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Bark beetles (sensu lato) colonize woody tissues like phloem or xylem and are
associated with a broad range of micro-organisms. Specific fungi in the ascomycete
orders Hypocreales, Microascales and Ophistomatales as well as the basidiomycete
Russulales have been found to be of high importance for successful tree colonization
and reproduction in many species. While fungal mutualisms are facultative for most
phloem-colonizing bark beetles (sensu stricto), xylem-colonizing ambrosia beetles are
long known to obligatorily depend on mutualistic fungi for nutrition of adults and larvae.
Recently, a defensive role of fungal mutualists for their ambrosia beetle hosts was
revealed: Few tested mutualists outcompeted other beetle-antagonistic fungi by their
ability to produce, detoxify and metabolize ethanol, which is naturally occurring in
stressed and/or dying trees that many ambrosia beetle species preferentially colonize.
Here, we aim to test (i) how widespread beneficial effects of ethanol are among the
independently evolved lineages of ambrosia beetle fungal mutualists and (ii) whether it is
also present in common fungal symbionts of two bark beetle species (Ips typographus,
Dendroctonus ponderosae) and some general fungal antagonists of bark and ambrosia
beetle species. The majority of mutualistic ambrosia beetle fungi tested benefited (or
at least were not harmed) by the presence of ethanol in terms of growth parameters
(e.g., biomass), whereas fungal antagonists were inhibited. This confirms the competitive
advantage of nutritional mutualists in the beetle’s preferred, ethanol-containing host
material. Even though most bark beetle fungi are found in the same phylogenetic
lineages and ancestral to the ambrosia beetle (sensu stricto) fungi, most of them were
highly negatively affected by ethanol and only a nutritional mutualist of Dendroctonus
ponderosae benefited, however. This suggests that ethanol tolerance is a derived trait
in nutritional fungal mutualists, particularly in ambrosia beetles that show cooperative
farming of their fungi.

Keywords: ambrosia fungi, bark and ambrosia beetles, symbiont selection, ethanol, detoxification, Ips
typographus
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INTRODUCTION

Filamentous fungi are generally known to be common symbionts
of bark and ambrosia beetles (Curculionidae: Scolytinae and
Platypodinae). While many species use beetles for dissemination
with apparently little benefits for their vectors (Birkemoe et al.,
2018; Seibold et al., 2019) other fungi are essential for the beetles
like nutritional or tree-defenses-detoxifying mutualists as well
as tree-defenses-stimulating fungi (e.g., Six, 2003; Lieutier et al.,
2009; Kandasamy et al., 2019; Biedermann and Vega, 2020). The
most famous nutritional mutualisms are those between xylem-
colonizing ambrosia beetles and various “ambrosia fungus”
species in the ascomycete orders Hypocreales, Microascales and
Ophiostomatales as well as phloem-colonizing Dendroctonus
bark beetles and their basidiomycete and ascomycete mutualists
in the orders Russulales and Ophiostomatales (Barras and Perry,
1972; Six and Paine, 1998; Six and Klepzig, 2004; Harrington,
2005; Kirkendall et al., 2015; Biedermann and Vega, 2020).
All these are truly agricultural mutualisms, because they evolve
active care of the beetles for their fungal “crops” and involve
more or less species-specific partnerships. Indeed, within the
majority of the ambrosia beetle – fungus relationships, the beetles
are essential for the survival of their mutualistic fungi as they
would be overgrown by fungal competitors if the beetles are
not present (Kirkendall et al., 2015; Nuotclà et al., 2019). Up to
date, these mutualisms are unique for beetles and comparable to
the advanced fungi culturing systems of attine ants and fungus-
farming termites (Farrell et al., 2001; Six, 2003; Müller et al., 2005;
Biedermann and Vega, 2020).

The nutritional mutualisms of ambrosia beetles and certain
Dendroctonus spp. as well as some Ips sp. are known for quite
a while (Batra, 1963; Francke-Grosmann, 1965, 1966, 1967; Six,
2003; Vissa and Hofstetter, 2017), but more recent research shows
that other bark beetle species also depend on fungal associates
mainly through detoxification of insect-repelling tree-chemistry
(like in the case of fungal symbionts of the European spruce bark
beetle Ips typographus; Kandasamy et al., 2016, 2019; Wadke et al.,
2016; Zhao et al., 2019). While nutritionally important fungal
mutualists are typically vertically transmitted within mycetangia
(i.e., fungus spore carrying and selecting organs), these organs
are rather rare in non-nutritional beetle-fungus associations
(Francke-Grosmann, 1956, 1967; Batra, 1963; Six, 2003; Hulcr
and Stelinski, 2017; Skelton et al., 2020; Biedermann and Vega,
2020). How mutualisms are maintained in the latter case is poorly
known and supposedly involves vertical transmission through
the gut or the surface of the exoskeleton of the insects (Six,
2003; Harrington, 2005). Even less understood is how the beetles
maintain the dominance of certain fungi within their tunnel
systems and how they suppress ubiquitous competitor fungi and
beetle pathogens (henceforth termed antagonistic fungi).

So far, three evolutionary mechanisms are known by which
a host (e.g., a bark beetle) can maintain a mutualism with
a beneficial symbiont (e.g., an ambrosia fungus): (i) Partner
choice, in which a host is actively selecting a specific symbiont,
(ii) partner fidelity, where symbionts are vertically transmitted
from one host generation to the next, and (iii) the theoretical
and empirically hardly studied mechanism of competition-based

screening, in which environmental filters created by the host
select for the preferred symbiont (Archetti et al., 2011; Scheuring
and Yu, 2012; Foster et al., 2017). Environmental screening
of mutualistic ambrosia fungi utilizing ethanol within woody
substrate (that most ambrosia beetles preferentially colonize)
has been recently discovered by Ranger et al. (2018). These
authors show that ethanol strengthens the competitive ability of
mutualistic ambrosia fungi over other fungal antagonists, because
ambrosia fungi are able to detoxify ethanol and use it as a carbon
source, whereas the antagonists are strongly inhibited in their
growth by even small amounts of ethanol, which is typically an
antimicrobial compound (McGovern et al., 2004; Tunc et al.,
2007). Moreover, mutualistic ambrosia beetle fungi are known
to produce ethanol and other alcohols themselves (Kuhns et al.,
2014; Kandasamy et al., 2016), giving them the possibility to
enrich the colonized woody substrate with ethanol and thus
maintain their dominance even after the production by the dying
plant cells ceases (Kimmerer and Kozlowski, 1982). The ethanol
production of ambrosia fungi can thus be compared with other
similar defensive mechanisms used by other microorganisms to
protect themselves and their animal hosts (Cardoza et al., 2006;
Scott et al., 2008; Six, 2013; Flórez et al., 2015; Ranger et al., 2018).

Ethanol generally plays a crucial role for the attraction of
ambrosia beetles (i.e., it is a kairomone) as it allows them to
detect suitable hosts like stressed or recently dead trees (Graham,
1968; Kühnholz et al., 2001; Ranger et al., 2015). In fact, ethanol
is not solely present in stressed trees but is commonly found
also in healthy trees within both xylem and phloem (Kimmerer
and Stringer, 1988; MacDonald and Kimmerer, 1991; Kozlowski,
1992; Kelsey et al., 2014). Its content is known to increase as
soon as the tree is stressed (e.g., flood stress, mechanical damage)
(Kimmerer and Kozlowski, 1982; MacDonald and Kimmerer,
1991; Ranger et al., 2013) and is thereby functioning as a
cue for ambrosia beetles to recognize defense deficient trees.
The phloem-colonizing bark beetles, which are the evolutionary
ancestors of ambrosia beetles, still prefer similarly deficient host
trees. On the contrary, however, they usually use tree volatiles
and/or aggregation pheromones (produced de novo) other than
ethanol to detect their preferred hosts (Vité et al., 1972; Wood,
1982; Kirkendall et al., 2015; Kandasamy et al., 2016; Biedermann
et al., 2019). So currently it is unknown whether ethanol plays
a role in the bark beetle system by preferentially fostering the
growth of their fungal mutualists.

Ambrosia beetle fungi are not unique in their ability to
produce ethanol. In fact, the ability of yeasts and filamentous
fungi to produce ethanol is relatively widespread in certain fungal
groups (e.g., plant-colonizing fungi like Fusarium and Rhizopus;
the brewer’s yeast Saccharomyces cerevisiae; saprobic and soil-
colonizing fungi like Aspergillus) (Schneider and Jeffries, 1989;
Singh and Kumar, 1991; Singh et al., 1992; Wainwright et al.,
1994; Skory et al., 1997; Ferreira et al., 2014) and has an important
role in biotechnologically used fermentation processes. While
many of these taxa are able to create their own defended niche
by metabolizing, producing and accumulating ethanol in their
environment, they are typically found free-living and not in
mutualisms with insect hosts (Thomson et al., 2005; Dashko
et al., 2014; Zhou et al., 2017). The only other insects known
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to be associated with an ethanol-producing fungus (i.e., yeast)
are Drosophila species, which benefit, like the ambrosia beetles,
from the defensive abilities of their symbionts (McKenzie and
Parsons, 1972; Becher et al., 2012; Christiaens et al., 2014). Some
fungal mutualists of bark beetles like Endoconidiophora polonica
and Grosmannia penicillata (associated with Ips typographus), are
as well known to produce several different alcohols (Kandasamy
et al., 2019), but whether they metabolize, produce and use
them to defend themselves like the ambrosia beetle mutualists
remains unstudied.

Nutritional fungus mutualisms have evolved independently
in at least eleven lineages of wood-boring weevils (Coleoptera:
Curculionidae: Scolytinae and Platypodinae) with at least
five lineages of ascomycetes (Ophiostomataceae, Nectriaceae,
Bionectriaceae, Saccharomycetaceae, Ceratocystidaceae) as well
as two lineages of basidiomycetes (Peniophoraceae, Meruliaceae)
(Alamouti et al., 2009; Li et al., 2014; Hulcr et al., 2015; Bateman
et al., 2017; Hulcr and Stelinski, 2017; Biedermann and Vega,
2020). The ancestral habit of these weevils is phloem and most
lineages transitioned to colonize xylem after the origin of the
nutritional mutualism (which made it possible to live on the
nutrient-poor xylem), possibly because of the high competition
within the phloem (Kirkendall et al., 2015; Biedermann and
Vega, 2020). Currently, only a few ambrosia beetle fungal
mutualists in the Ophiostomataceae and Ceratocystidaceae have
been investigated for their affinity to ethanol (Ranger et al., 2018)
and it remains unknown how widespread this trait is for the other
lineages of ambrosia fungi as well as and in particular for the
ancestral fungal symbionts of bark beetles.

Some bark and ambrosia beetles are severe pests, causing
high economic damages in forests and plantations worldwide
(Kühnholz et al., 2001; Hulcr and Dunn, 2011; La Spina et al.,
2013; Ranger et al., 2015; Biedermann et al., 2019). Therefore,
research on the physiology of their fungal mutualists is very
important to understand the ecology of these beetle-fungus
interactions, which may help at some point to develop new
management tools that target the fungal mutualists. Here, we
examined 10 fungal species from four convergently evolved
clades of bark and ambrosia beetle associated fungal symbionts,
including five nutritional and two tree-chemistry-detoxifying
mutualists and one symbiont with unknown role as well as
2 ubiquitous antagonistic fungi for their ability to grow on
ethanol-containing substrate. Two free-living, non-mutualistic
filamentous fungi in the same lineages were included to test
for phylogenetic effects of ethanol tolerance. Our aims were (i)
to test the ethanol tolerance of previously not-tested clades of
bark and ambrosia beetle fungal mutualists in the basidiomycete
Russulales and the ascomycete Hypocreales and Ophiostomatales
(see Figure 1) and (ii) to compare it between bark beetle (sensu
stricto) and ambrosia beetle fungal partners. The latter can
help to understand the evolution of ethanol tolerance because
ambrosia beetle fungal mutualists are descendants of bark beetle
fungal mutualists, which have not been investigated for their
tolerance toward ethanol so far. Finally, we aim to test (iii)
how widespread the ethanol sensitivity is in antagonists of bark
and ambrosia beetles and free-living fungi in the same clades of
known beetle mutualists.

MATERIALS AND METHODS

Fungal Strains
In this study, we used common fungal mutualists/symbionts of
widespread bark and ambrosia beetles from the three ascomycete
orders [Microascales (Ceratocystidaceae), Ophiostomatales
(Ophiostomataceae), Hypocreales (Nectriaceae)] and
one basidiomycete order [Russulales (Peniophoraceae)].
Additionally, we used two common fungal antagonists of bark
and ambrosia beetles in the two ascomycete orders Hypocreales
(Cordycipitaceae) and Sordariales (Chaetomiaceae). Finally,
we included the nematophagous fungus Esteya vermicola
in the Ophiostomatales (Ophiostomataceae) as well as the
basidiomycete Entomocorticium sp. (see Lehenberger et al.,
2018) in the Russulales (Peniophoraceae), which served as
non-beetle-associated, free-living, phylogenetic controls (for
an overview of all strains see Table 1 and Supplementary
Table S1). We included all fungal species within a phylogenetic
replacement that aimed to (i) visualize the independently evolved
phylogenetic lineages of all tested species and to (ii) indicate each
classification as well as (iii) our current findings.

A stock collection of all these fungal isolates in glycerol (80%)
and glycerol/peptone (80%/1%; Roth, Germany) is constantly
maintained at −80◦C in our lab in Freiburg, Germany. Origins
of the fungal isolates are given in Supplementary Table 1. At
the beginning of the experiment, we first revived fungi on malt
extract agar plates (MEA: 3% malt extract, 0.5% soy peptone,
2% agar, pH = 5.5–6; Sigma-Aldrich, Germany) and stored
them at 5◦C until they were sub-cultured once more on MEA
(25◦C, 60% RH) for 5 (fast growers) to 14 (slow growers) days
(Supplementary Table 3) until the experiment was started for
each fungus individually.

DNA Extraction and
LSU/βT/ITS Barcoding
We first homogenized fungal samples (pure biomass) by
grinding in liquid nitrogen and then proceeded with DNA
extraction using the NORGEN Biotek Corp. fungi/yeast genomic
DNA isolation kit following the manufacturer’s protocol.
Sequences of the large subunit (LSU) of the ribosomal
RNA gene were primarily used for the identification and
phylogenetic placement of isolates (Figure 1; Supplementary
Table 1). For LSU amplification, we used the common
primers LROR-F (GTACCCGCTGAACTTAAGC) and LR5-
R (ATCCTGAGGGAAACTTCG) (Vilgalys and Hester, 1990;
Rehner and Samuels, 1994), which amplify a region of
approximately 830 to 880 bp.

Because some samples repeatedly failed to amplify using
the LSU primers, we barcoded them using the internal
transcribed spacer (ITS) of the ribosomal RNA or the beta-
tubulin gene (βT). The ITS region was amplified using
primers ITS1-F (TCCGTAGGTGAACCTGCGG) and ITS4-R
(TCCTCCGCTTATTGATATGC) (White et al., 1990) and with
an annealing temperature of 54.5◦C. The ITS region finally
contained approximately 580 bp. For amplification of βT, we
used the primers T10-F (ACGATAGGTTCACCTCCAGAC)
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FIGURE 1 | Phylogenetic placement based on 49 fungal LSU sequences. Black-colored species were examined within this study (N = 12), while species in gray act
as a fungal outgroup (N = 37). The LSU region of the following fungi was sequenced by us and used for the phylogenetic analysis (strain IDs in brackets):
Ophiostoma bicolor (P22), Grosmannia penicillata (2), Endoconidiophora polonica (F5), Beauveria bassiana (P13), Entomocorticium sp. (P8), Entomocorticium
dendroctoni (P163), and Fusarium euwallaceae (P170). Sequences from all other species were obtained from NCBI GenBank. For accession numbers and further
information of each individual strain see Supplementary Tables 1, 2. Ophiostomatales were divided into their four sub-clades that are currently hypothesized to
have evolved independently as nutritional mutualists of ambrosia beetles (Biedermann and Vega, 2020). All examined species were classified into (i) ambrosia beetle
fungi, (ii) bark beetle fungi, and (iii) free-living fungi. Triangles denote significant effects on fungal biomass (decrease, increase or not significant; p < 0.05) between
the 0 and 1% EtOH treatments. Nutritional mutualists of bark and ambrosia beetles are underlined. Due to its abundant sporulation we could not receive comparable
data from Beauveria bassiana (indicated with *) and excluded it from all further analyses.

and Bt2b-R (ACCCTCAGTGTAGTGACCCTTGGC) (Glass
and Donaldson, 1995; O’Donnell and Cigelnik, 1997) and
57.5◦C as annealing temperature. Sequence lengths contained
around 300 to 400 bp.

For all PCR reactions, we used a similar master-mix for
LSU, βT and ITS barcoding [Master-mix for 50 µl: 25 µl 2×
phusion high-fidelity PCR master mix with GC buffer (Thermo
ScientificTM, Germany), 2.5 µl forward primer 1 (10 µM,
Eurofins Genomics, Germany) 2.5 µl reverse primer 2 (10 µM,
Eurofins Genomics, Germany), 18 µl ddH20, 2 µl template
(usually 1:10 diluted)]. For all reactions we applied the following
PCR conditions: 98◦C for 30 s, followed by 35 cycles at 98◦C for
10 s, 55.5◦C, 54.5◦C or 57.5◦C (for LSU, ITS, and βT, respectively)

for 30 s and 72◦C for 20 s, ending with 72◦C for 10 min and
ending with a storage temperature of 5◦C.

DNA-purification was done using the Wizard R© SV gel and
PCR clean-up system (Promega, Germany) after performing gel
electrophoresis. Sanger-sequencing was performed by Eurofins
(Eurofins Genomics, Germany). To verify each sequence quality,
we used the “SnapGene R© Viewer” 3.2 (SnapGene software, from
GSL Biotech; available at snapgene.com) and manually corrected
automatically deduced sequences, if necessary. Fungal species
were finally identified using BLASTn at NCBI (Altschul et al.,
1990). All obtained fungal sequences were uploaded to the
NCBI GenBank database (the accession numbers are included in
Supplementary Table 1).
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TABLE 1 | Overview of the twelve fungal isolates used in this study and additional information on their classification, beetle host(s), association, phylogenetic
order and literature.

Fungal species Classification Beetle host(s) Association Phylogenetic order References

Entomocorticium sp. Free-living None None Russulales Lehenberger et al., 2018

Entomocorticium dendroctoni Bark Beetle Dendroctonus
ponderosae

Nutritional mutualist Russulales Whitney et al., 1987

Endoconidiophora polonica Bark Beetle Ips typographus Tree-defenses-detoxifying mutualist Microascales De Beer et al., 2014

Ophiostoma bicolor Bark Beetle Ips spp. Symbiont with unknown role Ophiostomatales (Clade 1) Davidson, 1955

Grosmannia penicillata Bark Beetle Ips typographus Tree-defenses-detoxifying mutualist Ophiostomatales (Clade 3) Goidanich, 1936

Fusarium euwallaceae Ambrosia Beetle Euwallacea fornicatus Nutritional mutualist Hypocreales Freeman et al., 2013

Ambrosiella hartigii Ambrosia Beetle Anisandrus dispar Nutritional mutualist Microascales Batra, 1967

Raffaelea canadensis Ambrosia Beetle Xyleborinus saxesenii Nutritional mutualist Ophiostomatales (Clade 2) Batra, 1967

Raffaelea sulphurea Ambrosia Beetle Xyleborinus saxesenii Nutritional mutualist Ophiostomatales (Clade 4) Harrington et al., 2010

Chaetomium globosum Pathogen Various Resource competitor Sordariales Fries, 1829

Beauveria bassiana Pathogen Various Entomo-pathogen Hypocreales Vuillemin, 1912

Esteya vermicola Free-living None None Ophiostomatales (Clade 4) Liou et al., 1999

Phylogenetic Analysis
Sequences of the LSU for seven of our fungal sequences were
used for maximum likelihood analyses and construction
of a phylogenetic tree (Supplementary Table 1). NCBI
GenBank entries were used for the remaining five sequences
of studied fungi as well as for 37 fungal outgroup sequences
(Supplementary Table 2). Individual sequences were prepared
using GeneDoc 2.7 (Nicholas, 1997) or MEGA 7.0 (Kumar et al.,
2016) and were additionally compared with the received output
from Clustal Omega (Madeira et al., 2019). The phylogenetic
analyses were done with the IQ-Tree-Web-Server (Nguyen
et al., 2015; Trifinopoulos et al., 2016) using the ultrafast
bootstrap analysis (Minh et al., 2013). Based on the web server
FindModel (Posada and Crandall, 1998, available at1), we chose
the generalized time reversible (GTR) model plus gamma (+ G)
with rate heterogeneity (rate categories – 4) and combined it with
8.000 bootstrap alignments as our substitution model. FigTree2

was used for visualization of the phylogenetic tree.
The phylogenetic relationship of tested fungi is already known

(see Rollins et al., 2001; Alamouti et al., 2009; Dreaden et al., 2014;
Vanderpool et al., 2018), therefore we did not include it within the
results. The aim of the phylogenetic reconstruction was to give an
overview over the different examined clades with our choice of
fungi as well as to visually summarize our findings in an appealing
way (see Figure 1).

Ethanol-Based Culturing
We examined the influence of five ethanol (EtOH)
concentrations in MEA culturing media (0, 1, 2, 3, 5 vol/vol)
on biomass, area and density of 12 fungal strains. The methods
closely followed those reported in Ranger et al. (2018). Ethanol
(99.8%, Sigma-Aldrich, Germany) was added to the MEA
media at around 55◦C (just before it solidified) to reduce its
evaporation. Immediately after the media had cooled down
in the petri dishes, we added a sterile cellophane membrane
(6 × 6 cm, NeoLab, Germany) and a plug of the pre-cultured
fungal mycelium (Ø 3 mm, using a cork borer) to the center of

1hiv.lanl.gov/content/sequence/findmodel/findmodel.html
2http://tree.bio.ed.ac.uk/software/figtree

each plate. We used eight replicates per fungus for each of the
five EtOH treatments, for a total of 40 plates per fungus, which
were sealed with parafilm and subsequently incubated in dark
at 25◦C and 60% RH. Images of the colonies were taken every
second day (Sony alpha 5000, 12 × in macro mode) through the
closed lid of the petri dish. Only at the last day of the experiment
the lid was removed before taking the picture (see Figure 2 and
Supplementary Figure 1). All images were analyzed for surface
area using ImageJ software (version 1.52a). The experiment was
terminated for each fungal species separately and as soon as one
replicate (independent of the EtOH treatment) reached an edge
of the cellophane membrane. For individual incubation times see
Supplementary Table 3. If single replicates were contaminated,
we excluded them from our analyses (Supplementary Table 3).
After termination of the experiment and taking of the picture,
the entire fungal biomass was collected from each cellophane
membrane, dried individually at 50◦C for up to 14 days (dry
biomass) in a drying oven and was then weighed. To calculate
the density (mg/mm2) of fungal mycelia, the determined dry
weight (mg) was divided by measured surface area (mm2).

Effects of EtOH concentration on dry biomass, surface area
and density for each fungal species were visualized with ggplot
in R (version 1.2.5033) using the package ggplot2 (Wickham,
2016). One-way-ANOVAs (log10 transformed data; Biomass in
dependence of ethanol concentration) were conducted to detect
differences in the biomass between the 0 and 1%, and the 0
and 2% EtOH treatments for each fungus using the package
rcompanion (CRAN.R-project.org/package = rcompanion). We
added the received ANOVA output for each examined fungus to
the Anova Output.

RESULTS

Fungal Biomass in Relation to the
Amount of EtOH in the Media
Ethanol enriched substrate had a strong effect on the majority
of examined fungal species. Three different reactions of tested
fungi toward EtOH could be distinguished: (I) Fungal biomass
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FIGURE 2 | Representative images of seven studied fungi growing on MEA treated with five investigated ethanol concentrations (0, 1, 2, 3, and 5% vol/vol). (a):
ambrosia beetle fungi = Ambrosiella hartigii, Raffaelea sulphurea; (b): bark beetle fungi = Grosmannia penicillata, Endoconidiophora polonica; (c):
pathogens/free-living = Chaetomium globosum, Esteya vermicola, Entomocorticium sp. For incubation times and further information of each individual strain see
Supplementary Table 3. The five remaining fungal species are displayed in Supplemantary Figure 1.

was positively affected (Figure 3A) (II) not affected (Figure 3A)
or (III) negatively affected (Figure 3B) by medium containing
1% ethanol in comparison to the absence of ethanol. Fungal
species were only associated with pattern I or III, if a
significant difference between the 0 and 1% EtOH treatment
could be detected. In case we did not detect any significances,
fungi were generally associated with pattern II, even though
some species showed a slight non-significant increase or
decrease of biomass.

Within the Microascales, we observed significantly more
fungal biomass at 1% EtOH (pattern I) for the nutritional
mutualist of the ambrosia beetle Anisandrus dispar, Ambrosiella
hartigii (p = 0.0008, Figure 2a) while the detoxifying mutualist
of the bark beetle Ips typographus, Endoconidiophora polonica
(p = 2.23e-10, Figure 2b) produced significantly fewer biomass
and thus showed pattern III. In the Opiostomatales, the
non-beetle-associated, endophyte Esteya vermicola (p = 0.008,
Figure 2c) clearly showed pattern I while there was no significant

increase in biomass but a general tolerance toward ethanol
(pattern II) for the two nutritional mutualists of the ambrosia
beetle Xyleborinus saxesenii, Raffaelea sulphurea (p = 0.65,
Figure 2a) and R. canadensis (p = 0.35, Supplementary
Figure 1B), (mean biomass for both was higher at 1% EtOH,
but not statistically significant). The tree-defenses-detoxifying
mutualist of I. typographus, Grosmannia penicillata (p = 0.154,
Figure 2b) showed a tolerance toward the 1% EtOH treatment,
even though mean biomass decreased with increasing EtOH
concentrations (no significance at 1% EtOH (pattern II), but
rather similar to pattern III). Another symbiont with unknown
role in I. typographus, Ophiostoma bicolor (p = 4.01e-11,
Supplementary Figure 1C), was highly negatively affected by
EtOH (pattern III). The only Sordariales, the antagonistic
bark and ambrosia beetle symbiont Chaetomium globosum
(p = 1.83e-06, Figure 2c) produced significantly fewer biomass
(pattern III). Within the Russulales, the supposedly free-living,
endophytic Entomocorticium sp. (isolated from Trypodendron
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FIGURE 3 | Fungal biomass in mg (dry-weight) as a function of the EtOH (% v/v) treatment (0, 1, 2, 3, and 5% vol/vol). Fungi were classified into (A) positively
affected (Ambrosiella hartigii, Entomocorticium dendroctoni, Esteya vermicola) and not affected (Raffaelea canadensis, R. sulphurea Fusarium euwallaceae) by the
1% EtOH treatment or (B) negatively affected (Chaetomium globosum, Endoconidiophora polonica, Entomocorticium sp. (E.sp.), Grosmannia penicillata,
Ophiostoma bicolor) by the 1% EtOH treatment. With one exception (E. vermicola) all species in the first group are nutritional mutualists of bark and ambrosia
beetles, whereas all species in the second group are either plant-defenses-detoxifying mutualists of bark beetles, free-living or antagonistic species. (AB) denotes
ambrosia beetle associates and (BB) bark beetle associates. Means and standard deviations are given for each EtOH treatment. Significant differences between the
0% and 1% and 2% EtOH treatments are given: *p < 0.05, **p < 0.01, ***p < 0.001. Additionally, we added (+) and (–) to indicate a significant increase, respectively,
decrease of fungal biomass. N = 8 replicates per fungal species.

lineatum) shows pattern III (p = 1.73e-06, Figure 2c), while the
nutritional mutualist of the bark beetle Dendroctonus ponderosae,
Entomocorticium dendroctoni shows pattern I (p = 0.00003,
Supplementary Figure 1C). In the Hypocreales, the only
fungal species which was tolerating EtOH even up to 2%
(pattern II) is the nutritional mutualist of the ambrosia
beetle Euwallacea fornicatus, Fusarium euwallaceae (p = 0.82,
Supplementary Figure 1B). Within the same group, the generally

entomopathogenic fungus Beauveria bassiana (Supplementary
Figure 1A) showed an enormous standard deviation due to its
abundant sporulation, which made it impossible to compare
the biomass of this species at different ethanol concentrations
as spores easily spread all over the plate. Its growth patterns
should be treated with care and are thus only presented in
Supplementary Table 3 and Supplementary Figure 1A. All
examined fungi produced less biomass above 2 to 3% EtOH
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compared to the 0% EtOH treatment. This effect was particularly
present in the bark beetle symbionts (E. polonica, O. bicolor,
G. penicillata, E. dendroctoni), the antagonist C. globosum and the
endophyte Entomocorticium sp., while the remaining ambrosia
beetle mutualists were less strongly affected. The strongest effect
could be observed at the 5% EtOH media, on which only
ambrosia beetle mutualists as well as the free-living endophyte
E. vermicola produced substantial amounts of biomass (see
Figure 2, Supplementary Figure 1 and Supplementary Table 3).
Results from fungal surface area as well as the calculated density
in relation to the amount of EtOH in the media can be found in
the Supplementary Results.

DISCUSSION

Our findings showed that the examined obligate and nutritional
ambrosia beetle mutualists (A. hartigii, R. canadensis,
R. sulphurea) as well as the obligate and nutritional bark
beetle mutualist (E. dendroctoni) benefit or at least are not
harmed (F. euwallaceae) by the presence of low (1–2%)
concentrations of ethanol. Most fascinating, this tolerance of
ethanol by mutualistic fungi is apparently not restricted to a
specific lineage of ambrosia beetle fungi (Figure 1), but must
have evolved convergently in different orders of fungi, such as the
ascomycete Microascales, Ophiostomatales and Hypocreales as
well as the basidiomycete Russulales. Interestingly, the majority
of non-nutritional, plant-defenses-detoxifying bark beetle fungi
(E. polonica, G. penicillata, O. bicolor) and the fungal antagonist
of bark and ambrosia beetles C. globosum strongly decrease
in biomass in the presence of ethanol. Thus, we confirm and
further expand the findings of Ranger et al. (2018) (that were
based on just a handful of fungi) to some more lineages of
independently evolved bark and ambrosia beetle symbionts
with beneficial to antagonistic roles. Our findings show that
non-nutritional mutualists of bark beetles (which have never
been investigated for their ethanol tolerance) are sensitive to even
small amounts of ethanol. This is fascinating because at least in
the Ophiostomatales and Microascales these fungi are ancestral
to ambrosia beetle mutualists, suggesting that ethanol tolerance
convergently evolved repeatedly along with the xylem-boring
and fungus-farming habit of ambrosia beetles. Interestingly, all
symbionts of bark and ambrosia beetles can tolerate or benefit by
the presence of 1–2% ethanol if they are nutritionally beneficial
to their obligately dependent beetle host. This is particularly
interesting because we have pairs of ethanol benefiting/tolerant
vs. sensitive fungal species in almost every fungal order that we
tested. It indicates that ethanol tolerance is a derived trait in bark
and ambrosia beetle nutritional mutualists that are transmitted
in mycetangia and actively farmed by their hosts. Furthermore,
the ethanol preference means that these fungi (as well as their
hosts) are adapted to colonize stressed or recently dead trees
(Moeck, 1970; Miller and Rabaglia, 2009; Ranger et al., 2011,
2013, 2015, 2018; Reding et al., 2011).

While the group of bark and ambrosia beetles are best
known by their tree-killing species, the majority of species
actually colonizes highly stressed or recently dead host trees

(Batra, 1963; Beaver et al., 1989; Kühnholz et al., 2001; Hulcr
and Dunn, 2011; Kirkendall et al., 2015; Ranger et al., 2015).
On the tree, they differ in the localization of their tunnels –
xylem for ambrosia and phloem for bark beetles – and their
association with fungi that are typically nutritionally important
for ambrosia beetles and detoxify (or induce) tree defenses for
bark beetles (but see exceptions in some Dendroctonus and
Ips spp.) (Batra, 1963, 1967; Francke-Grosmann, 1963, 1966;
Whitney et al., 1987; Kirkendall et al., 2015; Hulcr and Stelinski,
2017; Vissa and Hofstetter, 2017; Kandasamy et al., 2019). As
we discussed above, ambrosia beetles are generally associated
with ethanol tolerant or benefiting fungi, whereas bark beetle
fungi are typically sensitive to ethanol. This is also reflected
by the attraction to ethanol during tree-host finding only of
ambrosia beetles, but not of bark beetles. Studies show that
ethanol can be found in both xylem and phloem tissue (Kimmerer
and Stringer, 1988; MacDonald and Kimmerer, 1991; Kelsey
et al., 2014) and ethanol is even enriched in the plant tissues
during bark beetle attacks (Kelsey et al., 2014). However, it is
unclear if phloem of dying trees is generally lower in ethanol
(e.g., due to evaporation) or if bark and ambrosia beetles differ
in host substrate preferences. Also, it is possible that both
bark and ambrosia beetles have to be exposed to ethanol in
their breeding substrate, but that bark beetle symbionts (e.g.,
bacteria) are capable of detoxifying the phloem. A variety of
yeasts, bacteria and filamentous fungi have been isolated from
bark beetles (Six, 2013) and many of them have detoxifying
capabilities (Dowd, 1989, 1992; Skrodenyte-Arbaciauskiene et al.,
2006; Hammerbacher et al., 2013; Um et al., 2013; Ramadhar
et al., 2014; Wadke et al., 2016; Zhao et al., 2019).

All fungi showing a tolerance (R. sulphurea, R. canadensis,
F. euwallacea, G. penicillata) or even an increase in biomass at
1% ethanol (E. vermicola, A. hartigii, E. dendroctoni, Figure 3A)
might indicate an elevated activity of alcohol dehydrogenases
(ADHs; referring to the ADH experiment in Ranger et al., 2018).
These enzymes allow organisms to detoxify ethanol and even
consume it as a carbon source, which can lead to an increase in
biomass in the presence of EtOH, as we found in some species
(significant increase: E. vermicola, A. hartigii, E. dendroctoni; not
significant, but higher mean biomass: R. canadensis, R. sulphurea,
F. euwallaceae). The presence and high activity of ADHs has
already been supported by Ranger et al. (2018) for the ambrosia
beetle fungal mutualists Ambrosiella grosmanniae and Raffaelea
canadensis, while ADHs were only poorly present in Ambrosiella
roeperi and not detectable within the yeast-like fungus Ascoidea
sp. and the fungal antagonist Aspergillus sp. Ranger et al.
(2018) found a significant increase in biomass at 1% ethanol for
R. canadensis that we did not find.

Our findings regarding the sensitivity of plant-defenses-
detoxifying mutualists of bark beetles toward ethanol (pattern
III) in contrast to the insensitivity of nutritional mutualists of
bark and ambrosia beetles (pattern I and II) should be interpreted
with care, however. Here, we tested only a small fraction of
fungi, with only one nutritional mutualist of a bark beetle and
no plant-defenses-detoxifying mutualists of ambrosia beetles.
Therefore, it is currently unclear whether the ethanol sensitivity
that is certainly more common in bark beetle symbionts is
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related to the phloem habitat or the beneficial physiology of the
fungi to the beetles.

In the Hypocreales, the fourth lineage of ambrosia beetle
fungal mutualists, F. euwallaceae, was neither facilitated nor
harmed by EtOH up to 2% relative to the control (Figure 3A).
This indicates that this fungus can tolerate EtOH, which
is already known for the genus Fusarium; for example,
F. oxysporum is known to produce ethanol (Ueng and Gong,
1982; Christakopoulos et al., 1989). This might indicate that
the insensitivity toward ethanol had been present at the origin
of the ambrosia beetle-fungus mutualism in the Hypocreales
and did not evolve anew as hypothesized for the other
lineages (see above). The endophytic ascomycete E. vermicola
(Ophiostomatales) (Figure 3A) can also metabolize ethanol,
similar to ambrosia beetle fungal mutualists. This is especially
interesting as this fungus is not associated with any beetle (Liou
et al., 1999), but is phylogenetically closely related to the ambrosia
beetle fungal mutualist R. sulphurea (Figure 1). This could
mean that ethanol tolerance is present in some free-living fungi,
or even that E. vermicola has been previously associated with
beetles. Close examination of the phylogeny of the relatives of
E. vermicola and R. sulphurea and their EtOH sensitivities have
to be conducted to answer this question.

Quite unique for filamentous fungal species is the high
tolerance (reflected by the ability to produce some biomass) of
some ambrosia beetle mutualists (A. hartigii, R. canadensis, and
F. euwallaceae) as well as some free-living fungi (E. vermicola
and Entomocorticium sp.) toward even the highest tested
EtOH concentration (5%). (Figures 2a,c and Supplementary
Figure 1B). This tolerance is close to the naturally occurring,
wild-type strains of yeasts (up to 6% ethanol by certain species
in the genus Saccharomyces, Candida, Fabospora, Kluyveromyces,
Kloeckera) and of specific filamentous fungi (3–7% by certain
species in the genus Rhizopus and Fusarium) used for producing
ethanol and above the typical limits of alcohol tolerance in
other fungal species (Gao and Fleet, 1988; Singh and Kumar,
1991; Singh et al., 1992; Skory et al., 1997; Banat et al., 1998;
Pina et al., 2004; Benjaphokee et al., 2012; Ferreira et al.,
2014; Lam et al., 2014; Paschos et al., 2015; Ruchala et al.,
2020). In biotechnology, ethanol tolerance and production of
fungi can be increased by culture dependent methods (e.g.,
pH, temperature, medium, carbon-source), genetic modifications
and artificial selection (e.g., Gao and Fleet, 1988; Skory et al.,
1997; Pina et al., 2004; Benjaphokee et al., 2012; Lam et al.,
2014; Ruchala et al., 2020). The extraordinary tolerance of
some of our tested fungi in combination with the known
ethanol production of ambrosia beetle fungi makes them
quite interesting for biotechnological purposes (i.e., second-
generation biofuels made from plant biomass). Moreover,
as we show here, their tolerance toward ethanol evolved
apparently several times independently in unrelated fungal
lineages, so it might be fruitful for biotechnological purposes to
investigate whether the tolerance is always enabled by the same
physiological mechanisms.

Here, we show that not only specific ambrosia beetles, but
many ambrosia beetle species and even a Dendroctonus bark
beetle rely on fungal partners that detoxify and metabolize

ethanol. This competitive ability of their mutualistic partners may
allow the beetles to indirectly select their partners by biological
screening through the ethanol-containing substrate they choose
for boring their galleries (Scheuring and Yu, 2012; Ranger et al.,
2018). By contrast, most non-nutritional bark beetle fungal
mutualists lack the ability to tolerate ethanol. Further studies are
necessary to test whether ethanol is generally absent in most of
the phloem colonized by bark beetles or is degraded by other
symbionts in the microbiome of the beetles.
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Supplementary Figure 1 | Representative images of five studied fungi growing
on MEA treated with five investigated ethanol concentrations (0, 1, 2, 3, and 5%
vol/vol). (A): entomopathogens = Beauveria bassiana; (B): ambrosia beetle
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fungi = Raffaelea canadensis, Fusarium euwallaceae; (C): bark beetle
fungi = Entomocorticium dendroctoni, Ophiostoma bicolor. For incubation times
and further information on each individual strain see Supplementary Table 3.
The seven other fungal species are displayed in Figure 1.

Supplementary Figure 2 | (A) = Surface area in mm2 and (B) = density in
mg/mm2 based on EtOH treatment (0, 1, 2, 3, 5 vol/vol) of fungi positively affected
(Ambrosiella hartigii, Entomocorticium dendroctoni, Esteya vermicola) and not
affected (Raffaelea canadensis, R. sulphurea, Fusarium euwallaceae) in dry weight

(see Figure 3) by the 1% compared to the 0% EtOH treatment. Means and
standard deviations are given. N = 8 replicates per fungal species.

Supplementary Figure 3 | (A) = Surface area in mm2 and (B) = density in
mg/mm2 based on the EtOH treatments (0, 1, 2, 3, 5%) of fungi negatively
affected (Chaetomium globosum, Endoconidiophora polonica, Entomocorticium
sp. (E.sp.), Grosmannia penicillata, Ophiostoma bicolor) in dry weight (see
Figure 3) by the 1% compared to the 0% EtOH treatment. Means and standard
deviations are given. N = 8 replicates per fungal species.
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