus, the respiratory microbiota interacts with the airway
epithelium and phagocytic cells in a positive feedback loop
to develop immunological tolerance and prevent exaggerated
inflammatory responses. Further research is needed to elucidate
specific mechanisms explaining immunological tolerance in the
respiratory tract and to identify potential intervention targets in
respiratory pathologies.

The Respiratory Microbiota Regulates
the Airway Mucus and Antimicrobials
Production
The production of mucus and antimicrobial peptides and
proteins is a key element of the innate immune system of
the lung. The airway surface liquid facilitates the mucociliary
transport of toxicants, microorganisms, or particulates; lubricates
and hydrates the airways; and, contributes to the epithelial
barrier (Widdicombe, 2002b). The mucus is produced by the
respiratory tract secretory cells (tracheobronchial submucosal
glands, Goblet cells, and Club cells) and is composed of
water, mucins, salts and other macromolecules (Marriott, 1990;

Adler et al., 2013); the role of the pulmonary ionocytes is still
unknown (Montoro et al., 2018). MUC5AC and MUC5B are the
major glycoprotein components in the mucus (Gum, 1992) and
determine its functionality in healthy individuals and asthmatic
patients (Welsh et al., 2017). The respiratory microbiota shapes
the production of mucus by the airway epithelium, though
the mechanisms are still unknown (Yun et al., 2014). Remot
et al. (2017) used a pathogen-free mice model to show that the
respiratory microbiota increased the production of MUC5AC in
response to household dust mites.

Other secreted protective mediators in the airway surface
liquid include lysozyme, lactoferrin, lipocalins, peroxidase,
aminopeptidases, secretory phospholipase A2, immunoglobulin
A, lung, and nasal epithelium clone protein, collectins (surfactant
protein A and surfactant protein D), mannan-binding lectin,
cathelicidins, and β-defensins (Singh et al., 1998; Diamond et al.,
2000; Schutte and McCrayJr., 2002; Fujita et al., 2004; Dürr
et al., 2006; Haczku, 2008; Kawamoto et al., 2014; Hiemstra
et al., 2015; Huff et al., 2019). β-defensins and cathelicidins
are endogenous host defense peptides secreted by the airway
epithelium (Dürr et al., 2006; Tecle et al., 2010); both show
antimicrobial and immunomodulatory effects and are involved
in shaping the microbiota composition (van der Does et al.,
2018). For instance, Jones et al. (2014) showed β-defensins
shape the nasopharyngeal microbiota composition increasing
the risk of otitis media in children. Several mechanisms have
been implicated in the regulation of the microbiota composition
by β-defensins, including direct antimicrobial activity (Bakshani
et al., 2018) and immunomodulation of inflammatory responses
triggered by members of the microbiota (Wassing et al., 2015).

ENDS FLAVORINGS DISRUPT THE LUNG
INNATE IMMUNITY

ENDS flavorings constitute the molecules involved in the
perception of flavor. In contrast, flavors refer to the experience
of taste and smell of e-liquids (Allen et al., 2016). Flavors
are associated with ENDS experimentation and initiation in
youth, continued use in users of all ages, and underestimation
of the negative effects on health (Romijnders et al., 2018;
Cullen et al., 2019; Schneller et al., 2019). More than 8,000
flavors are available on the current market with some of them
mimicking combustible tobacco products (menthol or tobacco),
fruits (berries, citrus, tropical), dessert (coconut, cake, butter,
banana, cookie, etc.), alcohol (champagne, mojito, vodka, rum,
piña colada), sweets (caramel, chocolate, vanilla), candy (cotton
candy, bubble gum), among others (Krüsemann et al., 2019).
Moreover, ENDS flavors enhance exposure to nicotine among
users by soothing the bitterness and harshness effects of nicotine,
and inducing and maintaining addiction (Ha et al., 2015; Kim
et al., 2016). Flavoring additives in e-liquids are derived from the
food industry, and are generally recognized as safe (GRAS) only
for oral ingestion, and include benzaldehyde, cinnamaldehyde,
diacetyl, ortho-vanillin, coumarin, pentanedione, acetoin, maltol,
eucalyptol, ethyl vanillin, dl-menthol, and flavoring enhancers
(Allen et al., 2016; Muthumalage et al., 2017; Czoli et al., 2019;
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Table 1). These flavoring chemicals have potential to induce
oxidative stress and inflammatory responses when inhaled.

Immunosuppressive Effects of Nicotine
on the Respiratory Tract
Nicotine has been shown to increase mucin production and
mucus viscosity through activation of the α7-nAChR (nicotinic
acetylcholine receptor) in the airways (Gundavarapu et al., 2012).
Nicotine might reduce allergen-induced inflammation in the
respiratory tract (Mishra et al., 2008). However, exposure to
nicotine-containing aerosol upregulates genes associated with
the production of reactive oxygen species (ROS) and epithelium
differentiation (Moses et al., 2017). Inhaled nicotine is suspected
to induce airway remodeling by inhibiting complex III in
the mitochondrial oxidative phosphorylation and leading to
inhibition of myofibroblast differentiation (Javed et al., 2017; Lei
et al., 2017). Further, inhaled nicotine disrupts the epithelium by
inducing bronchial epithelial cell apoptosis (Bodas et al., 2016).
Thus, nicotine has shown to have proinflammatory, anti-
inflammatory, and potentially immunosuppressive effects on the
respiratory tract.

ENDS Flavorings Disturb the
Professional Cells Phagocytic Activity,
Antimicrobial Production, and
Mucociliary Clearance in the Respiratory
Tract
ENDS flavoring chemicals play a major role on the cytotoxic
effects of e-liquids and e-liquid aerosols (Allen et al., 2016;
Gerloff et al., 2017). Exposure to ENDS flavorings results in
abnormal activation of the lung epithelial cells and β-defensins
and secretion of interleukin-8 (IL-8). Shen et al. (2016) showed
that exposure to ENDS aerosol might also increase the gene
expression of β-defensins in human bronchial epithelial cells
(HBE) suggesting a proinflammatory response. Gerloff et al.
(2017) showed ENDS flavorings might disrupt the epithelium
integrity and impair the barrier function using an HBE in vitro
model. Moreover, Gerloff et al. (2017) showed specific ENDS
flavorings could stimulate a proinflammatory response by
increasing the secretion of IL-8 in HBE and fibroblasts, which in
turn will have a chemotactic effect on neutrophils. Clapp et al.
(2017) determined that e-liquids containing cinnamaldehyde
inhibit the immune function of the epithelium, neutrophils
and natural killer cells in a dose-response manner, causing
dysfunction of the macrophage phagocytic activity (Scott
et al., 2018) and impaired bactericidal effect (Hwang et al.,
2016). Recent data suggest that exposure to ENDS extract
impairs neutrophil chemotaxis, inhibits ROS production and
subsequently the neutrophil extracellular trap formation [i.e.,
an abnormal activation of the neutrophilic response (NETosis)]
(Hickman et al., 2019; Corriden et al., 2020; Figure 1).

Additionally, Clapp et al. showed that exposure to
cinnamaldehyde-containing ENDS might decrease the
mucociliary escalator motility by reducing bioenergetic activity
(Clapp et al., 2019) and may increase the levels of MUC5AC
(Reidel et al., 2018). Preliminary reports have described the

antimicrobial properties of menthol against Staphylococcus
aureus, Streptococcus epidermidis, and Micrococcus luteus
(Odeyemi and Oluwajoba, 2011) and members of the cigarette
microbiota (Chopyk et al., 2017). ENDS menthol flavorings
disrupt innate immunity and might be associated with allergies
and asthma through activation of transient receptor potential
ankyrin 1 (TRAP1). TRAP1 receptors (activated by menthol)
might be involved in the chronic inflammatory response by
stimulating the calcium-mediated secretion of substance P
(neurogenic inflammation) in models of colitis (Guimaraes and
Jordt, 2006; Engel et al., 2011), arthritis (Fernandes et al., 2011),
and asthma (Tränkner et al., 2014; Deering-Rice et al., 2015; Yang
and Li, 2016). Though the evidence base supporting harmful
effects of the inhalation of flavoring chemicals on the respiratory
innate immunity has strengthened, specific mechanisms or
biomarkers describing short-and long-term effects are currently
unknown. The information on the effects of ENDS flavoring
chemicals and their potential effects on the lung innate immunity
and the respiratory microbiota is still very limited. Future efforts
have to focus on development of appropriate models to study
these interactions accurately and allow discrimination between
changes in the airways microbiota and the innate immunity
as a consequence of exposure to flavorings from ENDS or as a
mitigating effect. Further, it is not known whether nicotine, or
humectant PG/VG and/or flavorings can alter the respiratory
microbiodata leading to immune-inflammatory responses.

THE RESPIRATORY MICROBIOTA
MIGHT MODULATE INNATE IMMUNE
RESPONSES IN VAPING-INDUCED
LUNG DYSFUNCTION

Little is known about the short- and long-term effects of
ENDS on the respiratory microbiota, their impact on the innate
immune response and their link to pulmonary health and disease.
Preliminary studies have expanded our understanding of the
relationship between the homeostasis of lung innate immunity
and the immunomodulatory effect of the host-microbiota
interaction. Existing and emerging evidence from in vitro,
animal, and human studies are increasingly showing a link
between the pathophysiology of respiratory disease and the
exposure to ENDS aerosols (Chun et al., 2017; Gerloff et al., 2017;
McConnell et al., 2017; Kaur et al., 2018; Chand et al., 2019;
Gotts et al., 2019). Relatedly, alterations of the normal respiratory
microbiota have been associated with COPD (Sze and Morris,
2016; Wang et al., 2017), asthma and atopy (Stiemsma and
Turvey, 2017), and cystic fibrosis complications (Caverly et al.,
2019), which are strongly associated with smoking and potentially
with ENDS use. In addition, evidence is showing that the
host-respiratory microbiota interaction plays a key role on
inflammation, development and exacerbations in COPD, the risk
and severity of asthma, and lung cancer.

Few studies have focused on the relationship between the
respiratory microbiota and the immune response to air pollutants
and toxicants in the respiratory tract. Fuochi et al. (2020)
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TABLE 1 | Summary of E-liquid flavorings effects on the lung innate immunity and the microbiota.

E-liquid flavor wheel (Krüsemann et al., 2019) Flavor Flavoring chemicals
in e-liquids

Effects References

Cinnamon Benzaldehyde
Cinnamaldehyde
Ethyl vanillin
Cinnamic acid
Methyl eugenol

Cinnamaldehyde suppressed IL-8 secretion in HBEs
and human lung fibroblasts and decreased
transepithelial resistance in HBEs (lost of AEC integrity).

Gerloff et al., 2017

Cinnamaldehyde reduced phagocytic activity and cell
viability among AMs, PMNs and NK; induced abnormal
NET activation and inflammation

Clapp et al., 2017

Cinnamaldehyde dysregulated mucociliary clearance
increasing susceptibility to infection

Clapp et al., 2019

Tobacco Butanoic acid
3-(1-Methyl-2-
pyrrolidinyl)pyridine
β-Nicotyrine
3-methyl-1-phenyl-1H-
pyrazole

Tobacco flavored e-liquids induced autophagy of
human middle ear epithelial cells and increased mucin
production

Go et al., 2020

Sweet
(vanillin)

Ethyl maltol
Piperonal
Vanillin
Isobutyl caproate

Vanillin induced IL-8 secretion in HBEs and human lung
fibroblasts and with no effect on the AEC barrier
function

Gerloff et al., 2017

Menthol Pyrazine,2,3,5-
Trimethyl
γ-Octalactone
dl-Menthol
δ-Decalactone

Mentholation in cigarettes decreases the bacterial
diversity and presence of human pathogens

Chopyk et al., 2017

Menthol flavored e-liquids induced autophagy of human
middle ear epithelial cells and increased mucin
production

Go et al., 2020

Menthol might induce neurogenic inflammation through
activation of TRAP1 receptors in asthma

Yang and Li, 2016

Menthol has antimicrobial activity against
Staphylococcus aureus and Streptococcus epidermidis

Odeyemi and
Oluwajoba, 2011

Table 1 shows a figure depicting the E-liquid flavor wheel. This figure appears in a publication in the Nicotine and Tobacco Research Journal. The paper provides the following information: ©The Author(s) 2018.
Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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FIGURE 1 | Mechanisms of E-liquid flavorings effects on the lung innate immunity and the respiratory microbiota in lung injury. The respiratory tract is lined by a
pseudostratified columnar ciliated epithelium (nasal cavity through the bronchi) transitioning to cuboidal on the bronchioles and squamous on the alveoli (AEC) (Khan
and Lynch, 2020). The apical junctional complexes (AJC), including tight and adherens junctions (Yuksel and Turkeli, 2017), maintain the airways epithelial integrity
and contribute to prevent contact between the respiratory microbiota and the phagocytic cells therefore, providing an immunotolerant environment an
immunotolerant environment (Mathieu et al., 2018). At the AJC, the tight junctions regulate paracellular permeability and the adherens junctions provide cell-to-cell
communication, while connecting to cellular cytoskeletal proteins (Hartsock and Nelson, 2008; Rezaee and Georas, 2014). The airway mucus (AM) constitutes the
water-based apical layer of the airway surface liquid and the periciliary layer is the second sol-based layer that bathes the epithelium (Widdicombe, 2002a). The
respiratory microbiota (RM) resembles the oral microbiota (OM). Members of the RM relies on the airway mucus to access nutrients including mucins (MUC5AC and
MUC5B) and avoid contact with the epithelium, professional antigen presenter cells (DCs) and phagocytic cells such as alveolar macrophages (AMs) and neutrophils
(PMNs). The airway epithelium secretes β-defensins and other host defense peptides and proteins (HDPs). In addition to the airway’s epithelium, the innate immune
response within the respiratory tract involves phagocytic cells including dendritic cells, alveolar macrophages, neutrophils (Agostini et al., 1993; Allie and Randall,
2017); eosinophils (Mesnil et al., 2016); innate lymphoid cells and natural killer cells (Cong and Wei, 2019). The airway surface liquid represents an ecological niche
for the respiratory microbiota, provides a source of specialized nutrients, and plays a role in immunomodulation by regulating the interaction between the respiratory
microbiota and the immune system (Hoskins and Zamcheck, 1968; Ouwerkerk et al., 2013; Sommariva et al., 2020). ENDS flavorings such as cinnamaldehyde,
menthol, or vanillin can disrupt microbial clearance in the respiratory tract by disrupting the AEC integrity and decreasing the levels of mucus, decreasing mucus
clearance and antimicrobial secretion, and eliciting and inflammatory response, eventually producing lung injury. ENDS flavorings also impair the phagocytic activity
of AMs and PMNs. Further research is needed to understand how changes induced by ENDS flavorings in the OM, alveolar macrophages phagocytic activity,
NETosis, induced by ENDS flavors, may alter de RM eventually producing lung injury.
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recently reported that nicotine and flavors from ENDS exposure
enhanced the antibacterial effects of PG and VG, suggesting
that ENDS exposure might potentially induce disturbances of
the respiratory microbiota. As the respiratory microbiota is
influenced by the bacterial membership of the oral and/or
nasal microbiota, the effects of ENDS in the latter might
relate to changes in the URT and LRT. Exposure to pollutants
and toxicants might impact the respiratory microbiota and,
therefore, the lung immunity. The respiratory microbiota
composition may affect the innate immune responses by
inducing defective phagocytic activity by alveolar macrophages
and neutrophils, stimulating the secretion of immunoglobulin
A and antimicrobials, increasing the mucus production, and
disrupting the mucociliary activity. All these mechanisms have
been associated with the pathophysiology of COPD, asthma,
cystic fibrosis, and other respiratory conditions in relationship
to smoking. Likewise, recent evidence suggests ENDS flavorings
produce DNA damage in the airway epithelium, induce
inflammatory response by increasing interleukin-8 (IL-8) or
prostaglandin E2 (PGE2), and elicit oxidative stress (Lerner et al.,
2015; Muthumalage et al., 2017; Kaur et al., 2018). Thus, it is
biologically plausible that the exposure to ENDS flavorings can
disrupt the respiratory microbiota contribution to homeostasis
by altering its composition, which in consequence will impair
the innate immune response in the respiratory system, increasing
susceptibility to infective and inflammatory lung disease. Further
research is needed to understand the effects of ENDS flavorings
on the respiratory microbiota and its relationship to lung injury.

CONCLUSION AND FUTURE
DIRECTIONS

The recent EVALI outbreak in the US, coinciding with a
surge in youth vaping, generated a movement in the research
community to establish research priorities and address challenges
to support the Food and Drug Administration and World
Health Organization efforts to regulate and control ENDS
(Crotty Alexander et al., 2020). Elucidating the potential
immunotoxicity of ENDS flavorings is necessary to inform
regulation of e-liquid manufacturing and to educate the public
and health professional community about ENDS safety. The
immune homeostasis in the respiratory tract is maintained
through a well-coordinated interplay among the respiratory
microbiota, the airway epithelium, and the other elements of the
innate immunity. ENDS flavorings induce abnormal activation
of the lung epithelial cells and β-defensins, impaired macrophage
phagocytic activity, increased levels of MUC5AC and NETosis.

Growing evidence indicates that the respiratory microbiota
might mediate the response to inhaled toxicants, however, many
questions remain unanswered. Areas of future research include:
(1) understanding the short- and long-term effects of ENDS
flavorings in the dynamics of a healthy respiratory microbiota-
host interaction and involvement of base PG/VG and/or nicotine;
(2) elucidating the mechanisms and pathways of the respiratory
microbiota-host interaction involved on the pathogenesis of
flavor-vaping induced lung dysfunction; (3) determining whether
the respiratory microbiota is a mediator or an initiator in flavor-
vaping induced lung injury, thereby leading to lung diseases
and their exacerbations; and, (4) developing in vitro and in vivo
models for the realistic evaluation of the respiratory microbiota-
lung innate immune response in the context of immunotoxicity
studies. Further research on the pathogenesis of flavor-vaping
induced lung injury must consider the respiratory microbiota as a
potential mediator of the immune and the inflammatory response
after exposure to toxicants.
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