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More than 60% of domestic cats in the United States are either overweight or
obese (OW). High-protein low-carbohydrate (HPLC) diets have been recommended
for weight management for humans and pets. Gut microbes can influence the host’s
health and metabolism. Less is known about feline gut microbiomes compared to
other species. Thirty-nine lean (LN) and OW domestic short-haired cats (median age,
7.2 years) with median body fat of 15.8 and 32.5%, respectively, were enrolled in a
two-phase study. All cats were fed the control diet (CON) with 32.4% protein and
32.3% carbohydrate for 8 weeks followed by another 8 weeks of intervention where
half of the cats continued the CON diet while the other half were switched to a
HPLC diet with 51.4% protein and 11.6% carbohydrate. The goal was to understand
how the HPLC diet influenced gut microbiota in obese vs. lean cats. The 16S rRNA
gene profiling study revealed a significant impact on gut microbiome by dietary protein
and carbohydrate ratio. The effect was more pronounced in OW cats than LN cats.
While no microbial taxon was different between groups in LN cats, compositional
changes occurred at different taxonomical ranks in OW cats. At the phylum level,
Fusobacteria became more abundant in HPLC-fed cats than in CON-fed cats. At the
genus level, five short-chain fatty acid (SCFA) producers had altered compositions
in response to the diets: Faecalibacterium and Fusobacterium are more abundant in
HPLC-fed cats while the abundances of Megasphaera, Bifidobacterium, and Veillonella
increased in CON-fed cats. Predicted microbial gene networks showed changes in
energy metabolism and one-carbon metabolism pathways. Our study demonstrated
differential responses to HPLC diet between obese vs. lean cats and opportunities to
explore these SCFA-producers for weight management in cats.

Keywords: cat, microbiome, protein, carbohydrate, obesity, diet, feline

INTRODUCTION

Pet obesity has increased in the past two decades, and it currently is reported that more than 60%
of pet cats are overweight or obese (OW)1. Comorbidities associated with excessive body weight
include diabetes mellitus, cardiovascular diseases, musculoskeletal disorders, and many others.
Thus, feline obesity poses not only health concerns for the cats, but also economical and emotional

1https://petobesityprevention.org/
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issues for the owners. Obesity can be attributed to a combination
of causes including increased energy intake, reduced energy
expenditure and more efficient absorption in dietary nutrients,
which has been associated with changes in microflora in
the gastrointestinal (GI) tract of hosts (Ley et al., 2005;
Turnbaugh et al., 2006). The GI tract is home of trillions of
microorganisms that ferment and utilize unabsorbed dietary
components (Sonnenburg et al., 2005). Some of the bacteria
in the intestine and colon metabolize dietary carbohydrates to
produce short-chain fatty acids (SCFAs) which are precursors for
energy production (McNeil, 1984). In humans, an estimated 5–
10% of absorbed energy comes from the colon (Bingham et al.,
1982; McNeil et al., 1982). GI microbes in obese individuals are
thought to be more efficient at extracting energy than those in
lean individuals (Backhed et al., 2004; Turnbaugh et al., 2006).
The ratio of Firmicutes to Bacteroidetes in the gut has been
associated with obesity in dogs, mice, and humans (Ley et al.,
2005, 2006; Ley, 2010; Li et al., 2017; Coelho et al., 2018).
Potential mechanisms through which gut microbes contribute to
host obesity include extraction of extra dietary energy, increased
lipogenesis and accumulation of triglycerides in adipocytes
(Benahmed et al., 2020).

The concept of using high-protein low-carbohydrate (HPLC)
diets for weight loss has been known for many years (Riegler,
1976). Potential benefits of HPLC diets, including increased
satiety, reduced hunger, loss of body fat, and retention of lean
body mass, were reported in humans, rodents, and dogs (Bierer
and Bui, 2004; Laflamme and Hannah, 2005; Kinzig et al., 2007;
Kushner and Doerfler, 2008). HPLC diets have been shown to
alter the gut microbiome in kittens (Hooda et al., 2013). In dogs,
a HPLC diet altered the composition and function of the gut
microbiota differentially based on body condition, with greater
changes observed in OW dogs (Li et al., 2017; Coelho et al., 2018).
However, studies of the gut microbiome of adults cats as affected
by HPLC diets or by body composition are limited. In this study,
we examined the effect of dietary protein and carbohydrate on gut
microbiome in adult cats with and without excessive body fat.

The goal of this study was to understand how gut microbiome
changes in response to a HPLC diet vs. a control diet (CON) diet
in adult cats. Based on the previous studies in dogs and kittens, we
hypothesized that there would be a significant shift in microbiota
between HPLC and CON diets, and that effect would be greater
in OW cats than cats with lean and healthy body condition (LN).

MATERIALS AND METHODS

Animals and Study Design
The study protocol was approved by the Institutional Animal
Care and Use Committee of the Nestlé Purina PetCare Company.

Abbreviations: CON, control diet; FDR, false discovery rate; HPLC, high-protein
low-carbohydrate diet; KEGG, Kyoto Encyclopedia of Genes and Genomes;
LEfSe, linear discriminant analysis effect size; LN, lean and normal weight; OTU,
operational taxonomic unit; OW, overweight or obese; PCoA, principal coordinate
analysis; PD, phylogenetic diversity; PICRUSt, phylogenetic investigation of
communities by reconstruction of unobserved states; SCFAs, short-chain fatty
acids.

Twenty OW domestic short-haired neutered male or female cats
and 19 sex-, breed-, and age-matched LN cats were selected
for a two-phase 16-week study. Cats with a body condition
score (BCS) between 4 and 5 in the 9-point scale system
(Laflamme, 1997) were considered for the LN group, while cats
with BCS 7–9 were considered for the OW group. Body fat was
determined by quantitative magnetic resonance (QMR) analysis
using EchoMRI-Infants QMR Analyzer (Echo Medical Systems)
to confirm body composition prior to randomization (T0): cats
with ≤20% body fat were considered LN while those with ≥25%
body fat were considered OW. Cats in each weight group were
randomly assigned to two diet treatment groups balanced for sex,
age, and body fat: the CON and the HPLC diet as the test diet
(Table 1). During the baseline feeding phase, all cats were fed
the CON diet for 8 weeks during which each cat’s maintenance
energy requirement (MER) was individually determined based
on intake needed to maintain their body weight. Initially, MER
(kilocalories) was estimated as 60 × body weight (kg) with a
weekly adjustment made if body weight increased or decreased
by more than 5% of their initial body weight. In the intervention
phase, cats were switched to their assigned diet and fed to
maintain body weight for another 8 weeks. Fecal samples were
collected, and body fat percentages were measured using QMR
after the baseline (T1) and intervention (T2) period.

Cats were individually housed with access to a group room
with natural and supplemental lighting on a 12-h cycle. All cats
received regular exercise in the activity room with other cats,
routine grooming, and regular socialization by caretakers.

Diets
The study diets were formulated to be isocaloric, and to meet
or exceed the maintenance nutrient requirement based on the
guidelines of the Association of American Feed Control Officials.
Both diets contained animal protein as a primary protein source.
The protein level in the HPLC diet was adjusted by replacing
grains with plant protein. Details in nutritional compositions of
the diets are described in Table 2.

The 16S rRNA Gene Sequencing of the
V3–V4 Region
Fresh fecal samples were collected within 15 min of defecation
at T1 and T2 and were immediately frozen and stored at
−80◦C until use. Fecal DNA extraction was performed using
PowerFecal DNA isolation kit (Mo Bio Laboratories) and
quantified by Quant-It Pico Green (Thermo Fisher Scientific)
according to manufacturer’s protocols. The 16S rRNA gene
library was constructed according to Illumina’s 16S metagenomic
sequencing library preparation guide. Sequencing was performed
in an Illumina MiSeq machine with 500 cycles according to the
previously described procedures (Li et al., 2017).

Bioinformatics Analysis
Each paired-end reads were merged and assembled into a
single read using the software PEAR with default settings
(Zhang et al., 2014), resulting in an average of 99.4%
assembly. Unassembled reads and those with less than 350
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TABLE 1 | Physical characteristics of the cats.

Lean and normal (LN) Overweight or obese (OW)

HPLC CON P-value HPLC CON P-value

N 10 9 10 10

Sex

Female 5 4 4 4

Male 5 5 6 6

Age 6.75 ± 4.49 6.49 ± 3.53 0.89 7.15 ± 2.50 7.08 ± 2.23 0.95

Body weight (kg) 4.03 ± 0.78 4.19 ± 0.69 0.63 5.85 ± 1.01 5.97 ± 0.82 0.77

Body condition score 5.0 ± 0.0 5.0 ± 0.0 n/a 7.3 ± 0.7 7.4 ± 0.5 0.71

Body fat (%)a

T0 14.7 ± 3.7 14.6 ± 4.5 0.94 32.3 ± 5.4 33.9 ± 3.3 0.44

T1 14.4 ± 4.0 14.9 ± 3.9 0.77 31.4 ± 5.0 32.7 ± 4.0 0.52

T2 15.7 ± 3.0 16.7 ± 4.1 0.58 32.5 ± 5.4 33.7 ± 4.0 0.58

P-value (ANOVA)b 0.73 0.53 0.89 0.75

aBody fat is measured by quantitative magnetic resonance (QMR) before and after baseline feeding (T0 and T1, respectively), and after intervention (T2).
bDifference in body fat within each body type by diet group.
Student’s t-test is performed unless indicated otherwise. HPLC, high-protein low-carbohydrate diet; CON, control diet; na, not applicable. Continuous variables are
expressed as mean ± standard error.

or greater than 475 nucleotides were discarded. Chimeric
reads were detected using UCHIME (Edgar et al., 2011)
and discarded. Reads were de-replicated, sorted and clustered
into operational taxonomic units (OTUs) based on minimal
97% identity using the UPARSE-OTU clustering algorithm
and the greengenes database (v. 13.8) (Edgar, 2010, 2013).
Taxonomy assignment was performed using the k-mer-based
K-nearest neighbor search algorithm implemented in Mothur
(version 1.39.5) (Schloss et al., 2009) by searching the reference
sequence file from the greengenes database (Quast et al., 2013).
Sequence alignment was performed using PyNAST (Caporaso
et al., 2010a). Phylogenetic tree was built from the aligned
sequences using FastTree (Price et al., 2009, 2010). Microbial
compositional data in the OTU table was normalized using
total sum scaling where relative abundance was calculated
for each microbial taxa. Low abundance taxa with less than
0.01% in relative abundance in all samples were removed.
Faith’s phylogenetic diversity (PD), Shannon diversity, and
observed species indexes were calculated using the QIIME script

TABLE 2 | Nutrition compositions in HPLC and CON diets.

Content (%) HPLC CON

Moisture 7.82 7.98

Protein 51.35 32.43

Carbohydrate 11.60 32.30

Fat 14.60 14.30

Total dietary fiber 12.70 11.20

Soluble dietary fiber 1.18 0.79

Insoluble dietary fiber 11.50 10.40

Ash 10.3 8.80

Calculated ME (kcal/g) 3.45 3.48

HPLC, high-protein low-carbohydrate diet; CON, control diet; ME,
metabolizable energy.

“alpha_rarefaction.” Beta diversity on Bray–Curtis, weighted
and unweighted UniFrac dissimilarity matrix was calculated
using “beta_diversity_through_plots” (Lozupone et al., 2011).
Rarefactions on the OTU table were performed to the maximal
depth of 20,000 reads. QIIME (version 1.9.1) functions were
called for making taxonomy assignment, OTU table and
phylogenetic tree (Caporaso et al., 2010b).

Statistical Analysis
ANOVA analysis followed by Tukey’s post hoc test was performed
to compare alpha diversity between groups. Permutational
multivariate analysis of variance (PERMANOVA) was performed
to compare beta diversity (Oksanen et al., 2019). Student’s
t-test was performed to test the null hypothesis that the
means of the first or second principal component (PC), PC1
or PC2, between groups were equal. The distance from T1
and T2 in each cat was calculated using the unweighted
UniFrac dissimilarity matrix and compared across four body
condition-diet groups using ANOVA followed by Tukey’s
post hoc test. To identify significant taxa between groups,
only taxa with at least 50% of non-zero values in at least
one group were considered and non-parametric Kruskal–Wallis
test was performed followed by Dunn’s multiple comparison
with Benjamini–Hochberg adjustment. Multivariate analysis by
linear models (MaAsLin) was performed to find associations
between clinical variables and microbial features (Morgan et al.,
2012). Linear discriminant analysis (LDA) effect size (LEfSe)
(Segata et al., 2011) and Random Forest machine learning
with 500 trees were performed to select microbial markers
that contributed most to the separation between groups using
the MicrobiomeAnalyst web portal (Dhariwal et al., 2017). To
evaluate functional changes in gut microbial metagenomes due
to diet intervention, phylogenetic investigation of communities
by reconstruction of unobserved states (PICRUSt) (Langille et al.,
2013) was performed on the compositional data to estimate
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Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs
and pathways, which were subject to LEfSe analysis. P values
were adjusted to control false discovery rate (FDR) (Benjamini
and Hochberg, 1995). Statistical computing was performed in R
version 3.5.2. (R Core Team, 2015).

RESULTS

There were 10 males and 9 females in the LN group and 12 males
and 8 females in the OW group (Table 1). The mean ages were
6.6 ± 0.9 (standard error) for LN cats and 7.1 ± 0.5 for OW cats
(P = 0.64) while mean BCS for LN and OW cats were 5.0 ± 0.0
and 7.4 ± 0.13 (P < 0.01), respectively. At T0, the median body fat
percentages were 14.0% (range, 6.9–17.3%) for LN males, 15.4%
(range, 5.7–20.0%) for LN females, 32.0% (range, 26.4–37.0%) for
OW males, and 34.8% (range, 28.8–45.8%) for OW females. At
T2, one male and one female of the LN group had exceeded 20%
body fat: means were 15.2% (10.5, 21.8%) for LN males, 17.1%
(9.6, 20.8%) for LN females, 30.8% (26.2, 34.6%) for OW males,
and 36.4% (29.9, 43.8%) for OW females. There was no significant
change in body fat among T0, T1, and T2 (PANOVA > 0.05 in
all cases, Table 1). All cats were healthy throughout the study
except that one HPLC-fed LN cat (LN-HPLC) who developed a
health issue unrelated to the diet after T1 and whose T2 sample
was not collected.

A total of 4,809,360 paired-end sequences were generated
from 77 fecal samples, with a median 61,903 sequences per
sample (range, 31,538–82,908). After assembly and quality
trimming, the median was 48,352 sequences (range, 24,445–
67,643) per sample (Supplementary Table 1). The median length
of the assembled sequences was 440 nucleotides. A operational
taxonomic units (OTUs) table with 77 samples and 1,635
was constructed.

Dietary Effects on Gut Microbial
Diversities
To assess richness and evenness in gut microbial communities
in each cat, Faith’s PD, Shannon diversity and Observed Species
indexes were calculated (Supplementary Table 2). Although no
difference was found between OW and LN cats (P > 0.05) at T1
after all cats were fed the same CON diet, a significant difference
was found at T2 (P < 0.05 for both Faith’s PD and Shannon
indexes, Figures 1A,B). Tukey’s post hoc test showed significant
differences in Faith’s PD between LN-HPLC cats and OW-CON
cats (mean = 27.0 and 30.5, respectively, P = 0.019) and in
Shannon diversity between LN-CON cats and OW-CON cats
(mean = 4.46 and 5.45, respectively, P = 0.022). A similar trend
was found in Observed Species index (PANOVA = 0.057).

To explore the effects of diet, sex, and body condition
on gut microbial composition, beta diversity indexes

FIGURE 1 | Faith’s PD (A) and Shannon diversity (B) indexes after baseline feeding (T1, orange) and intervention (T2, blue). Relative abundances of gut microbiota in
the phylum level (C) and family level (D). LN, lean cats; OW, overweight or obese cats; HPLC, high-protein, low-carbohydrate diet; CON, control diet. Adjusted
*P < 0.05.
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based on Bray–Curtis, weighted and unweighted UniFrac
metrics were calculated (Supplementary Table 2)
(Lozupone and Knight, 2015). At T1, while no difference was
found in fecal microbiomes in the principal coordinate analysis
(PCoA) analysis due to sex or prospective diet groups (P > 0.10
in both cases, Figure 2A and Supplementary Figure 1A), a
significant difference was found between OW and LN cats
(P = 0.047, unweighted UniFrac, Supplementary Figure 1B).
No difference was found between the prospective diet groups in
either LN or OW cats (Supplementary Figures 1C,D).

The dietary intervention had a significant impact on fecal
microbial communities (Figure 2B and Supplementary Table 2).

Significant changes were observed among the four body
condition-diet groups, OW-HPLC, OW-CON, LN-HPLC,
and LN-CON, using the unweighted UniFrac distance,
(PPERMANOVA = 1.0e-06). Dietary effect was greater in OW cats
than in LN cats (PPERMANOVA = 2.9e-05, PPERMANOVA = 0.008,
respectively, Figures 2C,D). The distribution of samples
along the first and second principal coordinates, PC1 and
PC2, was also analyzed. A significant difference along
PC1 was found due to diet or body condition (P = 2.8e-
06, P = 0.046, respectively, Figure 3A). No difference
was found on PC2 (P > 0.05 in both cases). Significant
changes were observed on the distance from T1 to T2 based

FIGURE 2 | Principal coordinates analysis based on unweighted UniFrac distance metric with (A) all cats at T1, (B) all cats at T2, (C) LN cats at T2, and (D) OW cats
at T2. Squares represent LN cats; triangles represent OW cats. Blue and orange represent HPLC and CON diets respectively. The percentages of data variation
explained by the first two principal coordinates are indicated on the x and y axes. LN, lean cats; OW, overweight or obese cats; HPLC, high-protein,
low-carbohydrate diet; CON, control diet.
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FIGURE 3 | Principal coordinate analysis based on (A) unweighted UniFrac distance metric (top panel) and sample distribution along PC1 by diet (middle panel) and
by body condition (bottom panel). (B) Differences in unweighted UniFrac distance from T1 to T2 for each cat are calculated and plotted for the four groups. LN, lean
cats; OW, overweight or obese cats; HPLC, high-protein, low-carbohydrate diet; CON, control diet. P-values from student’s t-test (A) and Tukey’s post hoc test (B):
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

on unweighted UniFrac dissimilarity matrix (P = 8.9e-06,
Figure 3B).

Multivariate linear modeling was performed to assess any
association between microbial abundance and clinical variables
such as age, sex, body weight, BCS, and body fat. No significant
association was found.

Gut Microbiota Between OW vs. LN Cats
No taxonomic change was found at T1 after adjusting for
multiple testing errors (FDR > 0.05 in all cases, Supplementary
Table 3). Two phyla showed opposite trends: Fusobacteria was
more abundant in LN cats while Actinobacteria was enriched
in OW cats. But the differences did not reach statistical
significance (P = 0.057 and 0.054, respectively, Figure 1C).
Similar trends were found in the families of Fusobacteriaceae
and Coriobacteriaceae (phylum Actinobacteria) (P = 0.057 and
0.030, respectively, Figure 1D). At the genus level, Firmicutes,

Butyrivibrio, Bulleidia, Dialister, and Acidaminococcus were more
abundant in OW cats while Fusobacterium was less abundant
when compared to LN cats (P = 0.009, 0.010, 0.020, 0.057, 0.058,
respectively, FDR > 0.05 in all cases; Supplementary Table 3).

Dietary Intervention Changes Gut
Microbiota in OW Cats
Effects of diet intervention on bacterial compositions were
examined at the phylum, family, genus, and species levels in OW
cats (Table 3 and Supplementary Table 4). The abundance of
Fusobacteria was increased by more than eight fold in HPLC
cats compared to CON cats (FDR = 0.001, Figure 1C). At the
family level, the abundances of Fusobacteriaceae, Clostridiaceae,
Lachnospiraceae, Ruminococcaceae, Mogibacteriaceae, and
Peptococcaceae were increased while those of Veillonellaceae,
Bifidobacteriaceae, Porphyromonadaceae, and Rikenellaceae
were decreased in HPLC vs. CON cats (FDR < 0.05 in all

Frontiers in Microbiology | www.frontiersin.org 6 October 2020 | Volume 11 | Article 591462

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-591462 October 14, 2020 Time: 12:44 # 7

Li and Pan Macronutrients on Feline Gut Microbiome

TABLE 3 | Differential taxa between diet groups in obese or overweight (OW) cats.

Rank Taxonomy P (KW) FDR P (T1 vs. T2-CON) P (T1 vs. T2-HPLC) P (T2-CON vs. T2-HPLC) FC (HPLC/CON)

Phylum Fusobacteria 0 0.001 0.651 0 0 8.1

Family Fusobacteriaceae 0 0.004 0.651 0 0 8.1

Family Veillonellaceae 0 0.004 0.691 0 0.003 −3.4

Family Bifidobacteriaceae 0.002 0.018 0.527 0.003 0.004 −711

Family Clostridiaceae 0.007 0.036 0.851 0.007 0.02 2.3

Family Lachnospiraceae 0.007 0.036 0.31 0.005 0.099 1.4

Family Ruminococcaceae 0.008 0.036 0.174 0.006 0.196 1.4

Family Mogibacteriaceae 0.011 0.037 0.048 0.02 0.619 1.8

Family Peptococcaceae 0.01 0.037 0.171 0.009 0.228 1.6

Family Porphyromonadaceae 0.012 0.038 0.013 0.877 0.029 −3.5

Family Rikenellaceae 0.015 0.041 0.022 0.505 0.021 −8.1

Genus Faecalibacterium 0 0.002 0.868 0 0.001 4.5

Genus Megasphaera 0 0.002 0.851 0 0.001 −83.4

Genus Fusobacterium 0 0.003 0.651 0 0 8

Genus Veillonella 0 0.004 0.691 0 0.003 −3.4

Genus Bifidobacterium 0.002 0.019 0.527 0.003 0.004 −711

Species prausnitzii 0 0.002 0.868 0 0.001 4.5

Species gnavus 0 0.004 0.974 0 0.001 5

Species cylindroides 0.001 0.011 0.892 0.002 0.003 na

Species dolichum 0.003 0.022 0.091 0.043 0.002 na

Species ruminis 0.006 0.031 0.374 0.004 0.068 na

Species plebeius 0.01 0.042 0.596 0.008 0.048 −2.6

Species hiranonis 0.012 0.043 0.487 0.009 0.073 2.1

CON, control diet; HPLC, high-protein low-carbohydrate diet; T1, at the end of baseline feeding; T2, at the end of intervention; FDR, false discovery rate; FC, fold change;
na, not applicable. Non-parametric Kruskall–Wallis (KW) test was performed among three groups of cats: T1, T2-HPLC, and T2-CON, followed by Dunn’s multiple
comparison with Benjamini–Hochberg adjustment. P-values were adjusted to control for false discovery rate (FDR). Only significant taxa (FDR < 0.05) were shown.

cases, Figure 1D and Supplementary Figure 2). In addition,
the abundances of five genera shifted in OW cats: increases
in Faecalibacterium and Fusobacterium but decreases in
Megasphaera, Veillonella, and Bifidobacerium were found in
HPLC-fed cats when compared to CON-fed cats (FDR < 0.05
in all cases, Figure 4 and Table 3). Clostridium showed an
increase in CON-fed vs. HPLC-fed cats. But the change did not
reach statistical significance after adjusting for multiple testing
(P = 0.007, FDR = 0.057).

Four species, Faecalibacterium prausnitzii, Ruminococcus
gnavus, Clostridium hiranonis, and Eubacterium dolichum,
had increased abundances while three others, Eubacterium
cylindroides, Lactobacillus ruminis, and Bacteroides plebeius,
decreased (FDR < 0.05 in all cases, Table 3) in HPLC
cats vs. CON cats.

No change in any taxonomic rank was found between diets in
LN cats (FDR > 0.05, Supplementary Table 4).

Biomarkers and Machine Learning
LEfSe analysis identified four genera using the selection criteria
of FDR < 0.05 and log10(LDA) > 3.0 (Supplementary Table 5).
Fusobacterium and Faecalibacterium were more abundant
in OW-HPLC cats while abundances of Megasphaera and
Bifidobacterium were decreased (Figure 5A). No genus had a
significant change between diets in LN cats using the same
selection criteria.

Random Forest machine learning selected top 10 genera
including Fusobacterium, Faecalibacterium, Megasphaera,

Bifidobacterium, Roseburia, Sutterella, Clostridium,
Catenibacterium, Blautia, and Parabacteroides (Figure 5B).
The four genera with the greatest predictive power
belonged to three phyla: Megasphaera and Faecalibacterium
(Firmicutes), Fusobacterium (Fusobacteria), and Bifidobacterium
(Actinobacteria). The resulting random forest classifier achieved
an out-of-bag (OOB) error rate of 5% (Supplementary Figure 3).

Predicted Metagenomic Functions
LEfSe analysis identified nine KEGG pathways in OW cats
using the selection criteria of P < 0.01 and log10(LDA) > 2.5
(Supplementary Table 6). No pathway was identified in LN cats.
These pathways, all of which were enriched in CON-fed OW cats,
included pathways involved in energy metabolism (glycolysis and
gluconeogenesis, pyruvate metabolism, propianoate metabolism,
fatty acid metabolism, and TCA cycle), and folate biosynthesis
and one-carbon metabolic (one-carbon pool by folate) pathways.
In addition, peptidase, tryptophan metabolism, and lysine
degradation pathways were also identified as different between
diets in OW cats.

DISCUSSION

High-protein low-carbohydrate diets have been suggested as a
tool for body weight management for decades with potential
benefits including increased satiety, reduced hunger, and
preservation of lean body mass during weight reduction in
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FIGURE 4 | Differences in relative abundance of six bacterial genera: (A–F) Faecalibacterium, Megasphaera, Fusobacterium, Veillonella, Bifidobacterium, and
Clostridium. Samples are from the T2 time point unless indicated otherwise. LN, lean cats; OW, overweight or obese cats; HPLC, high-protein, low-carbohydrate
diet; CON, control diet. P-values were corrected for multiple testing (FDR): *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001, ****FDR < 0.0001.

humans and animals (Riegler, 1976; Nobels et al., 1989;
Diez et al., 2002; Bierer and Bui, 2004; Laflamme and Hannah,
2005; Kushner and Doerfler, 2008). The GI microbiota plays
an important role in utilizing unabsorbed food components
and extracting energy from food. In this study, we examined
differential responses to the HPLC diet in gut microbiomes in

obese vs. lean cats. To minimize the confounding effect of body
weight changes on gut microbiota, cats were fed to maintain body
weight throughout the entire study.

No difference in alpha diversity was observed between LN
and OW cats fed the same CON for an 8 weeks period at
T1. Similar observations were reported in obese vs. lean dogs
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FIGURE 5 | (A) LEfSe analysis identifies four genera significantly different between OW-HPLC vs. OW-CON cats. Selection criteria: log10(LDA) > 3.0 and
FDR < 0.05. (B) Top 10 genera with the most discriminant powers by Random Forest machine learning with 500 trees. LN, lean cats; OW, overweight or obese
cats; HPLC, high-protein, low-carbohydrate diet; CON, control diet.

(Handl et al., 2013; Li et al., 2017). Shannon diversity showed
differences between LN and OW cats fed on the CON diet
for additional 8 weeks at T2. It is thus possible that the
difference between body conditions was initially masked by
a confounding dietary effect which diminished at T2. Fischer
et al. (2017) reported differences in Faith’s PD but not Shannon
diversity between lean vs. obese cats. But no change was found
before and after weight loss in obese cats. It is difficult to
fully assess these results with the relatively small number of
microbiome studies available in cats compared to those in
humans and other mammals.

Consistent with other microbiome studies on feline feces,
Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and
Fusobacteria are the five most predominant phyla. Interestingly,
Bacteroidetes represented less than 1% of the phyla in kitten
feces but its abundance increased significantly in adult cats,
presumably at the expense of Firmicutes and Actinobacteria
(Hooda et al., 2013; Fischer et al., 2017). Gut microbiomes shift
in response to dietary changes in humans and animals (Wu et al.,
2011; David et al., 2014; Li et al., 2017; Coelho et al., 2018).
While no clustering was found in the PCoA plot between the
two prospectively assigned diet groups at T1, a diet effect on
GI microbial compositions became apparent at T2, with greater
effects in OW cats than LN cats. Our results appear to be in
agreement with the kitten study where distinct clusters were
formed due to changes in dietary protein and carbohydrate ratio
(Hooda et al., 2013). Body condition had a significant effect based
on unweighted UniFrac and Bray–Curtis distance (both P < 0.05)
at T1, but this effect diminished at T2 (P > 0.05), possibly masked
by diet effect. Many bacterial taxonomic changes were found in
the genus level in OW cats compared with little change in LN
cats. Similar findings were reported in a dog study (Li et al.,
2017). More research is needed to understand the mechanism
underlying the differential responses to protein/carbohydrate
change between obese vs. lean pets.

In contrast to findings in humans and rodents (Ley et al.,
2006; Turnbaugh et al., 2009; Ley, 2010), Fischer et al. (2017)
reported significantly more Firmicutes but less Bacteroidetes

in neutered lean cats vs. obese cats. However, no change in
either phylum was observed between OW vs. LN cats in the
current study. An increase in Fusobacteria abundance was
found in LN cats when compared to OW cats (2.38 vs. 0.67%,
respectively, P = 0.057) at T1, although the difference did not
reach statistical significance. The abundance of Fusobacteria
in OW cats was increased in response to HPLC diet (HPLC
3.89% vs. CON 0.48%, respectively, FDR = 0.01) at T2.
Interestingly, the findings reported in the kitten study were more
drastic, where Fusobacteria comprised more than 12% of the
microbiome in kittens fed a HPLC diet compared to merely
0.1% in those fed a moderate-protein moderate-carbohydrate diet
(Hooda et al., 2013).

Five SCFA-producing genera had altered abundances in
OW cats after the dietary intervention: the abundances of
Megasphaera, Veillonella, and Bifidobacterium were decreased
while those of Faecalibacterium and Fusobacterium were
increased in HPLC-fed vs. CON-fed OW cats. In humans, a
large increase in Megasphaera abundance with decreases in
Bifidobacterium and Faecalibacterium were reported in obese
individuals vs. normal ones (Turnbaugh et al., 2006; Furet et al.,
2010; Schwiertz et al., 2010; Brandt and Aroniadis, 2013; Verdam
et al., 2013). The exact species of Megasphaera that were increased
in obese people was undetermined, but was thought to be one of
the SCFA producers that can ferment excess carbohydrates into
SCFAs and improve energy absorption (Holt, 1994; Turnbaugh
et al., 2006). Thus, a decrease in Megasphaera may suggest a
beneficial effect of the HPLC diet for weight loss in OW cats. The
Bifidobacterium spp. possess a large number of genes involved in
carbohydrate metabolism in their genomes (Lee and O’Sullivan,
2010), thus it is not surprising that this genus became more
abundant in CON group vs. HPLC group. Faecalibacterium with
a sole known species F. prausnitzii, is one of the most abundant
and important commensal bacteria in humans, accounting for
more than 5% of total bacteria in human feces (Louis et al., 2010;
Arumugam et al., 2011). It is a butyrate-producing bacterium in
the phylum of Firmicutes with anti-inflammatory effects in vivo
and in vitro (Sokol et al., 2008). It has been documented that the
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abundance of F. prausnitzii was decreased in rats (Liu et al., 2014;
Mu et al., 2016), pigs (Boudry et al., 2013), and dogs (Schmidt
et al., 2018) fed high protein diets. To the contrary, the HPLC diet
increased F. prausnitzii abundances in the feces of kittens (Hooda
et al., 2013) and in this study, adult cats. The cat is considered
an obligate carnivore that has evolved on diets rich in protein.
Thus, it is conceivable that cats, which have a higher protein
requirement than humans and many other mammals, may have a
different response in their gut microbiota to high protein diets.
Both Veillonella and Fusobacterium are SCFA producers albeit
they responded differently to dietary protein and carbohydrate
change in cats. The Veillonella spp. cannot utilize carbohydrates,
but its genome encompasses genes for a major metabolic pathway
which converts lactate into acetate and propionate, a SCFA
with benefits in exercise endurance and athletic performance
in humans and rodents (van den Bogert et al., 2013; Scheiman
et al., 2019). Fusobacterium spp. genomes encode enzymes in
the butyrate biosynthesis pathway and produce acetate and
butyrate primarily through amino acid fermentation (Vital et al.,
2014). Synthesis of SCFAs can activate molecular pathways that
lead to lipogenesis and triglyceride accumulation in adipocytes
(Benahmed et al., 2020). Thus, it is possible that decreases
in Megasphaera, Veillonella, and Bifidobacterium may lead
to reduced lipogenesis, triglyceride accumulation, and energy
absorption, while increases in Faecalibacterium confer anti-
inflammatory and immunomodulatory benefits in HPLC-fed cats
compared to CON-fed OW cats.

Phylogenetic investigation of communities by reconstruction
of unobserved states analysis provides an overview of microbial
gene networks in the system’s level. Nine pathways were enriched
in OW-CON cats compared to OW-HPLC cats. Due to the high
carbohydrate content in the CON, it is not surprising to see
changes in pathways involved in energy metabolism. Gut bacteria
use a specific group of enzymes called CAZymes (carbohydrate-
active enzymes) to break down complex carbohydrates into
simple sugars (Cantarel et al., 2012), which can be further
metabolized for energy through glycolysis. Glycolysis produces
pyruvate, which can be converted into carbohydrates via
gluconeogenesis or fatty acids through a reaction with acetyl-
CoA. In addition, pyruvate can produce energy via TCA cycle
if oxygen is present or via fermentation without oxygen. Gut
bacteria synthesize folic acid de novo providing important dietary
source of folates for animals. Besides being important one-carbon
donors or acceptors, folic acid mediate the important one-carbon
metabolism which supports multiple physiological processes
including biosynthesis, amino acid homeostasis, epigenetic
regulation, and redox defense (Ducker and Rabinowitz, 2017).
The significance of these pathways which are based on imputed
metagenomes from 16S rRNA gene composition data in CON-fed
OW cats should be validated by whole metagenome sequencing.

CONCLUSION

In summary, our study demonstrated a strong influence of
dietary protein carbohydrate ratio on gut microbiota in adult
cats. There was a significant difference in alpha diversity between
OW and LN cats after 16 weeks on the CON diet. The dietary

effect was evidenced in the PCoA analysis. Importantly, the
effect was more prominent in OW cats than LN cats. The five
predominant phyla in the feces of adult cats were Firmicutes,
Bacteroidetes, Fusobacteria, Actinobacteria, and Proteobacteria.
The OW cats had a higher Firmicutes/Bacteroidetes ratio than LN
cats, although the difference did not reach statistical significance.
In a metagenomic analysis between obese vs. lean twins, 75%
obesity-enriched genes belonged Actinobacteria while the other
25% came from Firmicutes (Turnbaugh et al., 2009). Remarkably,
the OW cats had three times as many Actinobacteria as
their LN counterparts (P = 0.054). In humans, Fusobacteria
was positively associated with obesity (Andoh et al., 2016;
Gao et al., 2018; Crovesy et al., 2020). To the contrary, a
decrease in Fusobacteria was observed in OW cats vs. LN cats
(P = 0.057). More studies are needed to confirmed the findings.
However, the HPLC diet increased Fusobacteria abundance in
OW cats to a level comparable to that in LN cats. Changes in
numerous SCFA-producers and carbohydrate-fermenters were
observed. While no significant taxa change was found in LN
cats, five genera were changed in OW cats: Faecalibacterium
and Fusobacterium were more abundant while Megasphaera,
Veillonella, and Bifidobacerium became less abundant in HPLC-
fed cats compared to CON-fed cats. On the pathway level,
changes in energy and one-carbon metabolisms were noticed.
Future metagenomics sequencing and analysis may provide
additional resolutions in the species or even strain levels and
opportunity to better understand metagenomic changes in
the systems level.
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Supplementary Figure 1 | Principal coordinates analysis (PCoA) based on
unweighted UniFrac distance metric on (A) sex, (B) body condition, and diet in (C)
LN cats and (D) OW cats at T1. The percentages of data variation explained by
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Supplementary Figure 2 | Differences in relative abundances of ten bacterial
families. T1 samples are denoted. P values were corrected for multiple testing
(FDR). *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

Supplementary Figure 3 | Performance of Random Forest machine learning
classifier over number of trees.

Supplementary Table 1 | Sequence distribution by sample, assembly,
and passage rates.

Supplementary Table 2 | Alpha- and beta-diversities between groups at T1 and
T2. ANOVA and Tukey’s post hoc test were applied to compare alpha diversities
while PERMANNOVA is used to compare beta diversities.

Supplementary Table 3 | Changes in taxonomical abundances between OW and
LN cats at T1. P-values from Mann–Whitney U test are obtained and adjusted for
multiple testing error.

Supplementary Table 4 | Comparison of the diet groups at the phylum, family,
genus, and species levels in OW and LN cats using Kruskal–Wallis test followed
by Dunn’s multiple comparison with Benjamini–Hochberg adjustment. P-values
are adjusted for multiple testing error using false discovery rate (FDR).

Supplementary Table 5 | LEfSe analysis on bacterial genus between OW-HPLC
vs. OW-CON cats. LEfSe selection criteria: FDR < 0.05 and log10 (LDA) > 3.0.

Supplementary Table 6 | PICRUSt-predicted KEGG metagenomic orthologous
functions between OW-HPLC and OW-CON cats. KO pathways were selected
using P < 0.05 and log10 (LDA) > 2.5.

REFERENCES
Andoh, A., Nishida, A., Takahashi, K., Inatomi, O., Imaeda, H., Bamba, S., et al.

(2016). Comparison of the gut microbial community between obese and lean
peoples using 16S gene sequencing in a Japanese population. J. Clin. Biochem.
Nutr. 59, 65–70. doi: 10.3164/jcbn.15-152

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R.,
et al. (2011). Enterotypes of the human gut microbiome. Nature 473, 174–180.
doi: 10.1038/nature09944

Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., et al. (2004).
The gut microbiota as an environmental factor that regulates fat storage. Proc.
Natl. Acad. Sci. U.S.A. 101, 15718–15723. doi: 10.1073/pnas.0407076101

Benahmed, A. G., Gasmi, A., Dosa, A., Chirumbolo, S., Mujawdiya, P. K., Aaseth,
J., et al. (2020). Association between the gut and oral microbiome with obesity.
Anaerobe 14:102248. doi: 10.1016/j.anaerobe.2020.102248

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Bierer, T. L., and Bui, L. M. (2004). High-protein low-carbohydrate diets enhance
weight loss in dogs. J. Nutr. 134, 2087S–2089S. doi: 10.1093/jn/134.8.2087S

Bingham, S., Cummings, J. H., and Mcneil, N. I. (1982). Diet and health of people
with an ileostomy. 1. Dietary assessment. Br. J. Nutr. 47, 399–406. doi: 10.1079/
bjn19820051

Boudry, G., Jamin, A., Chatelais, L., Gras-Le Guen, C., Michel, C., and Le Huerou-
Luron, I. (2013). Dietary protein excess during neonatal life alters colonic
microbiota and mucosal response to inflammatory mediators later in life in
female pigs. J. Nutr. 143, 1225–1232. doi: 10.3945/jn.113.175828

Brandt, L. J., and Aroniadis, O. C. (2013). An overview of fecal microbiota
transplantation: techniques, indications, and outcomes. Gastrointest. Endosc.
78, 240–249. doi: 10.1016/j.gie.2013.03.1329

Cantarel, B. L., Lombard, V., and Henrissat, B. (2012). Complex carbohydrate
utilization by the healthy human microbiome. PLoS One 7:e28742. doi: 10.1371/
journal.pone.0028742

Caporaso, J. G., Bittinger, K., Bushman, F. D., Desantis, T. Z., Andersen, G. L., and
Knight, R. (2010a). PyNAST: a flexible tool for aligning sequences to a template
alignment. Bioinformatics 26, 266–267. doi: 10.1093/bioinformatics/btp636

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F. D., Costello, E. K., et al. (2010b). QIIME allows analysis of high-
throughput community sequencing data. Nat. Methods 7, 335–336. doi:
10.1038/nmeth.f.303

Coelho, L. P., Kultima, J. R., Costea, P. I., Fournier, C., Pan, Y., Czarnecki-Maulden,
G., et al. (2018). Similarity of the dog and human gut microbiomes in gene
content and response to diet. Microbiome 6:72. doi: 10.1186/s40168-018-0450-3

Crovesy, L., Masterson, D., and Rosado, E. L. (2020). Profile of the gut microbiota
of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74, 1251–1262.
doi: 10.1038/s41430-020-0607-6

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E.,
Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut
microbiome. Nature 505, 559–563. doi: 10.1038/nature12820

Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., and Xia, J. (2017).
MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and
meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. doi:
10.1093/nar/gkx295

Diez, M., Nguyen, P., Jeusette, I., Devois, C., Istasse, L., and Biourge, V. (2002).
Weight loss in obese dogs: evaluation of a high-protein, low-carbohydrate diet.
J. Nutr. 132, 1685S–1687S. doi: 10.1093/jn/132.6.1685S

Ducker, G. S., and Rabinowitz, J. D. (2017). One-carbon metabolism in health and
disease. Cell Metab. 25, 27–42. doi: 10.1016/j.cmet.2016.08.009

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial
amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Fischer, M. M., Kessler, A. M., Kieffer, D. A., Knotts, T. A., Kim, K., Wei, A.,
et al. (2017). Effects of obesity, energy restriction and neutering on the faecal
microbiota of cats. Br. J. Nutr. 118, 513–524. doi: 10.1017/s0007114517002379

Furet, J. P., Kong, L. C., Tap, J., Poitou, C., Basdevant, A., Bouillot, J. L., et al. (2010).
Differential adaptation of human gut microbiota to bariatric surgery-induced
weight loss: links with metabolic and low-grade inflammation markers. Diabetes
59, 3049–3057. doi: 10.2337/db10-0253

Gao, X., Zhang, M., Xue, J., Huang, J., Zhuang, R., Zhou, X., et al. (2018). Body Mass
Index Differences in the Gut Microbiota Are Gender Specific. Front. Microbiol.
9:1250. doi: 10.3389/fmicb.2018.01250

Handl, S., German, A. J., Holden, S. L., Dowd, S. E., Steiner, J. M., Heilmann, R. M.,
et al. (2013). Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol.
84, 332–343. doi: 10.1111/1574-6941.12067

Holt, J. G. (1994). Bergey’s Manual of Determinative Bacteriology. Baltimore:
Lippincott Williams & Wilkins.

Frontiers in Microbiology | www.frontiersin.org 11 October 2020 | Volume 11 | Article 591462

https://www.frontiersin.org/articles/10.3389/fmicb.2020.591462/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2020.591462/full#supplementary-material
https://doi.org/10.3164/jcbn.15-152
https://doi.org/10.1038/nature09944
https://doi.org/10.1073/pnas.0407076101
https://doi.org/10.1016/j.anaerobe.2020.102248
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1093/jn/134.8.2087S
https://doi.org/10.1079/bjn19820051
https://doi.org/10.1079/bjn19820051
https://doi.org/10.3945/jn.113.175828
https://doi.org/10.1016/j.gie.2013.03.1329
https://doi.org/10.1371/journal.pone.0028742
https://doi.org/10.1371/journal.pone.0028742
https://doi.org/10.1093/bioinformatics/btp636
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1186/s40168-018-0450-3
https://doi.org/10.1038/s41430-020-0607-6
https://doi.org/10.1038/nature12820
https://doi.org/10.1093/nar/gkx295
https://doi.org/10.1093/nar/gkx295
https://doi.org/10.1093/jn/132.6.1685S
https://doi.org/10.1016/j.cmet.2016.08.009
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1017/s0007114517002379
https://doi.org/10.2337/db10-0253
https://doi.org/10.3389/fmicb.2018.01250
https://doi.org/10.1111/1574-6941.12067
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-591462 October 14, 2020 Time: 12:44 # 12

Li and Pan Macronutrients on Feline Gut Microbiome

Hooda, S., Vester Boler, B. M., Kerr, K. R., Dowd, S. E., and Swanson, K. S. (2013).
The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio
and associated with blood metabolite and hormone concentrations. Br. J. Nutr.
109, 1637–1646. doi: 10.1017/s0007114512003479

Kinzig, K. P., Hargrave, S. L., Hyun, J., and Moran, T. H. (2007). Energy balance and
hypothalamic effects of a high-protein/low-carbohydrate diet. Physiol. Behav.
92, 454–460. doi: 10.1016/j.physbeh.2007.04.019

Kushner, R. F., and Doerfler, B. (2008). Low-carbohydrate, high-protein
diets revisited. Curr. Opin. Gastroenterol. 24, 198–203. doi: 10.1097/mog.
0b013e3282f43a87

Laflamme, D. P. (1997). Development and validation of a body condition score
system for dogs: a clinical tool. Canine Pract. 22, 10–15.

Laflamme, D. P., and Hannah, S. S. (2005). Increased dietary protein promotes fat
loss and reduces loss of lean body mass during weight loss in cats. Int. J. Appl.
Res. Vet. Med. 3, 62–68.

Langille, M. G., Zaneveld, J., Caporaso, J. G., Mcdonald, D., Knights, D., Reyes,
J. A., et al. (2013). Predictive functional profiling of microbial communities
using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821. doi:
10.1038/nbt.2676

Lee, J. H., and O’Sullivan, D. J. (2010). Genomic insights into bifidobacteria.
Microbiol. Mol. Biol. Rev. 74, 378–416. doi: 10.1128/mmbr.00004-10

Ley, R. E. (2010). Obesity and the human microbiome. Curr. Opin. Gastroenterol.
26, 5–11. doi: 10.1097/mog.0b013e328333d751

Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., and Gordon,
J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A.
102, 11070–11075. doi: 10.1073/pnas.0504978102

Ley, R. E., Turnbaugh, P. J., Klein, S., and Gordon, J. I. (2006). Microbial ecology:
human gut microbes associated with obesity. Nature 444, 1022–1023. doi:
10.1038/4441022a

Li, Q., Lauber, C. L., Czarnecki-Maulden, G., Pan, Y., and Hannah, S. S. (2017).
Effects of the dietary protein and carbohydrate ratio on gut microbiomes in
dogs of different body conditions. MBio 8, e1703–e1716. doi: 10.1128/mBio.
01703-16

Liu, X., Blouin, J. M., Santacruz, A., Lan, A., Andriamihaja, M., Wilkanowicz,
S., et al. (2014). High-protein diet modifies colonic microbiota and luminal
environment but not colonocyte metabolism in the rat model: the increased
luminal bulk connection. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G459–
G470. doi: 10.1152/ajpgi.00400.2013

Louis, P., Young, P., Holtrop, G., and Flint, H. J. (2010). Diversity of human colonic
butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate
CoA-transferase gene. Environ. Microbiol. 12, 304–314. doi: 10.1111/j.1462-
2920.2009.02066.x

Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R. (2011).
UniFrac: an effective distance metric for microbial community comparison.
ISME. J. 5, 169–172. doi: 10.1038/ismej.2010.133

Lozupone, C. A., and Knight, R. (2015). The UniFrac significance test is sensitive
to tree topology. BMC. Bioinformatics 16:211. doi: 10.1186/s12859-015-0640-y

McNeil, N. I. (1984). The contribution of the large intestine to energy supplies in
man. Am. J. Clin. Nutr. 39, 338–342. doi: 10.1093/ajcn/39.2.338

McNeil, N. I., Bingham, S., Cole, T. J., Grant, A. M., and Cummings, J. H.
(1982). Diet and health of people with an ileostomy. 2. Ileostomy function
and nutritional state. Br. J. Nutr. 47, 407–415. doi: 10.1079/bjn19820
052

Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V.,
et al. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel
disease and treatment. Genome Biol. 13, R79.

Mu, C., Yang, Y., Luo, Z., Guan, L., and Zhu, W. (2016). The colonic microbiome
and epithelial transcriptome are altered in rats fed a high-protein diet compared
with a normal-protein diet. J. Nutr. 146, 474–483. doi: 10.3945/jn.115.223990

Nobels, F., Van Gaal, L., and De Leeuw, I. (1989). Weight reduction with a high
protein, low carbohydrate, calorie-restricted diet: effects on blood pressure,
glucose and insulin levels. Neth. J. Med. 35, 295–302.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., et al.
(2019). vegan: Community Ecology Package. R Package Version 2.5-6.

Price, M. N., Dehal, P. S., and Arkin, A. P. (2009). FastTree: computing large
minimum evolution trees with profiles instead of a distance matrix. Mol. Biol.
Evol. 26, 1641–1650. doi: 10.1093/molbev/msp077

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2–approximately
maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.
1371/journal.pone.0009490

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013).
The SILVA ribosomal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Res. 41, D590–D596.

R Core Team (2015). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Riegler, E. (1976). [Weight reduction by a high protein, low carbohydrate diet
(author’s transl)]. Med. Klin. 71, 1051–1056.

Scheiman, J., Luber, J. M., Chavkin, T. A., Macdonald, T., Tung, A., Pham, L. D.,
et al. (2019). Meta-omics analysis of elite athletes identifies a performance-
enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–
1109. doi: 10.1038/s41591-019-0485-4

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister,
E. B., et al. (2009). Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/aem.
01541-09

Schmidt, M., Unterer, S., Suchodolski, J. S., Honneffer, J. B., Guard, B. C., Lidbury,
J. A., et al. (2018). The fecal microbiome and metabolome differs between dogs
fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS One
13:e0201279. doi: 10.1371/journal.pone.0201279

Schwiertz, A., Taras, D., Schafer, K., Beijer, S., Bos, N. A., Donus, C., et al. (2010).
Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18,
190–195. doi: 10.1038/oby.2009.167

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12,
R60.

Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermudez-Humaran, L. G.,
Gratadoux, J. J., et al. (2008). Faecalibacterium prausnitzii is an anti-
inflammatory commensal bacterium identified by gut microbiota analysis of
Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A. 105, 16731–16736. doi:
10.1073/pnas.0804812105

Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C. H., Westover, B. P., Weatherford, J.,
et al. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont.
Science 307, 1955–1959. doi: 10.1126/science.1109051

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley,
R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457,
480–484. doi: 10.1038/nature07540

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and
Gordon, J. I. (2006). An obesity-associated gut microbiome with increased
capacity for energy harvest. Nature 444, 1027–1031.

van den Bogert, B., Boekhorst, J., Smid, E. J., Zoetendal, E. G., and Kleerebezem, M.
(2013). Draft Genome Sequence of Veillonella parvula HSIVP1, Isolated from
the Human Small Intestine. Genome Announc. 1:e00977-13.

Verdam, F. J., Fuentes, S., De Jonge, C., Zoetendal, E. G., Erbil, R., Greve, J. W.,
et al. (2013). Human intestinal microbiota composition is associated with local
and systemic inflammation in obesity. Obesity 21, E607–E615.

Vital, M., Howe, A. C., and Tiedje, J. M. (2014). Revealing the bacterial butyrate
synthesis pathways by analyzing (meta)genomic data. mBio 5:e00889.

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A.,
et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes.
Science 334, 105–108. doi: 10.1126/science.1208344

Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014). PEAR: a fast and
accurate illumina paired-end reAd mergeR. Bioinformatics 30, 614–620. doi:
10.1093/bioinformatics/btt593

Conflict of Interest: QL and YP are current employees of the Nestlé Purina
PetCare Company.

Copyright © 2020 Li and Pan. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 12 October 2020 | Volume 11 | Article 591462

https://doi.org/10.1017/s0007114512003479
https://doi.org/10.1016/j.physbeh.2007.04.019
https://doi.org/10.1097/mog.0b013e3282f43a87
https://doi.org/10.1097/mog.0b013e3282f43a87
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1128/mmbr.00004-10
https://doi.org/10.1097/mog.0b013e328333d751
https://doi.org/10.1073/pnas.0504978102
https://doi.org/10.1038/4441022a
https://doi.org/10.1038/4441022a
https://doi.org/10.1128/mBio.01703-16
https://doi.org/10.1128/mBio.01703-16
https://doi.org/10.1152/ajpgi.00400.2013
https://doi.org/10.1111/j.1462-2920.2009.02066.x
https://doi.org/10.1111/j.1462-2920.2009.02066.x
https://doi.org/10.1038/ismej.2010.133
https://doi.org/10.1186/s12859-015-0640-y
https://doi.org/10.1093/ajcn/39.2.338
https://doi.org/10.1079/bjn19820052
https://doi.org/10.1079/bjn19820052
https://doi.org/10.3945/jn.115.223990
https://doi.org/10.1093/molbev/msp077
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1038/s41591-019-0485-4
https://doi.org/10.1128/aem.01541-09
https://doi.org/10.1128/aem.01541-09
https://doi.org/10.1371/journal.pone.0201279
https://doi.org/10.1038/oby.2009.167
https://doi.org/10.1073/pnas.0804812105
https://doi.org/10.1073/pnas.0804812105
https://doi.org/10.1126/science.1109051
https://doi.org/10.1038/nature07540
https://doi.org/10.1126/science.1208344
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btt593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Differential Responses to Dietary Protein and Carbohydrate Ratio on Gut Microbiome in Obese vs. Lean Cats
	Introduction
	Materials and Methods
	Animals and Study Design
	Diets
	The 16S rRNA Gene Sequencing of the V3–V4 Region
	Bioinformatics Analysis
	Statistical Analysis

	Results
	Dietary Effects on Gut Microbial Diversities
	Gut Microbiota Between OW vs. LN Cats
	Dietary Intervention Changes Gut Microbiota in OW Cats
	Biomarkers and Machine Learning
	Predicted Metagenomic Functions

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


