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Whether terrestrial life can withstand the martian environment is of paramount interest for
planetary protection measures and space exploration. To understand microbial survival
potential in Mars-like conditions, several fungal and bacterial samples were launched
in September 2019 on a large NASA scientific balloon flight to the middle stratosphere
(∼38 km altitude) where radiation levels resembled values at the equatorial Mars surface.
Fungal spores of Aspergillus niger and bacterial cells of Salinisphaera shabanensis,
Staphylococcus capitis subsp. capitis, and Buttiauxella sp. MASE-IM-9 were launched
inside the MARSBOx (Microbes in Atmosphere for Radiation, Survival, and Biological
Outcomes Experiment) payload filled with an artificial martian atmosphere and pressure
throughout the mission profile. The dried microorganisms were either exposed to full
UV-VIS radiation (UV dose = 1148 kJ m−2) or were shielded from radiation. After the
5-h stratospheric exposure, samples were assayed for survival and metabolic changes.
Spores from the fungus A. niger and cells from the Gram-(–) bacterium S. shabanensis
were the most resistant with a 2- and 4-log reduction, respectively. Exposed Buttiauxella
sp. MASE-IM-9 was completely inactivated (both with and without UV exposure) and
S. capitis subsp. capitis only survived the UV shielded experimental condition (3-log
reduction). Our results underscore a wide variation in survival phenotypes of spacecraft
associated microorganisms and support the hypothesis that pigmented fungi may be
resistant to the martian surface if inadvertently delivered by spacecraft missions.

Keywords: Mars simulation, fungal spores, spore survival, space, radiation, UV, balloon flight, stress resistance

INTRODUCTION

Mariner IV was the first successful robotic mission to Mars producing surface photos and
preliminary data used to model atmospheric pressure, layer heights, and temperature (Leighton
et al., 1965; Binder, 1966; Fjeldbo and Eshleman, 1968). In the half century since that first
pioneering mission, orbital and surface rover missions have continued to characterize the Mars
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environment – generally regarded as hostile to terrestrial life
as we know it. The martian surface features highly desiccating
conditions as well as extremely low pressure and temperature.
Moreover, lacking a substantial atmosphere and with a weak
magnetosphere (Acuña et al., 2001), non-ionizing UV radiation
(100–400 nm) as well as high energy solar ionizing radiation (X-
rays, Gamma rays, etc.) and galactic cosmic rays (GCR) bombard
the planet’s surface (Kuhn and Atreya, 1979; Simonsen et al.,
1990; Saganti et al., 2004; Hellweg and Baumstark-Khan, 2007;
Barlow, 2008; Catling, 2009; Hassler et al., 2014; Martínez et al.,
2017). With such an extreme radiation environment, from a
terrestrial standpoint, the martian surface appears to be biocidal.

To ascertain where life can survive beyond Earth, experiments
in the fields of space biology and astrobiology have examined
the responses of terrestrial model organisms to simulated and
real space conditions (Rothschild and Mancinelli, 2001; Moissl-
Eichinger et al., 2016; DasSarma et al., 2020). Understanding
microbial adaptations to either isolated and combined extreme
environmental stressors helps (i) establish the limits of life on
Earth as we know it; (ii) determine whether terrestrial life could
survive on Mars; and (iii) refine the search for life in other
extraterrestrial habitats (Horneck et al., 2010; Cockell et al., 2016).
With the possible exception of the Viking missions, Mars has
been unavailable to date for conducting controlled biological
experiments; thus, extreme terrestrial analog environments have
been widely used to test instrumentation and microbial survival
outcomes (Marlow et al., 2008; Fairén et al., 2010; Suedfeld, 2010;
West et al., 2010). Typically, martian analog environments are
located on Earth’s surface in regions where aridity, temperature
extremes, and elevated radiation dominate the landscape. For
instance, the McMurdo Dry Valleys in continental Antarctica
and high-elevation deserts in Australia and South America are
frequently visited, analog destinations (Clarke and Persaud, 2004;
Fletcher et al., 2012; López-Lozano et al., 2012; Heldmann
et al., 2013; Musilova et al., 2015). However, high above
Earth’s surface in the stratosphere (∼15–50 km), another Mars
analog environment exists, presenting a unique combination
of environmental insults that more closely resemble conditions
on the Red Planet. In the middle stratosphere during daytime
hours, the following Mars-like factors are simultaneously present:
intense, full spectrum ultraviolet (UV) radiation, high energy
ionizing radiation (including secondary scattering), desiccation,
hypoxia, and ultralow temperatures and pressures (Clark and
McCoy, 1965; Potemra and Zmuda, 1970; Vampola and Gorney,
1983; Keating et al., 1987; Clancy and Muhleman, 1993; Von
Engeln et al., 1998; Seele and Hartogh, 1999; Shepherd, 2000;
Lambert et al., 2007; Mertens et al., 2016; Caro et al., 2019). Taken
together, these combined conditions cannot be found naturally
anywhere on the surface of the Earth and would be challenging to
easily reproduce in laboratory-based experiments.

Reaching the middle stratosphere is relatively achievable
compared to suborbital and orbital spaceflight investigations.
High-altitude scientific balloons have been used for more
than eight decades to study the atmosphere and atmospheric
phenomena (Winckler et al., 1959; Winckler, 1960; Murcray
et al., 1969; Mertens et al., 2016; Caro et al., 2019) and
more recently for conducting biological exposure experiments

(Stevens, 1936; Simons, 1954; Sullivan and Smith, 1960;
Rainwater and Smith, 2004; Beck-Winchatz and Bramble, 2014;
Coleman and Mitchell, 2014; Smith et al., 2014; Khodadad et al.,
2017; Smith and Sowa, 2017; Pulschen et al., 2018). In this
study, we take advantage of a large scientific balloon mission
to the middle stratosphere (∼38 km altitude) for exposing
microorganisms and measuring their survival and metabolic
responses while monitoring ionizing radiation levels and
other pertinent environmental conditions. Four microorganisms
relevant to astrobiology and space biology were flown inside
the Microbes in Atmosphere for Radiation, Survival, and
Biological Outcomes Experiment (MARSBOx) payload. The
two bacterial extremophiles, Salinisphaera shabanensis and
Buttiauxella sp. MASE-IM-9, were included to test the hypothesis
that terrestrial microbial strains, isolated from extreme Mars-
analog environments, can withstand the stress factors of a
martian-like environment. The fungus Aspergillus niger and the
bacterium Staphylococcus capitis subsp. capitis were included in
this study because they are human-associated and opportunistic
pathogens, and have both been previously detected on the
International Space Station (ISS). Thus, they are likely to travel to
Mars in crewed space missions (Novikova et al., 2006; Checinska
et al., 2015; Be et al., 2017; Mora et al., 2019; Sobisch et al.,
2019). Moreover, spores from A. niger might resist space travel
on the outside of a spacecraft; therefore, understanding their
survival potential in a Mars-like environment is of interest to
planetary protection.

The MARSBOx design was a balloon-compatible, NASA-
adapted version of hardware from the European Space Agency’s
(ESA) biological exposure missions EXPOSE-E and EXPOSE-
R aboard the ISS (Rabbow et al., 2009; Rabbow et al., 2012,
2015), using the transport and exposure box (Trex-Box) from
the European MASE project (Beblo-Vranesevic et al., 2017a).
To adjust for Mars atmospheric conditions, the Trex-Box was
filled with a Mars gas mixture at 5–10 mbar during the mission.
Herein, we report results from the first MARSBOx mission and
summarize environmental conditions that collectively indicate
the most robust Mars analog.

MATERIALS AND METHODS

Test Organisms, Media, and Sample
Preparation for Flight
A summary of the microorganisms used in this study can be
found in Table 1. Aspergillus niger (N402) spores were harvested
after 3 days of incubation at 30◦C from complete medium agar
plates [CM; composition: 55 mM glucose, 11 mM KH2PO4,
7 mM KCl, 178 nM H3BO3, 2 mM MgSO4, 76 nM ZnSO4, 70 mM
NaNO3, 6.2 nM Na2MoO4, 18 nM FeSO4, 7.1 nM CoCl2, 6.4 nM
CuSO4, 25 nM MnCl2, 174 nM EDTA; 0.5% (w v−1) yeast extract
and 0.1% (w v−1) casamino acids, 15 g agar per Liter] by flooding
the plates with sterile, saline solution (0.9% NaCl) and gently
scraping the spores out using a cotton stick.

The spore suspensions were then filtered through a sterile filter
with 22–25 µm pore size (Miracloth) to remove hyphal fragments
and kept at 4◦C. Titer determination was done using an improved
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TABLE 1 | Test microorganisms used in this study.

Organism Classification Growth Tested as References

Aspergillus niger N402 Filamentous fungus
(mold)

Minimal Medium
30◦C

Spore monolayer (107 spores
mL−1) or spore multilayer
(108 spores mL−1) desiccated in
water

Bos et al., 1988

Staphylococus capitis
subsp. capitis
K1-2-2-23

Gram-(+) bacteria Tryptic Soy Broth (TSB) or Agar
(TSA) 37 ◦C

Cell multilayer (1 × 109 CFU mL −1)
desiccated in PBS

Sobisch et al., 2019

Salinisphaera
shabanensis

Gram-(–) bacteria
Halophilic

Marine broth or agar 30◦C Cell multilayer (2 × 108 CFU mL−1)
desiccated in PBS (10% NaCl) or
medium.

Antunes et al., 2003

Buttiauxella sp.
MASE-IM-9

Gram-(–) bacteria Tryptic Soy Broth (TSB) or Agar
(TSA) 30◦C

Cell multilayer (2 × 108 CFU mL−1)
desiccated in PBS or medium.

Cockell et al., 2018

Neubauer cell count chamber on vortexed suspensions; 20 µL
of spores were then spotted onto round quartz disks (6 mm �,
1 mm thickness; MolTech) in triplicate and left to dry at room
temperature (22◦C) on the bench. Two spore concentrations
were prepared for the MARSBOx flight: 1 × 107 spores mL−1

(spore monolayer) and 1 × 108 spores mL−1 (spore multilayer).
Presence of spore multilayer and monolayer was determined
qualitatively with a scanning electron microscope (JSM-6510,
Jeol), operated at 10 Kv (Figure 1). Further experiments using
agar plates were done with minimal medium (composition:
55 mM glucose, 11 mM KH2PO4, 7 mM KCl, 178 nM H3BO3,
2 mM MgSO4, 76 nM ZnSO4, 70 mM NaNO3, 6.2 nM Na2MoO4,
18 nM FeSO4, 7.1 nM CoCl2, 6.4 nM CuSO4, 25 nM MnCl2,
174 nM EDTA, 15 g agar, per Liter).

Staphylococcus capitis subsp. capitis strain K1-2-2-23 (DSM
111179) was cultivated in tryptic soy broth (TSB; BD Difco;
composition: tryptone 17.0 g, soy peptone 3.0 g, glucose 2.5 g,
NaCl 5.0 g, K2HPO4 2.5 g, per Liter) at 37◦C under constant
agitation at 200 rpm for 18 h. Stationary phase cells were
harvested by centrifugation (4000 rpm) in 40 mL culture for
5 min. Cells were washed by removal of the supernatant,
resuspension of the pellet in 40 mL phosphate buffered saline
(PBS; composition: Na2HPO4 7.0 g, KH2PO4 3.0 g, NaCl 4.0 g,
per Liter, pH 7.5), and centrifugation for 5 min at 4000 rpm. The
washing step was repeated once and after the last centrifugation
step, the pellet was resuspended in 10 mL PBS. Thirty µL of
this concentrated cell suspension were pipetted onto the quartz
disks and left to dry at room temperature (22◦C) on the bench.
The absolute number of cells per quartz disk was determined
by standard plate counts on tryptic soy agar (TSA; composition:
tryptone 17.0 g, soy peptone 3.0 g, glucose 2.5 g, NaCl 5.0 g,
K2HPO4 2.5 g, agar 15 g, per Liter) to be 1.4 × 109 cells per disk,
resulting in a multilayer of bacterial cells.

The facultative anaerobes, Salinisphaera shabanensis and
Buttiauxella sp. MASE-IM-9, were cultivated in liquid microoxic
Marine Broth (BD Difco; composition: peptone 5.0 g, yeast
extract 1.0 g ferric citrate 0.1 g, NaCl 19.45 g, MgCl2 5.9 g,
MgSO4 3.24 g, CaCl2 1.8 g, KCl 0.55 g, NaHCO3 0.16 g, KBr,
0.08 g, SrCl2 34.0 mg, boric acid 22.0 mg, Na4SiO4 4.0 mg,
NaF 2.4 mg, NH4NO3 1.6 mg, and Na2HPO4 8.0 mg, per
Liter) and microoxic TSB, respectively, in sterile serum bottles
with headspace pressure and gas composition of ∼1,010 mbar

and N2/CO2 (80/20 v/v), respectively. Cell concentration was
determined via cell counting in a Thoma counting chamber.
Stationary phase cells from an overnight culture of each strain
were harvested by centrifugation (14,500 g) of 1 mL culture
for 15 min. To assess possible differences in survival between
cells dried in medium (UV absorption of medium components)
or dried in non-absorbing buffer, after the centrifugation step
either (i) 950 µL of the supernatant were removed, cells were
resuspended in the remaining growth media, and 50 µL were
applied on each quartz disk; or (ii) cells were washed with 1 mL
PBS (for S. shabanensis the NaCl content was adjusted to 10%),
again centrifuged for 15 min at 14,100 g, the supernatant (950 µL)
was removed, and 50 µL were applied on each quartz disk.
The desiccation process was conducted under oxic conditions
on the bench. The absolute number of cells per quartz disk was
determined by standard plate counts on Marine agar/TSA to be
∼108 cells per disk for both strains.

Balloon Payload
The MARSBOx payload (38.1 cm × 25.4 cm × 63.5 cm; mass
18 kg) was built for simple mounting and integration onto the
exterior of large scientific balloon gondolas (Figure 2). Biological
samples were enclosed within a pressurized, shielded container
(Trex-Box) (Beblo-Vranesevic et al., 2017a) with a rotatable
shutter that prevented solar radiation exposure during ascent and
descent (i.e., experimental initiation/termination). Covering the
Trex-Box was suprasil glass: 8 mm thick, with a long pass cut
off of∼170 nm (with 0% transmission), and magnesium fluoride
(MgF2), with a long pass cut off of ∼110 nm (custom made
by MolTech, Germany) (Figure 3B). During the balloon flight,
the MARSBOx system controlled the exposure to UV radiation
so that the samples were only exposed at stratosphere altitudes
[Figure 4 and Supplementary Videos 1 (ascent), 2 (descent)].
Motors, gears, and the shutter were held together by a frame
composed of aluminum cutouts and 3D-printed polycarbonate-
ABS components. T-slotted 80/20 aluminum extrusions formed
the framework of the payload, with detachable, white powder-
coated aluminum panels on each face of the MARSBOx. Angle
brackets on the back plate were used to mount the system onto
the balloon gondola. The front panel data port contained one
micro-USB port, six light emitting diodes (LEDs), and two key
switches. One key switch was used to power on the system
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FIGURE 1 | SEM images of Aspergillus niger spores in (A) multilayer (108 spores mL−1) and (B) monolayer (107 spores mL−1).

and the other was used to manually rotate the shutter lid (for
loading and removing Trex-Box with samples). The LEDs were
programmed to indicate the state of the onboard computer’s
health (OSD3358, Octavo Systems) and the status of the
computer’s state machine, GPS receiver (GPS_FGPMMOPA6H,
Adafruit Industries), camera system (Hero4 Black, GOPRO with
Dash controller, CamDo), heater system, and the M-42 radiation
dosimeter (Berger et al., 2019).

Other major payload components included three pressure
sensors (MS5803, MEAS Switzerland; AMS5812, Analog
Microelectronics; and BMP085, Bosch Sensortec), four
temperature sensors, and a 9-axis Inertial Measurement
Unit (IMU). While not flown on this mission, MARSBOx can
carry additional instruments (e.g., UV radiometers) located
behind the front panel of the payload. For the LDB #697NT
flight, power was provided by a 14.8v 25.2 Ah lithium-ion
polymer battery (CU-J141, BatterySpace) fastened in place with
an ultem 3-D printed battery holder. The MARSBOx payload
can also utilize a direct connection to the balloon gondola power
source with an acceptable input range of 9V – 36V.

The design and technical details of the Trex-Box were
previously described in detail (Beblo-Vranesevic et al., 2017a).
Briefly, the design of the aluminum box was inspired by the
EXPOSE mission series on the ISS (Rabbow et al., 2012; Rabbow
et al., 2015) using a Trex-Box to control the transport of
microorganisms during experiments (Beblo-Vranesevic et al.,
2017a, 2020). The Trex-Box can be filled with gas and sealed,
allowing for a sustained martian gas composition of 0.17% O2,
95% CO2, 0.07% CO, 2.6% N2, and 1.9% Ar during the course of

the experiment at Mars-like pressures (∼7 mbar) (Figures 3C,D).
The Trex-Box enabled testing of four different microorganisms
without cross-contamination (an issue reported in past balloon
experiments; see Díez et al., 2020) because each organism was set
in one of the four quarter sections of each layer (Figure 3A).

Stratospheric Flight Experiment
The Trex-Box consisted of two layers of an aluminum 64-
well sample carrier, each holding quartz disks with microbial
samples (see section “Test organisms, media, and sample
preparation for flight”) that were either exposed to direct
stratospheric UV radiation (UV-exposed, top layer) or shielded
from UV (UV-shielded, bottom layer) (Table 2). The quartz
disks were glued into the sample carrier using the biocompatible
Vulcanizing Adhesive for Spaceflight Experiments (Wacker
Chemie AG, certified by ECSS – European Cooperation for Space
Standardization). For each experimental group, three quartz
disks were used as ground laboratory controls and remained in
normal atmospheric conditions at room temperature (22◦C) on
the bench until analysis (Table 2).

The full mission timeline extended over 5 months including;
(i) sample preparation and Trex-Box sample accommodation;
(ii) MARSBOx payload integration; (iii) balloon flight; (iv)
shipping and sample retrieval from Trex-Box; and (v) sample
analysis. During the 5-month experimental duration, both flight
and control samples were kept desiccated on quartz disks.
Table 2 provides an overview of the conditions microbial samples
experienced in this study.

Frontiers in Microbiology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 601713

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-601713 February 15, 2021 Time: 10:37 # 5

Cortesão et al. MARSBOx

FIGURE 2 | MARSBOx payload labeled model.

FIGURE 3 | Trex-Box sample preparation. Dimensions of the Trex-Box are 13.5 cm × 13.5 cm × 5.0 cm. The container is a gastight closable stainless-steel box
with one borehole which allows an exchange of internal atmosphere. (A) Quartz disks harboring the microbial samples being placed onto the Trex-Box; (B) covering
the Trex-Box with a suprasil glass that allows for full UV-VIS exposure; (C) screws were used to tighten and seal the container; (D) Earth’s atmosphere being
replaced with Mars-gas mixture.
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FIGURE 4 | Balloon flight (A) Image from atop the MARSBOx payload and Trex-Box in the stratosphere during the flight. (B) Balloon flight path; stars mark opening
and closing of the Trex-Box lid, which corresponds to UV-VIS radiation exposure beginning and ending.

Estimated UV Radiation Dose
The total UV dose [J m−2] that the samples were exposed to
during the MARSBOx mission was calculated as follows:

Dose(J m−2) = [Fluence(mWcm−2) × Time(s)] × 10

where UV fluence [mW cm−2] values for UVA-UVB (280–
400 nm) in the middle stratosphere were taken from a previous
flight = 6 mW cm−2 (Caro et al., 2019), and sample exposure

time [in seconds] = 19140 s. Samples were exposed to an
estimated total of 1148 kJ m−2 of UVA-UVB radiation. Previously
modeled UVC (206–280 nm) values by Caro et al. (2019) ranged
from about 0.1–1 µW cm−2 for the altitude flown during the
MARSBOx mission (∼38 km).

Ionizing Radiation Dosimetry: M-42
In order to determine the ionizing radiation environment during
the flight, a miniaturized, low-power consumption radiation
detector system (M-42) was included onboard the MARSBOx
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TABLE 2 | Overview of experimental design.

Condition Experimental treatment

Lab Control 5-month desiccation (air-dried, 22◦C, Earth atmosphere)

Bottom Layer
(UV shielded)

5-month desiccation in Mars atmosphere and pressure.
Exposure to temperature fluctuation during balloon flight.

Top Layer
(UV exposed)

Same as bottom layer with additional exposure to
stratospheric UV radiation during balloon flight.

payload. The M-42 instrument (size: 142 mm× 38 mm× 13 mm)
was developed at DLR and can actively measure the absorbed
dose using a silicon detector diode (Berger et al., 2019). Two
batteries allow the M-42 to operate as a stand-alone radiation
detector system, but for the MARSBOx flight the instrument was
externally powered through the in-built micro-USB connector.
Upon launch of the balloon, power was provided and the M-42
started taking measurements. Data were stored every 5 min on
a non-volatile flash memory and upon landing the instrument
was switched off.

Balloon Flight Profile
One week before flying, the MARSBOx hardware (without
biological specimens loaded) was tested in a hypobaric chamber
at the Columbia Scientific Balloon Facility (Palestine, TX,
United States) to validate system performance and commands.
The payload was then transported to the launch site at Ft.
Sumner, NM, United States (lat 34.49◦ long −104.2◦), where it
was mounted onto the top portion of the LDB #697NT gondola.
After installation and prior to launch, the payload surface was
sprayed with sterile air and wiped down with isopropyl alcohol.
The mission carrying the MARSBOx payload was launched on
23 September 2019 at 1400 UTC, with a full video replay of the
flight available here: https://www.youtube.com/watch?v=Vn8qx_
0FmV0. The balloon ascended for 2.5 h until reaching an average
float altitude of 38.2 km where it remained for 4 h, followed by a
35-min descent on parachute, landing 172 km west of the launch
site (lat 35.29◦ long −105.1◦). Sample exposure began during
ascent at 21.4 km with the Trex-Box shutter opening at 1521 UTC
and concluded 5 h and 19 min later with the Trex-Box shutter
closing during descent at 22.0 km at 2040 UTC (Figure 4).

The M-42 dosimeter was turned on at 1405 UTC when the
payload was at 3.07 km and remained on until 2119 UTC at
1.75 km above the balloon landing site. Personnel from CSBF
recovered the payload on 24 September 2019 and transported it
back to the launch site facility inside a climate-controlled vehicle
before shipping to NASA KSC at ambient conditions. Three
weeks later, samples and instruments (Trex-Box and M-42) were
removed from the MARSBOx payload and shipped to the DLR
for post-flight analysis.

Post-flight Processing
After shipment arrival of the samples at the DLR, the Trex-
Box was opened within an anaerobic chamber (COY Laboratory
products) to ensure a constant low relative humidity (<13%
relative humidity). The quartz disks harboring dried cells and
spores were retrieved from the carrier and placed inside 2 mL

Eppendorf tubes with 1 mL PBS respectively. For A. niger spore
recovery 2 mm glass beads were added. The tubes were vortexed
for 30 s to separate the cells from the disk, and the resulting
suspension was used for downstream analyses.

Determination of Microbial Survival via
Standard Plate Counting
The post-flight survival of the tested microorganisms was
determined by standard plate counting, where serial dilutions
(1:10) were plated on nutrient agar. For bacteria, TSA
medium/marine medium was used; for A. niger minimal medium
supplemented with 0.05% Triton-X was used. Agar plates were
incubated for 1–3 days at 37◦C for bacteria and 30◦C for fungi.
Colony forming units (CFU) were counted, and the colony
forming units per mL (CFU mL−1) were calculated. The survival
fraction was calculated as N/N0, in which N is the CFU mL−1

after sample retrieval and N0 is the initial cell concentration on
the quartz disk. Determination of CFU mL−1 included at least
three biological replicates per tested strain (n ≥ 3).

Determination of Metabolic Activity via
Resazurin Reduction
To evaluate the potential for revival after exposure to Mars-
like conditions, the metabolic activity of the bacterial cells and
fungal spores was measured in a 96-well-plate using resazurin
reduction as an indicator (alamarBlueTM Cell Viability Reagent,
Thermo FisherTM). In each well there was a total volume
of 200 µL (130 µL of media, 50 µL of dilutions, and 20
µL of alamarBlueTM). The media used was dependent on the
microorganism tested and is summarized in Table 1. The plate
was incubated for 44 h at 30◦C. OD600 and OD570 were measured
every 30 min in a Multi-Detection Microplate Reader (Infinite
M200 PRO, Tecan). Orbital shaking of the plate occurred before
each measurement. The percentage of reduced resazurin reagent
was calculated according to the standard protocol obtained
from Thermo FisherTM.

Determination of A. niger Spore
Germination
To determine the post-flight germination ofA. niger spores, spore
suspensions (106 spores mL−1) from each tested condition were
drop plated (3 µL), in triplicate, on MM agar supplemented
with 0.003% yeast extract. Plates were incubated at 22◦C for 18–
27 h. After incubation, light microscopy was used to quantify
the number of germinated (G) and non-germinated (NG) spores.
At least 200 spores were counted per replicate. Germination was
calculated as the average of the G/NG ratio of each replicate per
tested condition.

Evaluation of Spore Cell Wall Integrity
To test spore cell wall integrity after exposure to Mars-like
environmental stress, CFUs were quantified for A. niger grown in
the presence of an antifungal compound that acts on the cell wall
(caspofungin) and a cell wall stressor (calcofluor white). Spore
suspensions from the three exposure conditions (desiccated lab
control, UV shielded bottom layer, and UV exposed top layer)
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FIGURE 5 | The M-42 count rate (cts min−1) measured for the MARSBOx balloon flight mission.

and fresh spores (as non-desiccated control) were serially diluted
in a 96-well plate. For each dilution (10−1 to 10−5), 5 µL were
spotted on MM nutrient agar supplemented with 0.75 µg mL−1

caspofungin diacetate (Sigma) or 40 µg mL−1 calcofluor white
(Sigma), and incubated for 2–4 days at 30◦C.

Statistical Analysis
Survival, metabolic activity and germination data were plotted
as mean values using SigmaPlot (Version 13.0, Systat Software).
Error bars are presented as standard error (SE). Student’s t-test
and the non-parametric Mann–Whitney test were performed
with Mean + SE to identify significant differences between
each two tested conditions, per microorganism. A two-tailed
p-value of p ≤ 0.05 was considered significant. ANOVA
analysis was also performed on survival data. A summary of
t-test and ANOVA analysis of survival data can be found in
Supplementary Tables 1–3.

RESULTS

Middle Stratosphere as a Mars Analog
Environment
This study exposed different microorganisms (Aspergillus niger,
Staphylococcus capitis subsp. capitis, Salinisphaera shabanensis,
and Buttiauxella sp. MASE-IM-9) to a Mars analog environment.

The robust simulation of Mars environmental conditions was
made possible with access to Earth’s middle stratosphere
onboard a scientific balloon flight, where combined conditions
include elevated non-ionizing and ionizing radiation doses, low
temperature, and extreme desiccation. Additionally, samples
were flown inside a Trex-Box container with Mars gas
composition (mostly CO2) and surface atmospheric pressure (5–
10 mbar). Onboard the MARSBOx payload, microbial samples
were exposed as dried cells or spores desiccated on quartz disks
in two different layers: a bottom layer that was shielded from UV
radiation, and a top layer that was exposed to stratospheric UV
conditions. Table 3 summarizes the environmental conditions in
the balloon flight compared to the generalized equatorial surface
of Mars based on available measurements and models.

M-42 Ionizing Radiation Data
In the following sub-section, we will only provide a snapshot
of the data measured with the M-42 instrument to demonstrate
proof of operations during the mission. In Figure 5, we provide
the count rate of the silicon diode for the whole time the system
was powered. The count rate plot shows the crossings of the
Regener maximum (Regener and Pfotzer, 1935), during ascent
and descent of the balloon. At cruising altitude, we saw a nearly
constant count rate which results in a dose rate of 75.5± 13 µGy
per day. In total we measured a dose of 20.9 µGy for the
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FIGURE 6 | Survival fraction (N/N0) of tested strains after exposure to Mars simulated conditions aboard the MARSBOx payload. (A) S. shabanensis (B) S. capitis
subsp. capitis. (C,D) A. niger spores in monolayer (C) and in multilayer (D). Data for Buttiauxella sp. MASE-IM-9 are not shown, since no surviving cells were
recovered after exposure.

whole mission, which is equivalent to around 10 days of natural
background radiation received in the DLR laboratory in Cologne.

Stratospheric Sunlight Reduced
Microbial Survival
Figure 6 summarizes survival fractions for exposed
microorganisms in the balloon experiment. Spores from
the filamentous fungus A. niger showed the highest endurance to
the combined stresses of stratospheric radiation and simulated
martian atmospheric and temperature conditions during the
MARSBOx flight (Figure 6D). The extremophilic bacterium
S. shabanensis tolerated desiccation but showed a decrease in
survival in the UV-exposed layer of the Trex-Box (Figure 6B).
The human-associated S. capitis subsp. capitis also displayed
sensitivity to UV exposure, with only cells from the UV-shielded

bottom layer surviving the flight experiment (i.e., still exposed
to Mars gas, desiccation and temperature fluctuation). It should
be noted that the laboratory control cells of S. capitis subsp.
capitis, kept desiccated under oxic conditions, were not revivable.
Buttiauxella sp. MASE-IM-9 showed no growth, even in the
laboratory controls; consequently, stratosphere exposure effects
could not be determined for this microorganism.

Survival and Metabolic Activity of
Staphylococcus capitis subsp. capitis
For S. capitis subsp. capitis, the average of three samples (n = 3)
from flight conditions and six samples (n = 6) from the laboratory
control are shown in Figure 6A. In the UV-exposed samples and
the laboratory controls, no surviving cells could be detected via
determination of CFU mL−1. The UV-shielded samples showed
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TABLE 3 | Environmental conditions aboard balloon flight compared to
martian conditions.

Parameters Balloon
Flight + Trex-Box

(7–38 km alt.)

Mars
(at equator)

UV fluence (280 – 400 nm) ∼6 mW cm−2a
∼5 mW/cm−2b

Temperature (min.) –51◦C –73◦C

Temperature (max.) +21◦C +20◦C

Sample exposure duration 5 h 19 min –

Atmosphere composition 95% CO2 96% CO2

1.9% Ar 1.9% Ar

2.6% N2 1.9% N2

0.17% O2 0.14% O2

0.07% COc 0.07% COd

Atmospheric pressure 5–10 mbar 5–10 mbare

Total UV dose (est.) ∼1148 kJ m−2 f -

aFluence rates for stratospheric UVA-UVB were measured in a previous balloon
flight (Caro et al., 2019).
bSchuerger et al., 2003.
cMars gas in Trex-Box was ordered from Boggs Gases, Inc. (Titusville, FL,
United States) as a commercial mixture of the top five gasses in the martian
atmosphere (Schuerger et al., 2008).
dMahaffy et al., 2013.
eBarlow, 2008.
f Total estimated UV dose that samples were exposed to during the balloon flight
(see section “Estimated UV radiation dose”).

a significant reduction of the survival fraction by three orders
of magnitude (p = 0.03). Metabolic activity was detected in UV-
shielded (bottom layer) and UV-exposed (top layer) samples,
but not in the laboratory controls. Metabolic activity in the UV-
exposed cells was delayed in comparison to UV-shielded cells
(Figure 7A). UV-shielded cells reached the maximum reduction
of resazurin (70%) after 28 h of incubation, whereas in UV-
exposed cells, the resazurin reduction was still below 70% after
44 h (total incubation time).

Survival and Metabolic Activity of
Buttiauxella sp. MASE-IM-9
For Buttiauxella sp. MASE-IM-9, the survivability of cells dried
in medium or buffer was evaluated. This strain did not survive
laboratory controls or the MARSBOx flight samples. Similarly,
with resazurin assay no metabolic activity was detected for
Buttiauxella sp. MASE-IM-9, in any of the samples.

Survival and Metabolic Activity of
Salinisphaera shabanensis
No survival differences between S. shabanensis cells dried in
medium and S. shabanensis cells dried in buffer were observed.
Therefore, the average of six samples (n = 6) was reported in
Figure 6. While S. shabanensis was able to endure 5 months of
desiccation, there was still an overall reduction of four orders
of magnitude (laboratory control, Figure 6B). The survival for
the laboratory control and the UV-shielded cells was similar
(p = 0.725), with UV exposure further reducing the survival
fraction (p = 0.602) (Figure 6B). These results were supported

by the metabolic activity assay with resazurin reduction in both
laboratory controls and flown UV-shielded cells (Figure 7B).

Survival and Metabolic Activity of
Aspergillus niger Spores
Compared to other microorganisms evaluated in our experiment,
A. niger spores were the most resistant to all tested conditions
(Figure 6). Two different A. niger spore concentrations were
tested in the Trex-Box: 107 spores mL−1 (spore monolayer)
and 108 spores mL−1 (spore multilayer); n = 3 for each
concentration (Figure 1). Survival of UV-exposed spores was
reduced by two orders of magnitude compared to laboratory
controls, in both spore monolayer (p = 0.001) and spore
multilayer (p = 0.001). Survival of UV-shielded spores, i.e.,
still exposed to Mars gas, pressure and temperature, was not
affected, when compared to laboratory controls, in either the
monolayer (p = 0.592) or multilayer (p = 0.495) concentration
(Figures 6C,D, respectively). When assessing the time taken
to reach the maximum of metabolic activity, UV-exposed
monolayer spores were delayed by 48% (peaking only after 43 h
of incubation) when compared with laboratory control (peaking
after 29 h of incubation); and multilayer spores were delayed by
38% (peaking only after 36 h of incubation) when compared with
laboratory control (peaking after 26 h of incubation) as shown in
Figures 7C,D, respectively.

Spore germination was delayed by 22% in UV-exposed spores,
being detected only after 27 h, versus 22 h of laboratory
control. Germination rate was significantly lower in UV-exposed
when compared to UV-shielded spores (p = 0.01 monolayer;
p < 0.001 multilayer) and when compared to laboratory controls
(p = 0.03 monolayer; p = 0.08 multilayer) (Figure 8). UV-shielded
spores showed decreased ability to cope with cell wall stress (1
order of magnitude; whereas UV-exposed spores were shown
to be highly sensitive to cell wall stress, 2 or more orders of
magnitude) (Figure 9).

Survival, germination, and metabolic activity were compared
between spore monolayer and spore multilayer (Table 4). In UV-
shielded martian-like conditions, the presence of a multilayer was
shown to significantly decrease survival (p = 0.01) (Figure 6)
and germination rate (p = 0.004) (Figure 8), but to significantly
increase metabolic activity (p = 0.02) (Figure 7). In UV-exposed,
Mars-like conditions, the presence of a spore multilayer did not
affect survival (p = 0.5) or germination rate (p = 0.1); but was
shown to increase metabolic activity (p = 0.04). Multilayer spores
were significantly faster in reaching the metabolic maximum than
monolayer spores, in all tested conditions (Table 4).

DISCUSSION

Relevance to Space Biology and
Astrobiology
In this study, bacterial and fungal strains were exposed to Mars-
like environmental conditions onboard the MARSBOx payload
during a 7 h balloon flight to the middle stratosphere (∼38 km).
The tested microorganisms (Aspergillus niger, Staphylococcus
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FIGURE 7 | Metabolic activity upon revival, after exposure to Mars simulated conditions aboard the MARSBOx payload. Metabolic activity is depicted as percentage
of reduced resazurin. (A) S. shabanensis (B) S. capitis subsp. capitis. (C,D) A. niger spores in monolayer (C) and in multilayer (D).

FIGURE 8 | (A) Germination rate (G/NG) of A. niger spores after exposure to simulated Mars conditions. (B) Light microscopy showing resting spores (red), swollen
spores (yellow) and germinated spores (green). Both resting and swollen spores were counted as ungerminated.

capitis subsp. capitis, Salinisphaera shabanensis, and Buttiauxella
sp. MASE-IM-9) were chosen based on astrobiology and space
biology relevance. Moreover, the choice of these strains was
to provide a representative set of samples that are capable of
demonstrating the MARSBOx experimental design as a valuable
martian analog for future investigations.

To test the hypothesis that isolates from extreme Mars-analog
environments on Earth would be able to survive the MARSBOx
simulated martian conditions, two extremophilic bacteria were
included. The bacterium S. shabanensis is a halophile isolated
from the brine–seawater interface of the Shaban Deep at a
depth of 1.3 km where the maximal salinity reaches 26% (Eder
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FIGURE 9 | Stress resistance of A. niger towards caspofungin (antifungal compound) and to calcofluor white (cell wall stressor), after spore exposure to simulated
martian conditions.

TABLE 4 | Impact of spore monolayer versus spore multilayer in A. niger resistance to Mars-like conditions.

Monolayer Multilayer f p-value

Survival fraction a Lab Control 5.3 × 10−1
± 1.8 × 10−1 1.1 × 10−1

± 5.9 × 10−2
↓ 0.09

UV shielded 6.4 × 10−1
± 8.0 × 10−2 2.1 × 10−1

± 6.6 × 10−2
↓ 0.01*

UV exposed 1.3 × 10−2
± 4.5 × 10−3 2.1 × 10−1

± 5.2 × 10−3
↑ 0.5

Metabolic max. b Lab Control 20% ± 5 23% ± 1 ↑ 0.6

UV shielded 29% ± 1 36% ± 0.1 ↑ 0.002*

UV exposed 13% ± 7 35% ± 0.5 ↑ 0.04*

Time until max. c Lab Control 29 h ± 1.3 26 h ± 0.7 ↓ 0.1

UV shielded 30 h ± 0.3 29 h ± 0.3 ↓ 0.07

UV exposed 44 h ± 2 36 h ± 0.6 ↓ 0.002 *

Germination rated Lab Control 0.38 ± 0.09 0.24 ± 0.03 ↓ 0.2

UV shielded 0.47 ± 0.01 0.23 ± 0.04 ↓ 0.004 *

UV exposed 0.01 ± 0.00 0.03 ± 0.01 ↓ 0.1

aSurvival fraction calculated as N/N0.
bMetabolic activity maximum, measured as % of reduced resazurin.
c Incubation time taken to reach maximum of metabolic activity (h).
dTime of incubation until metabolic peak was detected (h).
f Presence of spore multilayer has increased (↑) or decreased (↓) the measured parameter.

et al., 2002). Deep-sea brine pools have been identified as
martian analogs in regards to the salinity and water activity
in brines (Antunes, 2020). On the surface of Mars, brines
might remain liquid at ultra-low temperatures (Toner and
Catling, 2016). In addition to high salinity, the martian surface
lacks oxygen and nutrients. For these reasons, the Gram-(-
) bacterium, Buttiauxella sp. MASE-IM-9, isolated from an
anoxic, nutrient-limited, and sulphidic martian analog spring in
Germany (Cockell et al., 2018), was also included in our study.

An emerging body of evidence shows that spores from the
fungus A. niger can withstand harsh conditions (e.g., radiation,
heat, low water activity, etc.) (Singaravelan et al., 2008; Esbelin
et al., 2013; Segers et al., 2018; Cortesão et al., 2020a), probably
due to the roles of pigmentation, cell wall structure, and
metabolic suppression, which might enable them to survive space
travel on the outer surfaces of a spacecraft, and to thrive within
the spacecraft’s controlled habitat. Alarmingly, the inhalation of
A. niger spores may cause respiratory diseases, especially when
in closed indoor habitats such as the ISS, which facilitate spore

dispersal (Silverman et al., 1967; Latge, 1999; Esbelin et al.,
2013; Cortesão et al., 2020a,b). This motivates further study
on how the species responds to spaceflight conditions, and
consequent implications for astronaut health, in particular in
long-term space missions. Moreover, on Earth, A. niger is used
in biotechnology to produce a wide-range of useful compounds
including citric acid, antibiotics, and enzymes (Meyer et al.,
2011; Cairns et al., 2018). Consequently, A. niger could play an
important role in human space exploration as long-duration, far-
reaching, missions may require biomanufacturing and resource-
independence from Earth (Silverman et al., 1967; Latge, 1999;
Esbelin et al., 2013; Cortesão et al., 2020a,b).

Finally, S. capitis is a Gram-(+) bacterium commonly
associated as a commensal species on human skin (Byrd et al.,
2018). However, S. capitis also has the ability to cause infections in
neonates and form biofilms on implants (de Silva et al., 2002; Cui
et al., 2013). The Staphylococcus capitis subsp. capitis strain K1-2-
2-23 (DSM 111179) used in this study was isolated aboard the ISS
within an indoor exposure experiment (Sobisch et al., 2019). Its
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occurrence in crewed space stations, the clinical relevance and the
phylogenetic proximity to other clinically relevant staphylococcal
species make S. capitis a useful model organism to study the
effects of space conditions on opportunistic human pathogens,
and to identify potential risks of crew infection (Xiao et al., 2019).

Radiation Levels in the Middle
Stratosphere
Life on Earth is protected from low-wavelength UV radiation
(100–280 nm) by atmospheric ozone (Horneck et al., 2010).
Above the concentration of atmospheric ozone, where large
scientific balloon missions float, UV radiation levels nearly match
those expected on the surface of equatorial Mars. For instance,
Caro et al. (2019) recently measured an average instantaneous
UVA-UVB flux of ∼6 mW cm−2 on a meteorological balloon
mission flown to the middle stratosphere; the total combined
dose measured was 1.9 kJ. In comparison, ∼5 mW cm−2 was
the reported value to be expected at the surface of Mars for
UVA-UVB according to calculations from Schuerger et al. (2003).
Surprisingly few UVC measurements have been obtained for
Earth’s middle stratosphere but Caro et al. (2019) modeled an
expected range of 0.1–1 µW cm−2 for altitudes above the ozone
layer. Besides intense UV radiation (derived levels in this study),
we measured ionizing radiation in the middle stratosphere with
the M-42 active dosimeter. This was the first successful M-
42 flight test in preparation for the dosimetry suite onboard
the upcoming Matroshka AstroRad Radiation Experiment on
the NASA Artemis I mission (Berger et al., 2019). At the
∼38 km float altitude on the MARSBOx mission, the dose
rate was almost constant, around 75.5 ± 13 µGy day−1. In
comparison, the dose rate measured on the surface of Mars for
the same time period would approach 260 µGy day−1. A more
comprehensive radiation biophysics analysis (e.g., Monte Carlo
calculations) will be reported later alongside additional balloon
flight measurements from a joint NASA-DLR long-duration
Antarctic mission flown in December 2019. In the meantime,
we point readers interested in the ionizing radiation levels of
the middle stratosphere over New Mexico to the RaD-X mission
results from Mertens (2016).

Bacterial Survival
The endurance of S. shabanensis, a non-pigmented halophile,
to the (derived) UV dose of 1148 kJ m−2 during the balloon
flight was unanticipated considering the original isolation source
for the species was a deep-sea brine pool with no direct
illumination from sunlight. Our stratosphere balloon mission
results for S. shabanensis (partial resistance to UV exposure)
reveal a wide variability in UV response based on the model
bacterium studied. It was previously reported that even vegetative
Escherichia coli cells can persist for 7 days under simulated Mars
conditions, even when exposed to 8 h of UVC irradiation (200–
280 nm) at a fluence of 3.6 W m−2 per day (Berry et al., 2010).
Besides innate physiological differences, survival rates might
also be influenced by the degree to which the UV dose was
attenuated. With past laboratory- and flight-based experiments
embedding microorganisms in different substrates – including

Mars analog soils – the effects of UV (alone) can be difficult
to assess (Rettberg et al., 2004; Wadsworth and Cockell, 2017).
Cell layering (discussed later in section “A. niger spores survive
Mars-like conditions”) also likely plays a role in variable survival
outcomes, as reported with past stratosphere exposure studies
(Khodadad et al., 2017). We expected S. capitis subsp. capitis
to be more tolerant to radiation in the stratosphere because
of its natural occurrence on human skin (Byrd et al., 2018),
where direct illumination from sunlight would be common.
For instance, the average UV dose causing erythema (abnormal
redness of the skin) of Americans is approximately 25 kJ m−2 per
year (Godar et al., 2001).

Whether the tested bacterial strains would be able to survive
in a real Mars-surface environment depends on various aspects;
however, access to UV-shielding will certainly play a major role.
This was seen in our study, as both the halophilic bacterium
S. shabanensis, and the human skin associated bacterium
S. capitis subsp. capitis survived the UV-shielded Mars-like
environment during the balloon flight. In the event that these
bacteria are brought to Mars, either in robotic missions for
astrobiological research purposes; or by accident through crew-
led contamination in space missions (Avila-Herrera et al., 2020)
our results suggest that bacterial bioburden embedded deep
inside of spacecraft sent to Mars might remain viable for longer
periods of time (>5 h).

Bacterial Desiccation Tolerance in
Mars-Like Conditions
Desiccation can be a stressful condition for cells, where the
accumulation of reactive oxygen species and irreversible changes
in lipids, proteins, and nucleic acids can lead to death (Cox,
1993; Dose and Gill, 1995). Some microorganisms can tolerate
extreme desiccation by ceasing metabolic activity in a state of
anhydrobiosis (Glasheen and Hand, 1988; Wright, 1989; Potts,
1994). Our results for the bacterial species S. shabanensis showed
survival under long-term desiccation and sunlight exposed flight
conditions. The survival for the laboratory control and the UV-
shielded organisms are similar, which may indicate a desiccation
sensitivity of this strain. Cells of S. capitis subsp. capitis K1-2-2-
23 were inactivated from the flight UV-exposure but did partially
survive the UV-shielded layer of the Trex-Box. Interestingly, the
desiccated laboratory controls for S. capitis subsp. capitis did not
survive the experiment, indicating that long-term resistance to
desiccation was only possible when cells were under the Mars-
like atmosphere and not when kept in Earth atmosphere. The
results from the balloon flight warrant further investigation to
determine if a Mars gas mixture has an impact on the stability
of some bacterial species. For instance, it is known that the
presence of oxygen can decrease the survivability of prokaryotes
during desiccation (Potts, 1994; Vriezen et al., 2007; Beblo-
Vranesevic et al., 2017b) and in additional experiments we
observed that the survival of S. capitis subsp. capitis K1-2-2-
23 increased when desiccation occurred in anoxic conditions
(data not shown). Finally, the last bacterial species flown in
this experiment, Buttiauxella sp. MASE-IM-9, did not survive
long-term desiccation. Therefore, no surviving cells could be
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detected in the balloon flight samples or from laboratory controls.
This negative result was consistent with previous Mars analog
experiments where Buttiauxella sp. MASE-IM-9, a facultative
anaerobe, survived a maximum of 3 months of desiccation
(Beblo-Vranesevic et al., 2018, 2020).

A. niger Spores Survive Mars-Like
Conditions
While bacterial cells were sensitive to UV exposure in the middle
stratosphere, in addition to long-term desiccation, A. niger spores
were highly resistant to all tested conditions. Laboratory controls
demonstrated A. niger spore endurance to 5-month desiccation,
when air-dried and kept at room temperature (22◦C) at the
bench, under Earth atmospheric conditions. Spores of A. niger
shielded from UV (bottom layer) endured a 5-month desiccation
within Mars-like atmosphere and pressure, with additional
exposure to extreme temperature fluctuations during the balloon
flight (−51◦C to +21◦C). Finally, spores of A. niger exposed to
UV (top layer) withstood over 5 h of full simulation of Mars
environmental conditions, i.e., exposed to Mars gas, atmosphere,
temperature fluctuation, and to a total estimated UVA-UVB dose
of 1148 kJ m−2 during the balloon flight. A previous study testing
A. niger spore survival to desiccation and solar radiation was
done in an experimental setting similar to this study: A. niger
spore monolayers were dried in glass disks and exposed to∼16 kJ
m−2 of UVB (280–320 nm); the specimens were highly resistant,
with 24% ± 5% survival (Dose et al., 2001). The extraordinarily
high level of resistance of A. niger spores to UVC radiation (LD90
value of 1038 J m−2) has been previously reported by Cortesão
et al. (2020a). Another balloon-flown study (i.e., same launch site
and season; different year) with pigmented spores of the fungus
Fuligo spectica showed that these remained viable after a 9 h
exposure to conditions in the stratosphere (Díez et al., 2020). In
the Aspergillus genus, secondary metabolites e.g., DHN-melanin
(a pigment) and fumiquinazoline might be associated with UV
protection roles (Blachowicz et al., 2020).

The ubiquitous presense of A. niger spores in human
indoor-closed habitats, and their high resistance to outer space
conditions, suggests these will likely travel with us to Mars.
A contamination scenario, several factors might affect the
survivability potential of A. niger spores in a Mars-surface
environment. Some are intrinsic to the spores, e.g., molecular
mechanisms such as DNA repair systems; or structural protection
mechanisms such as the thick cell wall (Latgé et al., 2017).
Whereas other factors are external, for instance, shielding
from the spacecraft surfaces or martian regolith. An important
factor known to impact survival outcomes is the starting
cell concentration (Khodadad et al., 2017). To test this, we
compared A. niger responses to the stratosphere as either a spore
monolayer (107 spores ml−1) or a spore multilayer (108 spores
ml−1) (Table 4). When exposed to UV-shielded conditions, a
higher starting spore concentration (multilayer) influenced all
primary measures (i.e., survival fraction, spore germination, and
metabolic activity). Unexpectedly, spores in a multilayer yielded
a decreased survival in laboratory controls and UV shielded
conditions, as well as a decreased germination rate in all tested
conditions, when compared with spores in a monolayer. These

discrepancies might simply be due to incomplete removal of
biomass from the quartz disks or due to the presence of hyphae
fusion in germination test plates; either of which could lead
to undercounting.

Moreover, in A. niger spores, the cell wall is a highly complex
structure that plays an important role in protecting the spores
from extracellular environmental stress. The spore cell wall
is composed mainly of polysaccharides (α-glucans β-glucans),
galactomannan, and chitin; and is surrounded by a rodlet layer
with hydrophobic surface proteins, and a melanin layer. When
germinating into vegetative cells (hyphae), the spore cell wall
is remodeled and no longer provides protection to extreme
conditions (Latgé et al., 2017). Considering environmental
changes typically act first on the cell wall, we evaluated how
Mars-like conditions might alter A. niger spore cell wall integrity.
All tested spores were able to revive (i.e., germinate) and grow
in media supplemented with cell wall stressors: calcofluor white
or caspofungin. Calcofluor white is a non-specific fluorochrom
that can bind to 1,3- and 1,4-β polysaccharides on chitin and
cellulose, inhibiting chitin microfibril assembly and cell wall
integrity (Fiedler et al., 2014).

CONCLUSION

To date, a variety of terrestrial analogs and simulation chambers
have been used to predict outcomes for microbial exposure
to Mars-like conditions. Most often, such investigations use
elevated radiation and desiccation paired with low pressure
and temperature alongside a Mars gas mixture (Jensen et al.,
2008; Schuerger et al., 2008; Motamedi et al., 2015). However,
few studies can simultaneously recreate a multi-factor Mars
environment. The renewed focus on Mars robotic and human
exploration e.g., Mars 2020, Mars Sample Return (NASA, 2020)
and ExoMars 2022 (ESA, 2020) amplifies the need for additional
Mars analog studies in the coming years. In this study we:

• reported the use of a new scientific payload (MARSBOx) for
stratospheric balloon missions allowing access to a wide-
ranging Mars analog environment with natural ionizing
and non-ionizing radiation;
• demonstrated a successful experimental set-up, of

the Trex-Box and MARSBOx combined, where four
different microorganisms could be tested, in dried
conditions, throughout a 5-month period, without
cross-contaminations.
• showed that the extremophilic bacterium S. shabanensis

and the human skin-associated bacterium S. capitis subsp.
capitis survived the UV-shielded Mars-like environment
during the balloon flight, suggesting that bioburden
embedded deep inside of spacecraft sent to Mars might
remain viable for longer periods of time;
• revealed that highly pigmented spores from the fungus

A. niger would survive, in a Mars-like middle stratosphere
environment for > 5 h of UV exposure, even as a spore
monolayer (106 spores mL−1), i.e., with no self-shielding.

Taken together, we conclude pigmented fungal spores might
be considered some of the most likely forward contaminants to
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survive if inadvertently delivered to Mars. Our results underscore
the importance of including fungal spores in Mars forward
contamination studies and relevant planetary protection policies,
which currently restrict surface bioburden of ≤3 × 105 bacterial
endospores for robotic lander systems that are not carrying
instruments to investigate extant martian life (category IVa)
(COSPAR, 2020). Moreover, fungal spore sensitivity to extreme
heat or to high doses of combined sources of space radiation,
as well as to other factors that affect survivability (e.g., regolith
reactive compounds or regolith shielding), should be further
evaluated to better assess the forward contamination potential in
Mars analog environments.
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