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Synonymous mutations within protein coding regions introduce changes in DNA or
messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of
virus genomes has facilitated the identification of previously unknown virus biological
features. Moreover, large-scale synonymous recoding of the genome of human
immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within
the innate immune response, and has improved our knowledge of new functional
virus genome structures, the relevance of codon usage for the temporal regulation of
viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous
improvements in our understanding of the impacts of synonymous substitutions on
virus phenotype – coupled with the decreased cost of chemically synthesizing DNA
and improved methods for assembling DNA fragments – have enhanced our ability
to identify potential HIV-1 and host factors and other aspects involved in the infection
process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype
and replication capacity. We also discuss the general potential of synonymous recoding
of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify
new therapeutic targets.
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INTRODUCTION

Despite the relatively recent introduction of HIV-1 within the human population, this virus
has already exhibited enormous diversification. This high genetic diversity results from its fast
replication cycle, with the generation of about 1010 virions daily in an infected individual, coupled
with its high mutation rate of approximately 3 × 10−5 per nucleotide base per replication cycle,
and the recombinogenic properties of its reverse transcriptase (RT) (Coffin and Swanstrom, 2013).
The HIV-1 RNA genome comprises an above-average proportion of adenine (A) nucleotides, while
being extremely poor in cytosine (C) (van der Kuyl and Berkhout, 2012). Interestingly, despite the
high variability of the HIV-1 genome, its base composition is surprisingly stable over time, varying
by <1% per base per isolate regardless of whether it originates from the early or later years of
the epidemic (van der Kuyl and Berkhout, 2012). This stability of the peculiar base composition
of the HIV-1 genome strongly impacts its synonymous codon and codon pair usage, as well as
dinucleotide frequencies.
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All organisms share the same genetic code, in which four
different nucleotides generate codon triplets – such that 43, or
64, different codons are possible. These 64 codons encode 20
different amino acids and 3 translation stop codons. Of these
20 amino acids, 18 are encoded by more than one synonymous
codon, and only methionine and tryptophan are encoded by
a unique triplet codon. The ratios of synonymous codons are
highly non-random, i.e., some synonymous codons appear more
frequent than others (Grantham et al., 1980), a phenomenon
termed codon usage bias. Codon usage differs among different
species, strongly suggesting that codon usage is an adaptive trait
affected by selective pressure and random drift. Another bias
that can be observed in organism genomes is that codon pair
frequencies are not random, which is termed codon-pair bias.
The frequencies of codon-pairs can be different from what would
be expected based on the individual codon usage bias of a given
genome, as reviewed by Alexaki et al. (2019). Indeed, codon-
pair bias have been also described in other organisms, including
HIV-1 (Martrus et al., 2013).

In addition to the translation and abundance of isoaccepting
tRNAs, synonymous codon mutations can impact many other
molecular phenotypes, including transcription modifications
(Zhou et al., 2016; Findlay et al., 2018), translation initiation
(Kudla et al., 2009; Goodman et al., 2013; Stergachis et al., 2013),
translation elongation (Sorensen et al., 1989; Boel et al., 2016),
translation accuracy (Akashi, 1994; Drummond and Wilke,
2008), RNA stability (Presnyak et al., 2015), RNA structure and
folding (Shabalina et al., 2006; Kudla et al., 2009), RNA splicing
(Pagani et al., 2005; Takata et al., 2018), RNA toxicity (Mittal
et al., 2018), cotranslational folding (Pechmann and Frydman,
2013), chromatin organization (Warnecke et al., 2009), enhancer
functions (Lin et al., 2011; Birnbaum et al., 2012), and microRNA
targeting (Brest et al., 2011; Birnbaum et al., 2012). These impacts
of synonymous mutations on cell phenotype further indicate that
the distribution of synonymous substitutions throughout genes
and genomes is neither random nor neutral, and is thus subjected
to selective forces. As mentioned above, HIV-1 is a good example
since, although the genome is highly variable, the genomic base
composition has been tremendously stable over time.

Forty years ago, the invention of PCR and the chemical
synthesis of DNA oligonucleotides opened the door to synthetic
genomics. Nowadays, DNA chemical synthesis enables the
synthesis of 200-nucleotide-long oligonucleotides (Hughes
and Ellington, 2017). Overlapping single-stranded DNA
oligonucleotides of 100–200 nucleotides in length can easily
be assembled by PCR or isothermal amplification to generate
DNA fragments of 1,000–2,000 base pairs (bps) (Figure 1).
Conventional cloning methods can be applied to clone these
synthetic DNA fragments into a bacterial plasmid vector, and
individual clones can be isolated and sequenced by Sanger
sequencing. Virus genome recoding is a recent tool that is
enabling us to elucidate fundamental aspects of virus biology
(Figure 2). Synthetic recoding can also help us to develop better
therapeutic tools, such as new synthetic vaccines and virus-based
gene therapy vectors. Next, we will discuss how synthetic HIV-1
synonymous genome recoding (Table 1) is uncovering HIV-1
biology, and opening the door to new therapeutic opportunities.

Remarkably relevant is how HIV-1 synonymous genome
recoding has allowed the description of previous unknown
functions of cell factors involved in the innate immune response
(Li et al., 2012; Takata et al., 2017).

SYNONYMOUS SUBSTITUTIONS AND
HIV-1 REPLICATION CAPACITY

A well-known and common application of synonymous
nucleotide recoding is synonymous codon optimization to
increase protein expression in various systems (Mauro and
Chappell, 2014). On the other hand, an interesting and less
known application of synonymous nucleotide recoding is to
synonymously deoptimize codon usage, codon-pair usage,
or dinucleotide frequencies to reduce protein expression
and attenuate virus replication capacity, which has been
described for several RNA viruses (Figure 3; Martínez et al.,
2016, 2019). Recoding viral genomes through numerous
synonymous but suboptimal substitutions represents a new
source of live attenuated vaccine candidates. In pioneer
research with poliovirus, the introduction of 542 synonymous
substitutions among the 2,555 nucleotides of the virus capsid
region reduced the virus replication capacity by up to 98% in
HeLa cells (Burns et al., 2006). A similar approach involving
synonymous deoptimization of the poliovirus capsid coding
region generated a virus that exhibited a neuro-attenuated
phenotype in transgenic mice (Mueller et al., 2006). Large-
scale synonymous codon usage recoding has been used to
generate prototypes of live attenuated vaccines for several RNA
viruses, including poliovirus (Burns et al., 2006; Mueller et al.,
2006), influenza virus (Mueller et al., 2010; Yang et al., 2013),
respiratory syncytial virus (RSV) (Nouën et al., 2014), vesicular
stomatitis virus (Wang et al., 2015), porcine reproductive and
respiratory syndrome virus (Ni et al., 2014), dengue virus
(Shen et al., 2015), zika virus (Li et al., 2018), echovirus 7
(Fros et al., 2017), foot and mouth disease virus (Diaz-San
Segundo et al., 2021), and the plant cucumber mosaic virus
(Mochizuki et al., 2018); arboviruses, such as Chikungunya
virus (Nougairede et al., 2013) and tick-borne encephalitis virus
(de Fabritus et al., 2015); and DNA viruses, such as Marek’s
disease herpesvirus (Conrad et al., 2018; Eschke et al., 2018).
Clinical trials have been performed using codon-deoptimized
type 2 poliovirus. These trials found the vaccine candidate to
be safe and immunogenic in infants and toddlers (Van Damme
et al., 2019; Konopka-Anstadt et al., 2020; De Coster et al., 2021;
Sáez-Llorens et al., 2021).

The HIV-1 genome has been also synonymously deoptimized
(Martrus et al., 2013; Klaver et al., 2017). In one study, up to 118
substitutions were introduced in the 1,508-nucleotide structural
Gag-coding region, generating viruses with lower replicative
capacities in an established MT-4 cell line and in peripheral blood
mononuclear cells (PBMCs) from uninfected donors (Martrus
et al., 2013). The replication capacity of these recoded variants
was reduced up to 39 and 85% in MT-4 cells and PBMCs,
respectively (Martrus et al., 2013). Similarly, the introduction of
41 substitutions in protease coding region also generated a virus
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FIGURE 1 | Synthetic HIV-1 DNA oligonucleotide assembly and cell transfection. Overlapping oligonucleotides encoding a full-length HIV-1 genome DNA duplex are
successively assembled via PCR or isothermal amplification. The designed HIV-1 DNA duplex can then be directly transfected into susceptible cells (e.g., MT-4 and
PBMCs) to yield infectious virus (Fujita et al., 2013). Alternatively, synthetic HIV-1 DNA can be cloned in bacteria or other vectors for further manipulation.

FIGURE 2 | Methods for genome synonymous recoding. Four main strategies have been used to synonymously recode virus genome sequences: codon usage
modification, codon-pair usage modification, CpG content modification, and modification of codons that can generate stop mutations after a single nucleotide
substitution.

with reduced replication. To test the phenotypic stability of these
protease and gag variants, the viruses were serially propagated
in MT-4 cells, revealing that all deoptimized viruses recovered
wild-type (WT) replication capacity after 60 days of cell culture
propagation (Martrus et al., 2013). Individual virus clones were
obtained after cell culture passages, and sequencing revealed

that several deoptimizing synonymous substitutions had reverted
to WT; many additional synonymous and non-synonymous
mutations were also detected. The clinical development of an
attenuated HIV-1 vaccine is thus improbable. However, these
experiments confirm the rapid evolution of an RNA virus, and
the necessity of rigorous experiments to evaluate the stability of
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TABLE 1 | Examples of HIV-1/SIV phenotype modification by genome synonymous substitutions.

Targeted Gene Recoding method Implicated host factor Resulting phenotype References

gag Codon usage Innate response (SLFN11) Translation inhibition (lethality) Li et al., 2012

gag, pol Codon-pair usage ND Translation inhibition (attenuation, lethality) Martrus et al., 2013

env Codon usage Innate response (Type 1 interferon) Transcription inhibition (attenuation) Vabret et al., 2014

gag, pol, env CpG content Innate response (ZAP) Transcription inhibition (attenuation, lethality) Takata et al., 2017

pol Codon-pair usage None Sequence space modification (none) Nevot et al., 2018

gag, pol, env CpG content mRNA splicing Suppression of splice sites (attenuation, lethality) Takata et al., 2018

env Codon usage mRNA splicing Suppression of essential mRNA structures
(attenuation, lethality)

Jordan-Paiz et al., 2020

ND, not determined.

FIGURE 3 | Viral population diversity and evolvability of a wild-type sequence and a synonymously recoded sequence. (A) Synonymous recodification of a viral
sequence leads to a different and limited mutant spectra which may result in the generation of stop codons. The generation of stop codons in the mutant spectra
results in virus attenuation (Lauring et al., 2012; Moratorio et al., 2017). (B) Replication of a wild-type (WT) virus and a synonymous-recoded virus under a constant
environment may lead to different mutant spectra, but not necessarily to generation of stop codons or viral attenuation. Under the presence of a viral inhibitor, the
number of mutations found in the synonymous-recoded virus is higher than those generated in the WT virus. Moreover, these mutations differ from both viral mutant
spectra, indicating that the sequence space influences the development of inhibitor resistances (Nevot et al., 2018).

all candidates for new attenuated virus vaccines based on genome
synonymous recoding.

In another lentivirus, simian immunodeficiency virus (SIV),
the introduction of 169 synonymous nucleotide optimizing
mutations in gag and pol yielded a virus with a 100-fold decrease

of its replication capacity (Vabret et al., 2014). Interestingly, the
recoded virus exhibited a reduced ability to stimulate type I
interferon, which may have attenuated its pathogenic potential.
Analogously, synonymous deoptimization of the Streptococcus
pneumoniae pneumolysin gene with underrepresented codon
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pairs resulted in an attenuated phenotype in a mouse pulmonary
infection model, which was associated with a markedly reduced
inflammatory response in the lungs (Coleman et al., 2011).

Reports have also described cis-acting functions in the HIV-1
coding sequence for viral gene expression. Synonymous adaptive
mutations in the HIV-1 3’ pol gene result in parallel increases
or decreases in the expression levels of late viral proteins and in
viral replication capacity (Nomaguchi et al., 2014). These findings
suggest that viral fitness is altered through nucleotide-dependent
modulation of the expression pattern of viral mRNAs. A global
silent mutagenesis experiment was performed to identify new cis-
acting RNA elements in the HIV-1 genome that are important for
virus replication (Takata et al., 2018). Sixteen mutant proviruses
were designed and synthesized, which contained clusters of
∼50 to ∼200 synonymous mutations spanning nearly the entire
HIV-1 protein coding sequence. These mutant viruses were
analyzed and categorized into three phenotypic groups: (1)
mutants exhibiting near WT replication, (2) mutants exhibiting
replication defects accompanied by perturbed RNA splicing,
and (3) mutants exhibiting replication defects without obvious
splicing perturbation (Takata et al., 2017). Mutants of the
second group generally contained point mutations that reduced
proximal splice site utilization. Mapping the changes responsible
for splicing perturbations in these viruses revealed several RNA
sequences that apparently suppressed the use of cryptic or
canonical splice sites. These findings indicated complex negative
regulation of HIV-1 splicing via RNA elements in various regions
of the HIV-1 genome, which maintained a balance between
splicing and viral replication (Takata et al., 2018). Overall, these
experiments demonstrated that synonymous HIV-1 recoding
may provide insights into uncharacterized elements in the HIV-1
genome that determine the fate and splicing of HIV-1 RNA and
thus the ability of HIV-1 to replicate.

SYNONYMOUS SEQUENCE SPACE

One unknown aspect of the genetic architecture of RNA viruses,
including HIV-1, is how codon choice influences population
diversity and evolvability. Early comparisons of the nucleotide
sequences of homologous genes revealed higher numbers
of synonymous substitutions compared to non-synonymous
mutations, promoting an initial assumption that synonymous
mutations were selectively neutral. This postulation contributed
to the foundations of the neutral theory of molecular evolution,
in which organisms evolve mainly through the random drift
of genomes carrying neutral or quasi-neutral mutations (King
and Jukes, 1969; Kimura, 1983). However, although genome
random drift may play an important role in molecular evolution,
the currently available evidence indicates that synonymous
mutations are not neutral (Martínez et al., 2019; Domingo, 2020).

Synonymous substitutions can determine the evolutionary
trajectory of a genome. Different codons that encode the same
amino acid can have different evolutionary potential in terms
of the amino acids that they can access through a point
mutation, which can determine their likelihood of reaching
beneficial mutations that facilitate adaptation (Lauring et al.,

2013). Research with polio, coxsackie B3, and influenza A
viruses has revealed that synonymous recoding of the virus
genome can change its starting position in sequence space and
limit its access to mutational neighborhoods (Lauring et al.,
2012; Moratorio et al., 2017), potentially resulting in virus
attenuation. Mutational neighborhoods refer to a network of
variants organized in sequence space around a single master
sequence (Domingo, 2020). In the cases of coxsackie B3 and
influenza A viruses, leucine and serine codons were recoded
to favor the possibility of nonsense mutations resulting in
stop codons. The virus variants were attenuated in vivo and
exhibited increased numbers of stop codons. These findings
suggested the possibility of changing a virus’ starting position
in sequence space, and redirecting it toward detrimental
mutational neighborhoods to generate self-limiting vaccine
strains (Moratorio et al., 2017). Similarly, a synonymously
recoded poliovirus exhibited unique mutant spectra, showing
significantly different distributions of polymorphic amino
acid substitutions in the capsid (Lauring et al., 2012). This
recoded virus exhibited normal replication capacity in tissue
culture, but displayed an attenuated phenotype in an animal
model of infection, demonstrating the importance of mutant
neighborhoods in determining viral pathogenesis.

To explore whether the synonymous sequence space
influences the development of HIV-1 protease inhibitor (PI)
resistance, WT HIV-1 was compared to a variant carrying a
protease gene with 38 synonymous mutations (13% of the
protease sequence) (Nevot et al., 2018). The 38 synonymous
substitutions were scattered throughout the protease coding
region, and were selected to improve protease gene codon-pair
bias without modifying the codon bias or folding free energy
(Martrus et al., 2013). Importantly, replication in MT-4 cells or
PBMCs was indistinguishable between the recoded variant and
the WT virus. Similar to the studies performed with poliovirus
and coxsackie virus, this investigation was designed to explore
how HIV-1 evolvability was influenced by the natural position
in sequence space. In contrast to previous work, this study
explored how synonymous substitutions affected the specific
selection pressure targeting a precise HIV-1 gene. Interestingly,
upon PI treatment, the recoded virus displayed different patterns
of resistance mutations, demonstrating that sequence space
position affects evolvability. However, although the WT and
recoded proteases occupied different sequence spaces, they
showed similar levels of development of phenotypic resistance
to PIs – i.e., the recoded and WT virus exhibited the same
robustness to overcome a specific selective pressure (Nevot
et al., 2018). Interestingly, the recoded virus showed significantly
higher population diversity in the recoded and targeted gene
following propagation in both the absence and presence of PIs.
It is tempting to speculate that the recoded virus was subjected
to greater pressure to change or revert to a WT-synonymous
background. As discussed above, positioning a virus in a
detrimental sequence space to reduce its capacity to produce fit
progeny may be a new strategy for attenuated poliovirus vaccine
development (Lauring et al., 2012). However, the research
involving the HIV-1 protease (Nevot et al., 2018) suggests that
this approach must be cautiously developed, with careful testing

Frontiers in Microbiology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 606087

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-606087 March 10, 2021 Time: 14:7 # 6

Jordan-Paiz et al. HIV Synonymous Genome Recoding

of the long-term stability of synonymously recoded individual
candidate viruses.

SYNONYMOUS SUBSTITUTIONS AND
HIV-1 RNA SECONDARY STRUCTURE

RNA virus genomes contain multiple functional RNA elements
that are required for translation or RNA replication. Synonymous
genome recoding has been exploited to identify specific RNA
structures required for virus replication. Recoding does not
affect virus growth unless it destroys the sequence/structure of a
functional RNA element (Song et al., 2012). SHAPE experiments
have revealed that in HIV-1 RNA, individual nucleotides exhibit
widely divergent tendencies to be base-paired (Wilkinson et al.,
2008; Watts et al., 2009). HIV-1 RNA secondary structures are
conserved between strains, and thus might have a function
in HIV-1 replication. As previously discussed, synonymous
recoding of the HIV-1 genome has elucidated the presence of
unknown RNA cis-regulatory elements that influence balanced
splicing and viral replication (Takata et al., 2018). Using
dimethyl sulfate mutational profiling and sequencing (DMS-
MaPseq) to investigate the HIV-1 RNA structure in cells has
revealed that the same RNA sequence can assume alternative
conformations (Tomezsko et al., 2020). These findings have
revealed heterogeneous regions of RNA structure across the
entire HIV-1 genome, as well as alternative conformations
at critical splice sites that influence the ratio of transcript
isoforms. Overall, these results strongly suggest that HIV-1 RNA
conformation regulates splice-site use and viral gene expression
(Tomezsko et al., 2020).

In SIV and HIV-1, the expression of Env depends on the
nature of the codons used (Shin et al., 2015). One interesting
hypothesis is that in different families of persistent viruses, codon
usage is skewed in a distinctive manner to enable temporal
regulation of late-expressed structural gene products, which is
the case for HIV-1 Env. Temporal regulation of the lentiviral
Env protein ensures its production late in the lytic cycle of
these persisting viruses. Notably, expression of these late gene
products is typically induced by viral transducers produced
earlier in the viral replication cycle. One example of such a
transducer is the HIV-1/SIV protein Rev. A nuclear localization
signal encoded in the rev gene enables localization of the Rev
protein to the nucleus, where it participates in the export of
unspliced and incompletely spliced mRNAs. In the absence of
Rev, mRNAs of the late (structural) HIV-1/SIV genes (e.g., Env
protein) are retained in the nucleus, preventing their translation
(Karn and Stoltzfus, 2012).

Env exhibits unusual codon usage that differs from that of
the host cell. It was recently demonstrated that Rev induction
of Env protein expression is dependent on this biased codon
usage (Shin et al., 2015). To determine whether codon usage
affected HIV-1 Env protein expression and virus viability, the
codons AGG, GAG, CCU, ACU, CUC, and GGG of the HIV-1
env gene were substituted with the synonymous codons CGU,
GAA, CCG, ACG, UUA, and GGA, respectively (Jordan-Paiz
et al., 2020). This approach revealed that synonymous recoding

of the Env protein gp120 coding region did not significantly
affect virus replication capacity, despite the introduction of 15
new CpG dinucleotides (see in the next section the relevance
of CpGs). In contrast, changing a single codon (AGG to CGU)
within the gp41 coding region (HXB2 env position 2,125–2,127),
which is located in the intronic splicing silencer (ISS), completely
abolished virus replication and Env expression (Jordan-Paiz et al.,
2020). Computational analyses of this mutant revealed severe
disruption of the ISS RNA secondary structure. Moreover, a
variant that restored the ISS secondary RNA structure also re-
established Env production and virus viability. These findings
indicate that external ISS loop disruption strongly affected HIV-
1 replication and Env translation – again highlighting the
relevance of synonymous recoding in maintaining biologically
relevant RNA structures.

HIV-1 DINUCLEOTIDE FREQUENCIES
AND INNATE IMMUNE RESPONSE

As previously discussed, lentiviral RNA genomes (e.g., HIV-1 and
SIV) exhibit a strong bias in their nucleotide composition, with
high frequencies of A and low content of C (van der Kuyl and
Berkhout, 2012). In accordance with the nucleotide composition,
a biased dinucleotide frequency is also observed in HIV-1,
with the most frequent occurrence of the dinucleotide ApA
and a lower-than-expected proportion of CpG. Reduced CpG
frequencies are also observed in many other RNA viruses, and in
most vertebrate genomes. The low CpG abundance in vertebrate
genomes can be explained by the methylation/deamination
process that promotes the mutation of CpG to TpG/CpA (Karlin
and Mrázek, 1997). In contrast to HIV-1, although many RNA
viruses mimic the CpG suppression of their vertebrate hosts
(Simmonds et al., 2013), this phenomenon cannot be explained
by methylation since they lack a DNA intermediate. Thus,
the explanation for the low CpG abundance in RNA viruses
remains controversial.

Studies of several RNA viruses, including HIV-1, have revealed
that increases of CpG in the virus genome negatively impact
their replication capacity (Burns et al., 2009; Atkinson et al.,
2014; Tulloch et al., 2014; Gaunt et al., 2016; Antzin-Anduetza
et al., 2017; Takata et al., 2017). In HIV-1-infected individuals, the
in vivo generation of de novo CpG sites carries twice the fitness
cost of mutations that do not generate CpG sites (Theys et al.,
2018). These findings raise questions regarding why CpG sites
are suppressed in the HIV-1 genome, and why an increase of this
dinucleotide carries a fitness cost.

Toll-like receptor 9 (TLR9) recognizes bacterial and viral
DNA that is rich in unmethylated CpG DNA (Figure 4; Pandey
et al., 2015). TLR9 is highly expressed in plasmacytoid dendritic
cells. Since the replication of HIV-1 in plasmacytoid dendritic
cells is not fully demonstrated, the role of TLR9 in HIV-1
CpG suppression is also unclear. Recently, Takata and colleagues
generated several CpG-rich HIV-1 variants through the synthetic
random synonymous mutagenesis of different HIV-1 regions
(Takata et al., 2017). As previously described (Atkinson et al.,
2014; Gaunt et al., 2016; Antzin-Anduetza et al., 2017), they
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FIGURE 4 | Factors of the innate immune system that might affect the nucleotide composition of the HIV-1 genome. SLFN11 sequesters tRNAs in a
codon-dependent manner. Toll-like receptor 9 recognizes unmethylated CpGs in DNA, and activates the immune cascade (Pandey et al., 2015). Finally, ZAP
recognizes CpG-rich non-self RNAs and induces their degradation.

found that variants containing larger numbers of CpG sites had
significantly lower replication capacity. By targeting different
cellular proteins implicated in mRNA degradation, they revealed
that knockdown of a zinc-finger antiviral protein (ZAP) restored
the normal replication capacity of CpG-rich HIV-1 variants
(Figure 4). ZAP is a factor involved in the innate immune
response, which was first described as an inhibitor of viral RNA
production (Gao et al., 2002). ZAP specifically binds viral mRNAs
(Guo et al., 2004) and prevents their cytoplasmic accumulation
by recruiting and promoting degradation of the RNA processing
exosome (Guo et al., 2007) – thereby promoting specific loss of
cytoplasmic viral mRNA without affecting nuclear mRNA. While
previous studies could not determine how ZAP targets viral
mRNA (Guo et al., 2004), Takata and colleagues demonstrated
that ZAP showed specificity for CpG-rich HIV-1 mRNA exonic
regions. These authors suggested that RNA virus evolution may
have favored low CpG content to avoid selective inhibition by
ZAP. Examination of another RNA virus has corroborated the

relationship between CpG frequency, ZAP, and virus replication
capacity (Odon et al., 2019).

Since the demonstration that ZAP induces the degradation
of viral CpG-rich mRNA, several studies have focused on
the mechanism underlying this binding and inhibition. As
previously described, ZAP recruits the RNA processing exosome
(Guo et al., 2007) and this complex degrades CpG-rich viral
mRNAs. However, the regulation of ZAP’s antiviral activity is
not completely understood, as other cellular cofactors might
be involved in its activation. The E3 ubiquitin ligase TRIM25
reportedly enhances ZAP and is required for its activity (Li et al.,
2017; Zheng et al., 2017). ZAP interacts with several components
of the RNA exosome complex, suggesting that TRIM25 may
not be the only cofactor that mediates ZAP activity. Indeed,
it was recently demonstrated that KHNYN, a newly described
cytoplasmic human protein, is also essential for ZAP activity
against foreign CpG-rich mRNAs (Ficarelli et al., 2019b). This
study revealed how KHNYN interacted with ZAP, and that
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its overexpression dramatically reduced the infectivity capacity
of a synonymous recoded CpG-rich HIV-1 variant. Moreover,
KHNYN inhibition enabled this CpG-rich variant to reach WT
replication levels.

The N-terminal domain of ZAP includes four CCCH-
type zinc-finger motifs that together form the ZAP RNA-
binding domain (RBD), and are responsible for targeting
viral mRNA (Chen et al., 2012). A recent paper describes
the RBD structure, and how it selectively binds CpG-rich
mRNA sequences (Meagher et al., 2019). Structural analysis
of ZAP revealed a pocket on the protein surface, which only
binds CpG dinucleotides (Meagher et al., 2019). This ZAP
structure may explain how ZAP avoids low-CpG host mRNA
and recognizes foreign mRNAs. Importantly, another recent
publication describes the molecular mechanism through which
ZAP only detects CpG sites in a single-stranded form (Luo
et al., 2020). The four zinc-finger motifs of ZAP form a specific
architecture that enables extensive interactions with RNA. They
further revealed that an RNA containing several ZAP-binding
sites can be recognized by multiple ZAP molecules, which likely
enhances the activation of the exosome complex. The authors
hypothesize that a single CpG dinucleotide cannot bind ZAP and
activate the exosome complex, but rather must be single-stranded
and surrounded by other CpG sequences that can bind several
ZAP molecules, potentially exerting a synergistic effect.

Despite recent descriptions of the ZAP structure and
molecular mechanism, there remains some controversy
surrounding how CpG-rich mRNAs are targeted. Investigations
of the genomes of different primate lentiviruses do not reveal any
correlation between the number of CpG sites and the sensitivity
to ZAP. As previously noted, the HIV-1 genome contains a very
low proportion of CpG sites. In contrast, HIV-2 shows less CpG
suppression. However, although the CpG content is higher in
HIV-2 than in HIV-1, no ZAP inhibition is observed in HIV-2
(Kmiec et al., 2020). This phenomenon has also been observed
for another lentivirus, SIVmac, which exhibits a higher CpG
content but significantly lower ZAP inhibition compared to
HIV-1. This raises the question of why ZAP can inhibit HIV-1,
but not other related lentiviruses.

It is hypothesized that a region in the genome, termed ZAPsen,
may confer ZAP sensitivity. In HIV-1, this ZAPsen region is
described as located in the 5’ region of the env gene (from position
6,239–6,947 of the HIV-1 HXB2 reference genome) (Kmiec et al.,
2020). And increase of synonymous CpG sites in ZAPsen confers
higher ZAP sensitivity and lower virus replication capacity
(Ficarelli et al., 2019a; Kmiec et al., 2020). However, this is
not the only factor that affects replication. ZAP sensitivity is
also increased by the introduction of other ZAPsen mutations
that alter the RNA secondary structure, without modifying the
number of CpGs. Thus, ZAP may detect the ZAPsen region
based on either the number of CpG sites, or changes in the
RNA secondary structure. ZAP shows greater affinity to ZAPsen
when higher amounts of CpGs are introduced, but other factors
may also explain why CpG suppression is observed along the
whole HIV-1 genome. Accordingly, synonymous mutations that
increase the number of CpGs in other HIV-1 regions also
lead to reduced replication capacity (Ficarelli et al., 2019a).

These variants were not inhibited by ZAP, but rather through
other ZAP-independent mechanisms, mainly related to pre-
mRNA splicing. As described in a previous section, synonymous
mutations can also alter splicing (Takata et al., 2018). In this case,
synonymous CpGs were responsible for aberrant mRNA splicing
and reduced viral fitness.

As discussed above, CpG suppression in HIV-1 might be
partly explained by the actions of the innate response factor
ZAP. However, other mechanisms may also contribute, including
mRNA splicing and mRNA secondary structure. The exact
mechanism of ZAP targeting and binding remains to be
elucidated. This phenomenon may be further studied through the
generation of different HIV-1 variants with increasing amounts of
CpG sites in different regions of the genome, which could also be
useful for identifying new factors that might be involved in the
inhibition of HIV-1 replication.

HIV-1 CODON USAGE AND INNATE
IMMUNE RESPONSE

HIV-1-biased nucleotide composition can produce
overstimulation of the type I interferon, suggesting that
RNA sequences may be discriminated based on their nucleotide
composition (Vabret et al., 2012). Type I interferon is a major
antiviral cytokine that contributes to chronic immune system
activation and progression to AIDS during HIV infection
(Jacquelin et al., 2009). Pathogenicity is reportedly correlated
with divergent nucleotide composition of HIV-1 compared to
host (Vabret et al., 2012), suggesting that virus-host interactions
might be altered by artificially changing the nucleotide frequency
of the HIV-1 genome. With this aim, SIV codon usage was
optimized to be closer to the average nucleotide composition
of the SIV macaque host (Vabret et al., 2014). A synthetic
SIV optimized with 169 synonymous mutations in gag and pol
exhibited a 100-fold decrease of replicative capacity. Interestingly,
this optimized variant also exhibited reduced ability to stimulate
type I interferon in infected human and macaque PBMCs
(Vabret et al., 2014). No reversion of the introduced mutations
was observed after ten serial cell passages, suggesting that this
variant may be a safe candidate for an attenuated vaccine. Still,
further experiments should be performed to confirm the stability
of this attenuated variant. Live attenuated SIV vaccines are
highly protective in the macaque AIDS model (Koff et al., 2006).
However, in addition to safety concerns, this optimized SIV
variant raises intriguing questions related to the fact that a type
I interferon response is necessary for a vaccine to shape adaptive
immune responses and memory.

The Schlafen (SLFN) gene family was first discovered in 1998,
as regulators of T-cell maturation. The name Schlafen means
“to sleep” in German, and was chosen based on the observation
that enhanced SLFN1 expression resulted in G0/G1 cell cycle
arrest (Schwarz et al., 1998). SLFN genes are categorized as
interferon-stimulated genes (ISGs), as their expression is induced
by type I interferon. Some SLFN proteins possess RNA cleavage
activity, and exhibit antiviral activity against RNA and DNA
viruses. In particular, SLFN11 potently and selectively inhibits
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HIV-1 protein translation and virus production (Li et al., 2012),
and is considered an HIV-1 restriction factor. SLFN11 also
inhibits other retroviruses, including murine leukemia virus and
feline immunodeficiency virus (Stabell et al., 2016), such that
its antiretroviral effect has been classified as host-specific but
virus-independent.

Interestingly, the inhibitory effect of SLFN11 on viral protein
expression is intrinsic to the transcripts. SLFN11 acts at the
point of virus protein synthesis by exploiting the unique viral
codon bias toward A/U nucleotides, sequestering tRNAs in
a codon-dependent manner (Figure 4). Accordingly, SLFN11
only affects WT HIV-1, and does not recognize synonymously
recoded viruses in which the HIV-1 structural gag sequences
are optimized for human codon usage (i.e., without A/U in the
third position) (Li et al., 2012). Again, and similar to the findings
obtained with SIV, HIV-1 replication was attenuated by codon
optimization for host translation. This model is in line with
findings that SLFN11’s antiviral activity extends to other viruses
with rare codon bias (e.g., influenza, which also has a high A
content) but not to adeno-associated virus or herpes simplex
virus (Li et al., 2012). Overall, investigations in SIV and HIV-1
have shown that innate immunity restricts sequence landscapes
by targeting specific sequences and sequence patterns that are
primarily found in pathogens (Vabret et al., 2017).

CONCLUSION

Synonymous rewriting of the HIV-1 genome is helping to
elucidate essential genome functions. However, mammalian
codon optimization is not straightforward, since synonymous
mutations are often not neutral. On the other hand, intentional
deoptimization of codon, codon-pair usage, or dinucleotide

frequencies has been applied in several RNA virus genomes
to generate new attenuated vaccines. Nevertheless, the safety
and stability of these attenuated vaccines remain to be
elucidated. Due to safety concerns, it is very difficult to
envision the successful development of an attenuated HIV-1
vaccine. However, recoded HIV-1 variants can be used in gene
therapy, as a vaccine vector for immunization against diverse
microorganisms, or in immunotherapy to elicit specific innate
immune responses to treat particular conditions. Importantly,
artificial HIV-1 synonymous recoding has greatly increased our
knowledge regarding its interaction with the host. Specifically,
HIV-1 synonymous recoding impacts virus RNA nucleotide
composition and RNA secondary structure which regulate splice-
site use and viral gene expression. Together with structural RNA
features, changes in nucleotide composition also affect HIV-1
susceptibility to endogenous cell innate responses and correlated
with differences in clinical progression rates, suggesting a
potential role of virus RNA nucleotide composition in HIV-1
in vivo pathogenicity.
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