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The use of heavy metals in economic and social development can create an
accumulation of toxic waste in the environment. High concentrations of heavy metals
can damage human and animal health, lead to the development of antibiotic resistance,
and possibly change in bovine microbiota. It is important to investigate the influence of
heavy metals in food systems to determine potential harmful effects environmental heavy
metal contamination on human health. Because of a mining dam rupture, 43 million
cubic meters of iron ore waste flowed into the Doce river basin surrounding Mariana City,
Brazil, in 2015. Following this environmental disaster, we investigated the consequences
of long-term exposure to contaminated drinking water on the microbiome and resistome
of dairy cattle. We identified bacterial antimicrobial resistance (AMR) genes in the
feces, rumen fluid, and nasopharynx of 16 dairy cattle 4 years after the environmental
disaster. Cattle had been continuously exposed to heavy metal contaminated water
until sample collection (A) and compared them to analogous samples from 16 dairy
cattle in an unaffected farm, 356 km away (B). The microbiome and resistome of farm
A and farm B differed in many aspects. The distribution of genes present in the cattle’s
nasopharynx, rumen, and feces conferring AMR was highly heterogeneous, and most
genes were present in only a few samples. The relative abundance and prevalence
(presence/absence) of AMR genes were higher in farm A than in farm B. Samples
from farm A had a higher prevalence (presence) of genes conferring resistance to
multiple drugs, metals, biocides, and multi-compound resistance. Fecal samples had
a higher relative abundance of AMR genes, followed by rumen fluid samples, and the
nasopharynx had the lowest relative abundance of AMR genes detected. Metagenome
functional annotation suggested that selective pressures of heavy metal exposure
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potentially skewed pathway diversity toward fewer, more specialized functions. This is
the first study that evaluates the consequences of a Brazilian environmental accident
with mining ore dam failure in the microbiome of dairy cows. Our findings suggest that
the long-term persistence of heavy metals in the environment may result in differences
in the microbiota and enrichment of antimicrobial-resistant bacteria. Our results also
suggest that AMR genes are most readily detected in fecal samples compared to
rumen and nasopharyngeal samples which had relatively lower bacterial read counts.
Since heavy metal contamination has an effect on the animal microbiome, environmental
management is warranted to protect the food system from hazardous consequences.

Keywords: shotgun sequencing, metagenomics, microbiome, heavy metals, antimicrobial resistance, dairy cattle

INTRODUCTION

Despite the substantial advancements brought by
industrialization, it is well known that incorrect management
of industrial activity has the ability to cause severe damage to
environmental, human, and animal health. Heavy metals are
bio-accumulative elements that naturally occur in water and soil
(Guilherme et al., 2005), but human activities such as mining
can result in the environmental accumulation of heavy metals
as toxic waste. Heavy metal contamination is a public health
concern due to the presence of these toxic elements in food
crops (Rai et al., 2019), milk (Zhou et al., 2019) and meat (Wang
et al., 2019). Chronic heavy metal intake of foods derived from
plants grown or animals raised in a contaminated environment
can lead to bio-accumulation in the organism and multiple
health risks (Jaishankar et al., 2014). Gastrointestinal cancer
(Yuan et al., 2016), fetal growth restriction (Sabra et al., 2017),
and neurological diseases (Chen et al., 2016; Karri et al., 2016;
Bjorklund et al., 2018) are examples of heavy metal-related
consequences in humans.

Increased heavy metal concentration in the environment has
been linked to increased prevalence of antibiotic resistance in
bacteria by a co-resistance phenomenon (Nies, 1992; Silver,
1996; Wireman et al., 1997; Choudhury and Srivastava, 2001;
Baker-Austin et al., 2006). Co-resistance is characterized by the
closeness between different types of resistance genes located in
the same genetic element, such as plasmids and transposons,
which are often transferred together. As a result of this
connection, the transfer of one gene (heavy metal resistance) may
occur in concert with the transfer of the closest gene (antibiotic
resistance) (Baker-Austin et al., 2006). Consequently, some
resistance mechanisms are shared between antibiotics and heavy
metals (Silver and Phung, 1996; Levy, 2002; Mukhopadhyay and
Rosen, 2002; Roberts, 2005). Efflux pumps are another important
resistance system in both gram-negative and gram-positive
bacteria. These transmembrane proteins are responsible for
pumping antimicrobial (molecules/compounds/substances) (e.g.,
antibiotics, heavy metals, biocides) out of the cell, regulating their
concentrations in the bacterial internal environment (Blanco
et al., 2016). Multi-drug resistance efflux pumps are important
examples of cross-resistance determinants, and the resistance-
nodulation-division (RND) superfamily is of major clinical

significance in gram-negative that transports heavy metals, and
hydrophobic drugs (Zgurskaya and Nikaido, 2000).

Chronic heavy metal intake may lead to health complications
due to its bio-accumulative effect (Jaishankar et al., 2014). Heavy
metals are absorbed in the gastrointestinal tract but some also
remain in the intestinal lumen, potentially interfering in the
microenvironment and its functioning (Breton et al., 2013).
For example, rodent models have shown that exposure to lead
and cadmium changed the gut microbiota of rats; specifically,
the relative abundance of Lachnospiraceae decreased and
Lactobacillaceae and Erysipelotrichaceacae increased, resulting
in gut dysbiosis associated with colitis and gut inflammation
(Lepage et al., 2011; Breton et al., 2013). Bacteria unique to
ruminants have been shown to be sensitive to heavy metals
in vitro. An in vitro study of rumen environments showed
that Bacteroides succinogenes, Ruminococcus albus, Bacteroides
amylophilus, and Eubacterium ruminantium were sensitive to
heavy metals, such as cadmium, mercury, copper, arsenic, and
chromium (Forsberg, 1978). It is well-established that the rumen
resident microorganisms are responsible for feed fermentation
and production of important metabolites that maintain ruminant
homeostasis; thus, it is important to evaluate the impact of heavy
metal exposure on ruminal microbiome.

Anthropogenic activity (e.g., mining) is responsible for the
deposition of heavy metals in the environment (Nguyen et al.,
2019). In 2015, the rupture of a Brazilian mining dam resulted
in iron ore waste flowing into the Doce river basin, which
resulted in more than 43 million cubic meters of iron ore
waste flowing into the Doce river basin surrounding Mariana
City in the state of Minas Gerais (Samarco, 2016; do Carmo
et al., 2017). Analysis of Doce river water 2 years after the
event revealed aluminum, nickel, arsenic, copper, manganese,
and lead higher than the maximum value allowed by Brazilian
legislation (de Carvalho et al., 2017). Little is known about the
effects of heavy metal environmental contamination on food
production animals and their metagenomes. This presented
the opportunity to investigate the consequences of long-term
exposure to heavy metal contaminated drinking water on the
dairy cattle metagenome. Thus, we performed a cross-sectional
study to compare the prevalence and scope of antimicrobial
resistance (AMR) genes between a contaminated farm and an
unaffected farm 356 km away, in addition to characterizing the
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impact of prolonged exposure on the nasopharynx, rumen fluid,
and fecal microbiomes.

MATERIALS AND METHODS

This research was conducted from August 2018 through
November 2019 (sample collection in farm A and farm B was
performed in August 2018 and October 2018, respectively).
Sequencing and analysis of the metagenome were performed
from August to November 2019. Sixteen dairy cows from a
potentially heavy metal contaminated environment (farm A) and
16 dairy cows from a non-contaminated environment (farm B)
were sampled at three body sites. The research protocol was
reviewed and approved by the Ethics Committee in the Use
of Animals of the School of Veterinary Medicine and Animal
Science of the University of São Paulo (protocol no. 6424070217).

Animals and Facilities
A convenience sample of 32 dairy cows was obtained from two
different farms located in Minas Gerais within 526 km of each
other and were enrolled in this study.

Sixteen dairy cows were selected from a dairy farm located in
Mariana City (Latitude: 20◦ 22′ 41′′ S, Longitude: 43◦ 25′ 0′′ W),
Minas Gerais State, Brazil (farm A) in a potentially heavy metal
contaminated area (de Carvalho et al., 2017). Cows were 3 years
old or older to be enrolled in the study, ensuring that they were
present at the farm during the environmental accident. Cows
were housed in a single pen, grazed on pastures, and drank the
affected river water. In addition to pasture, cows received mineral
salt, wheat bran, and cornmeal. All animals were vaccinated for
rabies and foot and mouth disease.

Sixteen cows were selected from a dairy farm located in
Caldas City (Latitude: 21◦ 55′ 23′′ S, Longitude: 46◦ 23′ 15′′
W), Minas Gerais State, Brazil (farm B). The cows grazed on
pastures and drank water from a non-contaminated lagoon. In
addition to pasture, cows received corn and soybean meal as well
as mineral salt. All animals were vaccinated for leptospirosis and
foot and mouth disease.

Samples were collected from females on both farms. Both
owners referred to cases of mastitis and reproductive disorders
during the year before sampling time. The cows received
antibiotic treatment on the farm when necessary. Unfortunately,
health records were not available for every animal.

Data Collection
Two veterinarians from our research group performed physical
examinations on each cow, assessing vital parameters (respiratory
and heart rates, rectal temperature, and ruminal movements) and
any clinical sign that indicated sickness. Animals displaying any
symptoms of illness were removed from the study. Decreased
milk production was also reported by the farmer for animals in
the affected farm.

Sample Collection
Samples were collected from the nasopharynx, rumen, and
rectum. Deep nasopharyngeal swabs (DNS) were collected using

an 80 cm sterile swab (Provar, Brazil) covered by a thin
sterile plastic sheath. The sample was obtained from the left
nostril only. Mucus and dirt were removed from the nostrils
with a paper towel, followed by inserting the swab into the
nasopharyngeal cavity until met with resistance. The swab was
passed 10 times over the respiratory mucosa before being
removed from the nostril. The swabs were placed in cryogenic
tubes and immediately stored in liquid nitrogen. Fecal samples
were obtained by introducing a sterile swab into the rectum and
rotating it for 15 s. Each swab was immediately stored in liquid
nitrogen in a cryogenic tube. Five milliliters of ruminal fluid was
obtained by introducing a plastic probe into the mouth until
it reached the rumen. Using a vacuum system, the content was
collected in a plastic bottle and immediately stored in liquid
nitrogen. The system was cleaned with water and 70% alcohol
between animals.

DNA Extraction
Before DNA extraction, all swab samples were pre-processed to
obtain the maximum DNA concentration. Briefly, one milliliter
of sterile PBS buffer 1× (pH: 7.4) was added to all swab
samples and vortexed for 30 min. The swabs were removed,
and samples were centrifuged at 3,000 × g for 30 min. The
supernatant was discarded, and the pellet was resuspended
in 300 µl of PBS. Rumen fluid samples were thawed and
vortexed before the extraction. DNA extraction was performed
using the MagMAXTM CORE Nucleic Acid Purification Kit
(Thermo Fisher Scientific Inc., Waltham, MA, United States),
according to manufacturer instructions using 200 µl of starting
sample (concentrated swab material or rumen fluid). The DNA
concentration was measured by a spectrophotometer (Nanodrop,
Thermo Fisher Scientific Inc., Waltham, MA, United States).

Metagenome
Before the library preparation, the DNA concentration of each
sample was also assessed by Qubit Fluorometric Quantification
(Thermo Fisher Scientific, San Jose, CA, United States). Ten
nanograms of each Qubit quantified genomic DNA was sheared
with a Covaris E220 instrument operating SonoLab v6.2.6
generating approximately 300 bp DNA fragments according
to the manufacturer’s protocol. Between 10 and 100 ng of
fragmented DNA was processed into Illumina compatible
sequencing libraries using sparQ DNA Library Prep Kit
(Quantabio, Beverly, MA, United States). Each library was
barcoded with unique dual index sequences (NEXTFLEX R©

Unique Dual Index Barcodes, BioO Scientific). Library size and
amount were confirmed with a Bioanalyzer High Sensitivity DNA
chip. Polymerase chain reaction primers and reagents included
in the sparQ kit were used to perform PCR, and products
were purified with AMPure XP beads. Equimolar libraries were
pooled and subjected to Illumina NovaSeq 6000 sequencing at
2 × 150 bp (Illumina, San Diego, CA, United States). Shotgun
whole metagenome sequencing was performed at the Genome
Sciences and Bioinformatics Core at the Pennsylvania State
University College of Medicine, Hershey, PA, United States.
Illumina bcl2fastq (released version 2.20.0.422) was used to
extract de-multiplexed sequencing reads.
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Data Analysis
Microbiome
Fastq files were uploaded to the MG-RAST server (Keegan
et al., 2016), concatenated and submitted to their standard
pipeline to determine the relative abundance of the microbiota.
In the MG-RAST pipeline, sequences were subject to quality
control, including dereplication, removal of host-specific species
sequences (Bos taurus, UMD v3.0), ambiguous base filtering, and
read length filtering. Fragments were mapped against a non-
redundant database (N5nr). Organism abundance was analyzed
with a maximum e-value of 1 × 10−5, minimum identity
cutoff of 60%, and a minimum alignment length cut-off of 15
(default values).

The normality of the data was assessed by the Shapiro–
Wilk test (Shapiro and Wilk, 1965). Variances were analyzed by
Bartlett’s test (Bartlett, 1937). Relative abundance was calculated
by dividing the number of reads of each taxa by the total number
of reads of all taxa. Relative abundances of each phylogenetic
level (phylum and genus) were analyzed by the Wilcoxon rank-
sum test (Wilcoxon, 1945) according to herd (farm A and farm
B). Results were described as mean (M) and standard error of
the mean (SEM). Differential abundance analysis was performed
at the genus level to compare farm A and farm B within each
anatomical site with the DESeq2 package in R. The analysis
was performed with Wald significance test and mean dispersal
type, and P values were adjusted with False Discovery Rate. All
statistical analyses were completed in R software version 3.6.0
(RStudio Team, 2020). Significance was accepted at P < 0.05.

Resistome
Read quality was visualized on a random subset of
10 samples with FastQC (Andrews, 2010). Reads were
trimmed with Trimmomatic for a minimum length of 50 bp
(Bolger et al., 2014). Paired-end reads were merged in FLASH
(Magoc and Salzberg, 2011) and converted to FASTA format
in Seqkit (Shen et al., 2016). Reads were aligned to a custom
AMR gene database built in BLAST (Altschul et al., 1990).
The BLAST database was created from the publicly available

FIGURE 1 | Hierarchy of antimicrobial resistance genes. Each gene or operon
(“Group” level) belongs to a Mechanism, a Class, and a Type. Pairwise
comparisons between farms and anatomical sites were made between Types,
Classes, Mechanisms, and Groups to determine resistome differences.

MEGARes 2.0 AMR database1, which incorporates genes from
CARD, ARGANNOT, AMRFinder, NCBI, ResFinder, BacMet,
Lahey, and ResFinder for a total of 7,868 genes or operons that
confer metal, biocide, drug, or multi-level resistance (Doster
et al., 2019). The BLAST alignment resulted in a tabular list
of reads that aligned to resistance genes or operons, hereon
referred to as “gene counts” (Figure 1). Contaminant genes were
detected and removed with the decontam R package based on
negative control samples from DNA extraction (n = 2) and PCR
(n = 1) (Davis et al., 2017). A mock community sample was
used as a positive control at both DNA extraction and PCR, and
both underwent sequencing for quality control purposes (Zymo
Research, United States).

To account for bias, gene counts were normalized both to
gene length and pseudo-sequencing depth. Gene lengths varied
for the different mutations found in each gene, so gene counts
were divided by the minimum gene length and then the number
of merged reads per sample. The normalized data was scaled to
relative abundance where the sample with the highest normalized
gene count was set to 1. After scaling to relative abundance, we
realized the data was strongly zero skewered and the distribution
was not corrected by variable transformation. Therefore, we also
analyzed the data in terms of gene presence, where data was
converted to binary presence per sample (1 if the gene was present
in the sample, 0 if not) as this represented the heterogeneity of
the data. This is called “gene prevalence” throughout. Higher
gene prevalence is defined as higher per-sample average gene
presence; total gene presence per farm divided by the number of
samples in each farm.

Non-parametric tests were used for pairwise comparisons
of relative gene abundance. Significance thresholds were set
at a False Discovery Rate corrected P < 0.05 (Benjamini
and Hochberg, 1995). Separate comparisons were made for
resistance type, class, mechanism, and group (Figure 1).
Comparisons of relative gene abundance between farms were
made with the Wilcoxon Rank-Sum test with False Discovery
Rate adjustment for multiple comparisons. Comparisons of
relative gene abundance among anatomical sites at each farm
were made using the Kruskal–Wallis test with False Discovery
Rate adjustment for multiple comparisons.

Metagenome Functional Annotation
To determine whether farm A was enriched in functions that
promote resistance to both antimicrobials and heavy metals,
we utilized mi-faser, a high-precision metagenome analysis
pipeline which maps sequencing reads to molecular functions
encoded by the read-corresponding genes, to annotate our data
as a set of molecular functions (Zhu et al., 2018). Paired-
end fastq files were uploaded to the mi-faser submission
site2 whose pipeline performed quality control with fastp
(phredquality = 20, readlength = 40) before reads were mapped
to the mi-faser extended reference database. Job output files
including enzyme catalog (E.C.) numbers, functional annotation,
and read counts per annotation were exported as .csv for all

1https://megares.meglab.org/download/index.php
2https://services.bromberglab.org/mifaser/submit
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90 samples. A Wilcoxon Rank-Sum test was performed to
compare the number of unique reads identified between farms
by sampling sites. Reads were then normalized according to
the total read count in each individual metagenome and these
data together with their metadata (Sample ID, farm, sampling
site) were imported into the open-source machine learning
software Waikato Environment for Knowledge Analysis (WEKA)
(Frank et al., 2016). Within WEKA, the “InfoGainAttributeEval”
attribute evaluator algorithm and search method “Ranker”
were used to calculate the relative worth of each E.C. by
measuring the information gain with respect to three nominal
classes (1) “farm” (two levels), (2) “sampling site” (three
levels), and (3) a composite class of “farm by site” (six
levels). The data set was reduced by selecting the top 10
ranked E.C.s from each approach for pathway mapping in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Mapper
(Kanehisa and Sato, 2020).

All statistical analyses were completed in R software version
3.6.0 (RStudio Team, 2020). Code and raw data are available at
https://github.com/gandalab/amr-heavymetal.

RESULTS

Thirty-two dairy cows were selected from two dairy farms, one
of which had heavy-metal contaminated drinking water. At the
time of sampling, no clinical manifestations that indicated any
disease was observed in any animal. Farm A’s owner reported
to decreased in milk production after the dam failure (250 L
milk/per to 200 L milk/per day). No differences were noted
by farm B’s owner.

Rumen fluid, fecal swabs, and DNS were collected from
each cow, totaling 96 samples. Six samples from farm
B (one fecal swab, three rumen fluids, and two DNS)
did not yield enough DNA concentration and were not
considered for sequencing, so a total of 90 samples were
sequenced and analyzed, in addition to appropriate negative
and positive controls. Detailed sequencing data on total
number of sequences and base pairs, qualified reads per
sample and average length of sequences are presented in
Table 1.

Microbiome
Twenty-eight phyla were detected in fecal samples (Figure 2A).
Firmicutes, Bacteroidetes, and Proteobacteria were the most
abundant phyla in all fecal samples (Supplementary Figure S1).
Firmicutes (A: 0.40± 0.02; B: 0.49± 0.01) and Actinobacteria (A:

TABLE 1 | Descriptive data on total sequences and base pairs, high quality
sequences and average length sequences.

Features Fecal Swab Rumen Fluid Nasal Swab

Total sequences 1,618,872,761 1,623,606,104 1,665,839,299

Total base pairs 305,622,131,406 289,694,665,004 313,199,561,929

High quality sequences 40,202,077 45,029,282 1,550,130

Average length (bp) 182 178 174

0.02 ± 0.00; B: 0.04 ± 0.01) were more abundant in farm B than
farm A (P < 0.05). Bacteroidetes (A: 0.34± 0.02; B: 0.29± 0.01),
and Proteobacteria (A: 0.18 ± 0.05; B: 0.11 ± 0.01) were more
abundant in farm A (P < 0.05) (Figure 3A). Analysis at the genus
level revealed that fecal samples were dominated by 20 genera
(Figure 2B). Bacteroides, Escherichia, and Clostridium were the
most abundant genera in all fecal samples (Supplementary
Figure S2). Clostridium, Bacillus, Eubacterium, Ruminococcus,
and Enterococcus were higher in farm B (P < 0.05). Bacteroides
(A: 0.22 ± 0.02; B: 0.19 ± 0.00), Escherichia (A: 0.11 ± 0.05;
B: 0.04 ± 0.01) and Parabacteroides (A: 0.02 ± 0.00; B:
0.01 ± 0.00) were more abundant in farm A (P < 0.05)
(Figure 3A). Differential abundance analysis revealed that 220
fecal genera of 600 total differed between farms. The 25 most
abundant genera in farm A compared to farm B and the 25
most abundant in farm B compared to farm A are shown in
Supplementary Table S1.

Phylum analysis of rumen fluid revealed 28 phyla (Figure 2A),
in which Bacteroidetes and Firmicutes were the most abundant
phyla in all rumen fluid samples (Supplementary Figure S1).
The relative abundance of Bacteroidetes and Firmicutes was
similar in both farms (P > 0.05) (Figure 3B). Proteobacteria
was more abundant in farm A (A: 0.08 ± 0.00; B: 0.07 ± 0.00)
(P = 0.02). At the genus level, samples were dominated by
20 genera (Figure 2B), in which Bacteroides, Prevotella, and
Clostridium were the most abundant genera in all rumen
fluid samples (Supplementary Figure S2). Prevotella was more
abundant in farm B (A: 0.16 ± 0.01; B: 0.23 ± 0.01)
(P = 0.01). Fibrobacter (A: 0.01 ± 0.00; B: 0.00 ± 0.00) and
Prochlorococcus (A: 0.01 ± 0.01; B: 0.00 ± 0.00) were more
abundant in farm A (P < 0.05) (Figure 3B). Differential
abundance analysis of 600 bacterial genera in ruminal fluid
showed that 92 differed in relative abundance between farms
(Supplementary Table S2).

The phylum analysis of DNS revealed 28 phyla
(Figure 2A). Proteobacteria, Firmicutes, Actinobacteria,
and Bacteroidetes were the most abundant phyla in all
DNS samples (Supplementary Figure S1). The relative
abundance of Proteobacteria was higher in farm A (A:
0.36 ± 0.05; B: 0.20 ± 0.01) (P = 0.001) and Bacteroidetes
in farm B (A: 0.05 ± 0.00; B: 0.12 ± 0.03) (P = 0.0001)
(Figure 3C). Analysis by genus-level revealed samples
dominated by 10 genera (Figure 2B), particularly Eubacterium,
Streptococcus, and Bacillus, which were the most abundant
genera in all DNS samples (Supplementary Figure S2).
The genera Eubacterium (A: 0.13 ± 0.02; B: 0.001 ± 0.00),
Pseudomonas (A: 0.02 ± 0.00; B: 0.00 ± 0.00), Clostridium
(A: 0.02 ± 0.00; B: 0.00 ± 0.00), and Bacteroides (A:
0.02 ± 0.00; B: 0.00 ± 0.00) were more abundant in farm
A compared to farm B (P < 0.05) (Figure 3C). Differential
abundance analysis of 594 bacterial genera detected in DNS
showed that 199 differed in relative abundance between farms
(Supplementary Table S3).

Resistome
A total of 549 AMR genes (called “groups” by the MEGARes
database as it can include either genes or operons; called “gene”
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FIGURE 2 | Relative abundance of phyla and genera across farms and sites. Heat maps showing the relative abundance of most abundant phyla (A) and genera (B)
determined on farm A and farm B in fecal swab, rumen fluid and deep nasopharyngeal swab of dairy cattle.

throughout) were analyzed after removing contaminant gene
alignments (n = 74) and genes found only in one sample
(n = 117). The distribution of AMR gene presence was highly
heterogeneous between samples, as most of the 549 genes were
found in only a few samples (Supplementary Figure S3).

Farm A had a higher relative abundance and higher resistance
prevalence in all four AMR classes of biocides, drugs, metals,
and multi-compound than farm B (Figure 4). Higher prevalence
of biocide resistance in farm A was driven by multi-biocide
resistance ABC (normalized per-sample average gene presence
1.375 farm A and 0.628 farm B) and RND (normalized per-
sample average gene presence 3.5 farm A and 1.581 farm B) efflux
pumps. Metal resistance prevalence was driven by tellurium
resistance and multi-metal resistance, notably a multi-metal
resistance RND efflux pump (per-sample average gene presence
0.438 farm A and 0.047 farm B). Significant multi-compound
resistance genes that were denoted as multi-compound resistance
for drugs and biocides included two RND efflux pumps and
one Major Facilitator (MFS) efflux pump, which were almost
absent from farm B samples; RND efflux pump “MEXY” was
present in only 1 sample in farm B, while RND efflux pump
“MTRD” and the MFS efflux pump “KDEA” were completely
absent from farm B. Several types of drug resistance were more
abundant in farm A than farm B (Supplementary Figure S4).
Mechanisms conferring resistance to aminoglycosides, beta-
lactams, glycopeptides, macrolide-lincosamide-streptogramin B
(MLS), mupirocin, mycobacterium, nucleosides, tetracyclines,
and multi-drug resistance were all more highly abundant and
prevalent in farm A than farm B.

Within each farm, there were strong differences in AMR
abundance and prevalence among anatomical body sites and
the differences were consistent between farms. Generally, in
both farms fecal samples had higher gene presence than
rumen fluid samples, and DNS had the least amount of
gene presence (Figure 5). Resistance types of biocides, drugs,
metals, and multi-compound resistance differed between body

sites on both farms. Interestingly, out of the 549 AMR
genes measured via Kruskal–Wallis, 289 genes had significant
differences in relative abundance among body sites on farm
A, and 271 genes differed on farm B. Of those, only 75
on farm A and 20 on farm B had higher gene prevalence
in either rumen fluid or DNS samples than the fecal
samples, confirming that AMR prevalence is generally higher
in fecal samples.

Metagenome Functional Annotation
The median number of unique functions identified by the mi-
faser for each sampling site by farm is reported in Table 2.
A greater number of unique functions were identified in fecal
samples from farm B (P = 0.05). Still, no difference in functional
annotation was detected in reads from rumen fluid or DNS
samples between farms.

Normalized read counts for the 10 highest ranked E.C.s for
each nominal class were stratified by farm and sampling site
and visualized on a heatmap (Figure 6). The normalized read
counts for the 10 E.C.s most informative in predicting farm are
given in Figure 6A, and those E.C.s were mapped to a number
of KEGG pathways and biological functions, including microbial
metabolism in diverse environments, lipopolysaccharide
synthesis, and T cell receptor signaling (Table 3). The normalized
read counts for the 10 E.C.s most informative in distinguishing
body site are visualized in Figure 6B. Those E.C.s were mapped
to a number of KEGG pathways and biological functions,
including microbial metabolism in diverse environments,
methane metabolism, and plant cell wall degradation (Table 4).
The normalized read counts for the 10 E.C.s most informative
in differentiating the composite farm by site nominal class
are illustrated in Figure 6C, and those ECs were mapped to
numerous KEGG pathways and biological functions, including
microbial metabolism in diverse environments, amino acid
metabolism, DNA repair, and gene expression checkpoints, as
well as plant cell wall degradation (Table 5).
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FIGURE 3 | Distribution of most abundant phyla and genera reveals differences across farms in each site. Bar plots showing the relative abundance of most
abundant phyla (left) and genera (right) and differences between farm A (dark blue) and farm B (light blue) in (A) fecal swab, (B) rumen fluid, and (C) deep
nasopharyngeal swab of dairy cattle. Pairwise comparisons were made between farms with Wilcox Sum test and different letters denote differences between farms
(P < 0.05) within each taxa.

DISCUSSION

To better understand the consequences of long-term exposure
to contaminated drinking water in the metagenome of
dairy cattle, we sequenced the metagenome of fecal,
rumen fluid, and deep nasopharyngeal samples, and
characterized the differences between animals in farms
from heavy metal contaminated and non-contaminated

areas. Our data revealed differences in bacterial taxa
between cows from both areas, and the abundance and
prevalence of AMR genes was higher in the affected
farm (farm A) than the unaffected farm (farm B).
This was the first study to assess the effect of an
environmental in the metagenome of animals exposed
to drinking water contaminated with high levels of
heavy metals.
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FIGURE 4 | Resistance classes are more prevalent in Farm A than Farm B. Average (per-sample) gene presence is shown within each farm across four resistance
classes. Pairwise comparisons were made between farms with Kruskal–Wallis and asterisks denote differences between farms (P < 0.05) within each class.

FIGURE 5 | AMR gene distribution across farms and anatomical sites. UpSet plot of AMR gene distribution in each farm and anatomical site. Of the 549 AMR genes
detected, 67 are found only in farm A fecal samples and 59 are only in farm A rumen fluid samples. The intersections of gene combinations are shown in the dot
matrix and vertical bar plot. The set size (number of genes in each set) is shown in the horizontal gray bar plot. Most genes were detected in fecal and rumen fluid
samples compared to DNS samples.

Microbiome
Long-term exposure to heavy metals seemed to interfere in the
fecal microbiota at phylum-level, since Firmicutes is described
as the most abundant phylum in fecal samples of dairy cows in
studies unrelated to heavy metal contamination (Liu et al., 2016;
Xu et al., 2017; Hagey et al., 2019) and in the present research,

Firmicutes was more abundant in farm B. Rodent models showed
differences in gut microbiota after heavy metal exposure, possibly
due to the direct effect of non-absorbed elements (Breton et al.,
2013). In addition, the long-term effect of heavy metal pollution
in the gut microbiota of Bufo raddei (Mongolian toad) revealed
decreases in species diversity and in population of probiotic
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TABLE 2 | Median number of unique functions identified per metagenome, by
farm and sampling site [feces, rumen fluid, or nasopharyngeal swab (DNS)].

Farm Feces Rumen DNS

Median IQR Median IQR Median IQR

Farm A 765.50 152.25 693.50 101.50 109.50 127.50
Farm B 922.00 154.50 703.00 208.00 164.00 391.50

IQR = interquartile range.

bacteria (Zhang et al., 2016). Our findings suggest that long-term
exposure to heavy metal contaminated drink water may also
interfere in the microbiota of dairy cattle feces at genus-level,
probably due to the presence of more sensitive and more
tolerant groups.

Analysis of rumen fluid at phylum-level revealed Bacteroidetes
and Firmicutes as the major phyla. The rumen fluid microbiota
is mainly composed of gram-negative bacteria in animals
fed with high forage diets (Hungate, 1966). In our present

research, dairy cattle from both herds had a forage-based diet
and our results support this finding. Fibrobacter succinogenes
(genus Fibrobacter) are butyrate-producing bacteria present
in the rumen fluid, and this genus was higher in farm A
compared to farm B. Prevotella and Bacteroides were the
most abundant genera in almost all samples of this study.
Prevotella has been reported to be the most abundant genus
in the rumen (Chaucheyras-Durand and Ossa, 2014; Jami
et al., 2014; Lima et al., 2015; Tong et al., 2018), whose
species are related to degradation of starch, hemicellulose,
and protein (Henderson et al., 2015). Prevotella has also been
positively correlated with milk production (Lima et al., 2015;
Indugu et al., 2017). Here, Ruminococcus and Eubacterium were
numerically higher in farm A and farm B, respectively. The
study conducted by Tong et al. (2018) showed higher abundances
of Ruminococcus 2 and Eubacterium coprostanoligenes in high
yield cows. Eubacterium has also been associated with low
residual feed intake (Elolimy et al., 2018), and this genus is
involved in cellulose degradation in the rumen and some species

FIGURE 6 | Heat map of the top 10 ECs selected by how well they distinguish (A) farm, (B) body site, and (C) farm given body site. Each box represents an individual
sample and is shaded by its normalized read count value. Samples are stratified by farm (A,B) and body site from which the sample was taken [feces, rumen fluid,
and deep nasal swab (DNS)]. ECs (Number: Class) = (A) 2.7.7.7: Nucleotidyltransferase, 2.7.7.8: Nucleotidyltransferase, 2.8.4.3: Methylsulfanyl transferase, 2.5.1.7:
Alkyltransferase, 2.1.1.74: Methyltransferase, 2.4.2.14: Pentosyltransferase, 6.3.5.5: Carbon-nitrogen ligase, 1.1.1.49: Oxidoreductase, 3.1.3.16: Phosphoric -
monoester hydrolase, 2.3.1.191: Acyltransferase. (B) 5.4.2.11: Phosphotransferase, 2.5.1.47: Alkyltransferase, 3.1.1.73: Carboxylic-ester hydrolase, 1.1.1.271:
Oxidoreductase, 5.1.3.11: Epimerase, 1.1 1.1.22: Peroxidase, 1.1.1.192: Oxidoreductase, 4.2.1.45: Lyase, 3.2.1.80: Glycosylase, 1.5.1.43: Oxidoreductase. (C)
6.5.1.2: DNA ligase, 1.4.7.1: Oxidoreductase, 6.3.5.4: Carbon-Nitrogen Iigase, 4.2.2.23: Carbon-oxygen lyase, 2.7.1.162: Phosphotransferase, 3.4.21.1 16:
Peptide hydrolase, 3.1.1.96: Carboxylic-ester hydrolase, 3.6.1.27: Nydr6lase, 3.2.1.156: Oiigosaccharide reducing-end xylanase, 1.5.1.43: Oxidoreductase.
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TABLE 3 | Summary of informative E.C.s identified by the information gained with respect to “farm.”

E.C. Class Pathways Farm A Farm B

1.1.1.49 Oxidoreductase Pentose phosphate; Glutathione metabolism; Metabolic
pathways; Biosynthesis of secondary metabolites;
Microbial metabolism in diverse environments

0 5.9

2.7.7.7 Nucleotidyltransferase DNA-directed DNA polymerase1 797 1010

2.8.4.3 Methylsulfanyl transferase Involved in tRNA methylation1 343.5 403

6.3.5.5 Carbon-nitrogen ligase Pyrimidine metabolism; Alanine, aspartate, and
glutamate metabolism; Metabolic pathways

167.9 123.2

2.5.1.7 Alkyltransferase Amino sugar and nucleotide sugar metabolism;
Peptidoglycan biosynthesis; Metabolic pathways

289.2 413.6

2.1.1.74 Methyltransferase Flavoprotein involved in post-translational modification1 222.5 253

3.1.3.16 Phosphoric-monoester
hydrolase

T cell receptor signaling; PD-L1 expression and PD-1
checkpoint pathway in cancer; Th1&Th2 cell
differentiation

3.4 6.5

2.3.1.191 Acyltransferase Lipopolysaccharide biosynthesis; Metabolic pathways 6.6 6.5

2.7.7.8 Nucleotidyltransferase Polyribonucleotide nucleotidyltransferase1 867.5 1065.4

2.4.2.14 Pentosyltransferase Purine metabolism; Alanine, aspartate and glutamate
metabolism; Metabolic pathways; Biosynthesis of
secondary metabolites

199.1 202.4

Enzyme class, KEGG mapper implicated pathways, and the median normalized read count of each E.C. by farm is reported. 1General function, no specific
pathways implicated.

TABLE 4 | Summary of informative E.C.s identified by the information gained with respect to “Site.”

E.C. Class Pathways Feces Rumen DNS2

1.5.1.43 Oxidoreductase Arginine and proline metabolism; Metabolic pathways 17.4 60.7 0

3.1.1.73 Carboxylic-ester hydrolase Helps break down plant cell wall hemicellulose1 46.7 717.5 0

1.1.1.271 Oxidoreductase Fructose and mannose metabolism; Amino sugar and
nucleotide sugar metabolism; Metabolic pathways

104.9 265.2 0

5.4.2.11 Phosphotransferase Glycolysis/Gluconeogenesis; Glycine, serine, and
threonine metabolism; Methane metabolism; Metabolic
pathways; Biosynthesis of secondary metabolites;
Microbial metabolism in diverse environments

33.1 287.7 247109

5.1.3.11 Epimerase Catalyzes interconversion between D-glucose and
D-mannose1

45.5 190.6 0

1.1.1.192 Oxidoreductase Fatty acid degradation 53.9 120.8 0

3.2.1.80 Glycosylase Fructose and mannose metabolism 18.2 84.9 0

2.5.1.47 Alkyltransferase Cysteine and methionine metabolism; Sulfur
metabolism; Metabolic pathways; Biosynthesis of
secondary metabolites; Microbial metabolism in diverse
environments

652.1 1104.1 0

4.2.1.45 Lyase Amino sugar and nucleotide sugar metabolism;
Metabolic pathways

31.7 92.1 0

1.11.1.22 Peroxidase Protects cells from lipid peroxidation1 15.8 180 0

Enzyme class, KEGG mapper implicated pathways, and the median normalized read count of each E.C. by body site sampled is reported. 1General function, no specific
pathways implicated. 2Deep nasal swab.

are involved in the synthesis of butyrate (Flint et al., 2007),
an energy source for cattle. We hypothesize that the lower
abundance of Eubacterium and Prevotella in cows of farm A
may be contributing to lower reported milk production for this
farm. In fact, cows in farm A produced 250 L milk/per day
before the dam failure, and, recently, the milk production is
200 L milk/per day.

Research on nasopharyngeal samples is often conducted
to understand the bovine respiratory disease or changes
in the microbiota in feedlot cattle. For the first time, we

compared the deep nasopharyngeal microbiota of dairy cows
from a potential heavy metal contaminated environment
and a non-contaminated environment using animals with
no signs of respiratory disease. Analysis at phylum-level
revealed Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes as the most abundant groups. Similar results
were described by Lima et al. (2016) and Gaeta et al. (2016),
in which studies Proteobacteria was also the most abundant
phylum in healthy and pneumonic groups. At the genus-
level, Eubacterium, Streptococcus, Acinetobacter, and Bacillus
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TABLE 5 | Summary of informative E.C.s identified by the information gained with respect to a compound “farm and Site” variable.

Farm A Farm B

E.C. Class Pathways Feces Rumen DNS2 Feces Rumen DNS2

1.4.7.1 Oxidoreductase Glyoxylate and dicarboxylate metabolism;
Nitrogen metabolism; Microbial metabolism in
diverse environments

214.9 770.2 0 123.3 744.2 377.4

6.5.1.2 DNA ligase Forms phosphodiester bonds, repairing
single-stranded DNA breaks1

529.4 363.9 0 613.2 348.5 327.1

6.3.5.4 Carbon-Nitrogen
ligase

Alanine, aspartate, and glutamate metabolism;
Metabolic pathways, Biosynthesis of secondary
metabolites

85.4 452.3 0 21.33 524.4 0

3.6.1.27 Hydrolase Peptidoglycan biosynthesis 81.3 34.5 0 73.8 32.4 0

2.7.1.162 Phosphotransferase Lacto-N-biose/galacto-N-biose degradation in
Bifidobacterium longum1

145.3 51.4 0 178.1 24.8 0

4.2.2.23 Carbon-oxygen lyase Rhamnogalacturonan degradation in Bacillus
subtilis and Aspergillus aculeatus1

22.1 300.2 0 52.8 303.6 0

3.2.1.156 Oligosaccharide
reducing-end
xylanase

Involved in breaking down plant cell wall
hemicellulose1

17.0 89.5 0 233.0 69.4 0

3.4.21.116 Peptide hydrolase Gene expression regulatory checkpoint;
essential to formation of heat-resistant spores1

135.7 23.9 0 160.6 23.4 0

1.5.1.43 Oxidoreductase Arginine and proline metabolism; Metabolic
pathways

18.0 56.1 0. 13.6 66.3 0

3.1.1.96 Carboxylic-ester
hydrolase

Cleaves mischarged tRNAAla; implicated in
ethanol tolerance1

89.4 71.4 0 100.5 54.7 0

Enzyme class, KEGG mapper implicated pathways, and the median normalized read count of each E.C. by farm by Site is reported. 1General function, no specific
pathways implicated. 2Deep nasal swab.

were the major groups observed in this study. These
findings are in accordance with what has been previously
reported, with Acinetobacter being commonly detected in
the nasopharyngeal microbiota of cattle (Gaeta et al., 2016;
Holman et al., 2017; Zeineldin et al., 2017). Streptococcus
is an important genus related to pneumonia in humans,
particularly Streptococcus pneumoniae (Jain et al., 2015),
and has been detected in the respiratory tract of cattle
(Klima et al., 2019). Bacillus are ubiquitously present
in the environment and could be inhaled by cattle and
detected in the upper respiratory tract. Some Bacillus
species have the ability to produce antimicrobial peptides
(Shelburne et al., 2006), that have been proven to inhibit
the in vitro growth of Pasteurella multocida, Mannheimia
haemolytica, and Histophilus somni (Xie et al., 2009),
important pathogens involved in bovine respiratory disease
complex. The presence of Bacillus as one of the major
genus in the nasopharyngeal samples may be one reason
for the lower abundance of Pasteurella, Mannheimia, and
Histophilus observed in animals enrolled in this study, and,
consequently, might have contributed to the absence of signs of
respiratory disease.

Resistome
Long-term persistence and continuous deposition of heavy
metals in the environment (e.g., water source and soil)
enable microbial interactions and transference of resistance
genes, potentiating the emergence of AMR bacteria in
food animals and increase the risk of human exposure

through the food chain (primary production, food industry,
and household) (Oniciuc et al., 2019; Pérez-Rodríguez
and Mercanoglu Taban, 2019). Efflux pumps are protein
systems related to cross-resistance (Baker-Austin et al., 2006;
Martinez et al., 2009), as several antimicrobial molecules
(e.g., heavy metals and antibiotics) are pumped out of the
cell by the same system. Clinically important systems are
members of RND superfamily in gram-negative bacteria
(e.g., Escherichia coli, Campylobacter jejuni, and Pseudomonas
aeruginosa), MFS and ABC in gram-positive bacteria and
mycobacteria (e.g., Staphylococcus aureus, Bacillus spp.,
and Mycobacterium tuberculosis) (Piddock, 2006; Routh
et al., 2011). Our results suggest that both cross-resistance
and co-resistance mechanisms may be occurring more
often in farm A due to the higher prevalence of efflux
pumps (including multi-metal resistance RND and multi-
biocide resistance ABC), in addition to protein types
conferring resistance to several antibiotic classes, possibly
enhanced by environmental contamination. Furthermore,
the detection of several resistance mechanisms warn
for possible presence of multidrug resistant bacteria in
feces and rumen that may contaminate raw milk (Tóth
et al., 2020), carcasses, abattoir surfaces, workers, and
consumers, which have been extensively documented in the
literature (Schlegelová et al., 2004; Lavilla Lerma et al., 2014;
Savin et al., 2020).

AMR development is a natural event that can be exacerbated
by therapy administration and/or growth promoters (Pérez-
Rodríguez and Mercanoglu Taban, 2019). In the present
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research, we evaluate the long-term exposure to heavy-
metal contaminated drinking water in dairy cows as a
potential new pathway to AMR development in farm
animals. Our data showed that fecal samples exhibited the
highest prevalence of AMR genes compared to rumen fluid
and DNS, which implicates future sampling designs using
shotgun sequencing.

Functional Annotation
The symbiotic relationships among rumen fluid microbial
communities are responsible for producing microbial protein
by ammonia nitrogen utilization. The ammonia assimilation
occurs by two main pathways in which the participation of
glutamate synthase is fundamental. This enzyme is classified
according to the electron donor; NADH-dependent, NADPH-
dependent, which is commonly found in several bacteria,
and the ferredoxin-dependent glutamate synthase, which is
found in plants and cyanobacteria (Pengpeng and Tan,
2013). Here, the results showed that ferredoxin-dependent
glutamate synthase (E.C. 1.4.7.1) was overrepresented in
rumen fluid samples of both farms, and in DNS of farm
B. Cyanobacteria were overrepresented in two DNS samples
of farm B, which may explain the results for this site.
Glutamine-dependent asparagine synthase (E.C. 6.3.5.4), also
identified in ammonia assimilation in rumen bacteria (Pengpeng
and Tan, 2013), was overrepresented on farm B ruminal
samples. This in addition to the presence of ferredoxin-
dependent glutamate synthase suggests that the production
of microbial protein is higher in the rumen environment of
farm B dairy cows.

The 2,3-diphosphoglycerate dependent phosphoglycerate
mutase (E.C. 5.4.2.11) was overrepresented in rumen fluid
compared to feces but highly overrepresented in DNS,
and probably independent of farm. A metal independent
enzyme is present in vertebrates, yeast, and several bacteria
(e.g., Haemophilus influenzae). This enzyme participates
in glycolysis and gluconeogenesis processes and methane
metabolism (Jedrzejas, 2000). In addition, DNA ligase (E.C.
6.5.1.2) is also represented in feces and rumen fluid, but it
is overrepresented in DNS samples of farm B. This enzyme,
commonly found in bacteria, participates in the DNA replication
by forming phosphoric-ester bonds and repairs DNA breaks.
The NADP-dependent glucose 6-phosphate dehydrogenase
(E.C. 1.1.1.49), overrepresented in farm B, participates in the
pentose phosphate pathway, which mainly produces NADPH
and ribose-5-phosphate, a precursor of nucleic acids (Stanton,
2012). Finally, the DNA-directed DNA polymerase (E.C.
2.7.7.7), also overrepresented in farm B, is responsible for
the synthesis of a new strand of DNA by adding nucleotides
(Roettger et al., 2010), and it is also implicated in repair
of DNA breaks. Taken together, these findings lead us to
hypothesize that cows of farm B have more active bacterial
replication compared to farm A, and bacteria in farm A are
more susceptible to mutation and death, as they might have
decreased ability to maintain DNA integrity. Thus, more research
is required to understand differences in bacterial metabolism

and behavior in cows of heavy metal contaminated and non-
contaminated farms. It is worth mentioning that DNS samples
were characterized by high variation in functional annotation,
which may be due to low quantity DNA and the difficulty
of DNA extraction from swabs. To better understand what
is occurring in the nasopharyngeal environment, sampling
and extraction protocols need to be optimized with more
representative samples.

This broad, exploratory study is limited in the ability to
draw mechanistic conclusions. One notable limitation is the lack
of baseline pre-environmental disaster data to identify if the
metagenome and resistome differed between the two farms pre-
exposure. Because the AMR gene count data was normalized and
scaled to account for gene length and sequencing depth bias,
count-based statistical analyses (i.e., alpha and beta diversity,
differential abundance analysis) were not possible. Also, diet
can influence microbiota of dairy cattle (Loor et al., 2016; Dill-
McFarland et al., 2018) but we did not directly measure this
effect. In addition, cows within each farm were given the same
diet, and the confounding effects of diet are already accounted
for by a farm comparison. All samples were processed at once
in the same batch, eliminating concerns regarding a true batch
effect in terms of contamination or sequencing errors. Cows were
the same breed, though we do not have information regarding
their relatedness.

CONCLUSION

Long-term persistence of heavy metals in the environment
may interfere in the microbiome of dairy cows. These data
suggest that exposure to heavy metal contamination results
in selection for bacteria that confer resistance to biocides,
drugs, and metals and that AMR genes are most readily
detected in fecal samples compared to the rumen fluid and
nasopharyngeal samples. In addition, metagenome functional
annotation data suggested that selective pressures of heavy
metal exposure could be skewing pathway diversity toward
fewer, more specialized, functions. Differences in microbiota
indicated that exposure to heavy metal contaminated water
may interfere in dairy cattle microbiota and, consequently, in
animal productivity. Further research is warranted to determine
if AMR is transferred via the food chain by milk or meat
consumption, which would have substantial implications for
human health. Since heavy metal contamination has an effect
on animal microbiomes, environmental management, such
as correct dam construction and maintenance and AMR
surveys are warranted to protect the food system from
hazardous consequences.
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Supplementary Figure S1 | Distribution of most prevalent phyla across samples.
Percentage relative abundance of the most prevalent bacterial phyla identified in
(A) fecal swab, (B) rumen fluid and (C) deep nasopharyngeal swab of dairy cattle
and for farm A (left) and farm B (right). X axis represent samples: numbers
represent each cow; A represents affected farm and B the unaffected farm.

Supplementary Figure S2 | Percentage relative abundance of the most
prevalent bacterial genera identified in (A) fecal swab, (B) rumen fluid and (C)
deep nasopharyngeal swab of dairy cattle and for farm A (left) and farm B (right). X
axis represent samples: numbers represent each cow; A represents affected farm
and B the unaffected farm.

Supplementary Figure S3 | AMR gene distribution across samples is highly
heterogeneous and over 50% of AMR genes are present in fewer than 10% of
samples. Antimicrobial resistance gene presence is heterogeneous across
samples. The number of genes in each range is shown at the top of the bar. Over
50% of AMR genes (317 of 549) are present in fewer than 10% of samples. One
gene (PH23S for Phenicol resistance) is present in all samples. The one gene
present in all samples: Drugs| Phenicol| Phenicol-resistant_23S_rRNA_mutation|
PH23S| RequiresSNPConfirmation.

Supplementary Figure S4 | Drug resistance prevalence and sample
heterogeneity across farms. Drug resistance gene presence across farms. The top
(blue) bar plot and dot matrix are the number of samples that share common gene
presence. The left (gray) histogram is the frequency of each drug resistance type
across samples in each.

Supplementary Table S1 | DNS genera that had the most differential abundance
(largest log2 fold change) between farm A and farm B. The 25 most increased
genera in farm A and the 25 most increased genera in farm B are shown. P values
were adjusted with False Discovery Rate.

Supplementary Table S2 | Ruminal fluid genera that had the most differential
abundance (largest log2 fold change) between farm A and farm B. The 25 most
increased genera in farm A and the 25 most increased genera in farm B are
shown. P values were adjusted with False Discovery Rate.

Supplementary Table S3 | DNS genera that had the most differential abundance
(largest log2 fold change) between farm A and farm B. The 25 most increased
genera in farm A and the 25 most increased genera in farm B are shown. P values
were adjusted with False Discovery Rate.
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