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It has been suggested that a few methanogens are capable of extracellular electron 
transfers. For instance, Methanosarcina barkeri can directly capture electrons from the 
coexisting microbial cells of other species. Methanothrix harundinacea and Methanosarcina 
horonobensis retrieve electrons from Geobacter metallireducens via direct interspecies 
electron transfer (DIET). Recently, Methanobacterium, designated strain YSL, has been 
found to grow via DIET in the co-culture with Geobacter metallireducens. Methanosarcina 
acetivorans can perform anaerobic methane oxidation and respiratory growth relying on 
Fe(III) reduction through the extracellular electron transfer. Methanosarcina mazei is 
capable of electromethanogenesis under the conditions where electron-transfer mediators 
like H2 or formate are limited. The membrane-bound multiheme c-type cytochromes 
(MHC) and electrically-conductive cellular appendages have been assumed to mediate 
the extracellular electron transfer in bacteria like Geobacter and Shewanella species. 
These molecules or structures are rare but have been recently identified in a few 
methanogens. Here, we review the current state of knowledge for the putative extracellular 
electron transfers in methanogens and highlight the opportunities and challenges for 
future research.

Keywords: extracellular electron transfer, methanogenic archaea, c-type cytochrome, archaellum, direct interspecies 
electron transfer, direct electron transfer

INTRODUCTION

Methanogens are important to the carbon biogeochemical cycle and global methane emissions. 
Approximately 1 billion tons of methane is generated annually by methanogens in natural and 
man-made anoxic environments, as a consequence, about half of that is emitted into the 
atmosphere (Thauer, 1998; Thauer et al., 2008). Methanogens belong to members of the archaeal 
domain and occur mostly in the phylum Euryarchaeota. The species found to date fall into 
seven orders that differ both in energy conservation and ecological niches (Liu and Whitman, 
2008; Thauer et  al., 2008). Methanogenesis can be  generally performed through the 
hydrogenotrophic, aceticlastic, methylotrophic, or methyl-reducing pathways depending on the 
substrates available in environments. Methanogenesis from syntrophic oxidation of short-chain 
fatty acids and alcohols is the key process during the anaerobic decomposition of complex 
organic matter. In this process, H2 and formate are usually used as electron transfer mediators. 
(Stams and Plugge, 2009). An increasing of observations addressing some methanogens perform 
extracellular electron transfers, however, have questioned this knowledge of methanogenesis.
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The extracellular electron transfer (EET) has been well 
studied in some bacteria regarding Geobacter and Shewanella 
species (Shi et  al., 2016). EET pathways contain the direct 
electron transfer (DET) pathway in which solid abiotic materials, 
such as iron minerals or electrodes, can function as terminal 
electron acceptors/donors, and the alternative pathway is the 
direct interspecies electron transfer (DIET) where living microbes 
can serve as terminal electron acceptors or donors. The strongest 
evidence for DIET is from a co-culture of Geobacter 
metallireducens and Geobacter sulfurreducens, which can oxidize 
ethanol with the reduction of fumarate to succinate (Summers 
et  al., 2010; Lovley, 2017). DIET or DET cannot be established 
with the Geobacter mutants deprived of the electrically conductive 
pili (e-pili) or the outer-membrane multi-heme c-type 
cytochromes (MHC); these components are thus critical to 
extracellular electron transfer (Summers et  al., 2010; Shrestha 
et  al., 2013; Shi et  al., 2016; Lovley, 2017).

The DIET pathway has also been proposed in methanogenic 
aggregates (Morita et al., 2011) and was initially demonstrated 
in the co-cultures of G. metallireducens with Methanothrix 
harundinacea or Methanosarcina barkeri (Rotaru et al., 2014a,b). 
Supplementation of iron oxides (hematite and magnetite) or 
other conductive materials, such as granular activated carbon, 
can facilitate the syntrophic growth of co-cultures consuming 
acetate or ethanol (Kato et al., 2012; Liu et al., 2012). Magnetite-
facilitated syntrophic oxidation of propionate and butyrate 
was detected in methanogenic enrichments (Li et  al., 2015; 
Zhang and Lu, 2016; Xia et al., 2019); consequently, the DIET 
pathway has been proposed to be  an alternate strategy for 
syntrophic metabolisms in methanogenic environments (Kato 
et  al., 2012; Liu et  al., 2012; Li et  al., 2015). The discovery 
of DIET in the co-cultures of Geobacter and methanogens 
(Rotaru et  al., 2014a,b; Yee and Rotaru, 2020) supports a 
long-standing hypothesis that some methanogens can directly 
obtain electrons from the outside (Dinh et  al., 2004). The 
DET pathways of methanogens have been proposed to occur 
with electrodes or minerals serving as electron sources (Cheng 
et  al., 2009; Beese-Vasbender et  al., 2015; Soo et  al., 2016; 
Yan et  al., 2018). Putative DIET and DET in methanogens 
greatly expand our understanding of methanogen’s roles in 
biogeochemistry, and future research shall re-assess the 
contribution of different methanogens to address global methane 
emission challenges. The mechanisms of extracellular electron 
transfers from methanogenic archaea, however, have yet to 
be  resolved. The purpose of this review is to summarize the 
current understanding of putative extracellular electron transfers 
from diverse methanogens and highlight the challenges of 
future research.

DIVERSE STRATEGIES IN 
METHANOSARCINALES

Methanosarcina barkeri
M. barkeri is metabolically versatile and capable of hydrogenotrophic 
(H2/CO2), methylotrophic (methanol, methylamine), methyl-
reducing (H2 and methanol/methylamine), and aceticlastic (acetate) 

methanogenesis (Welander and Metcalf, 2005; Thauer et al., 2008; 
Welte and Deppenmeier, 2014). When performing hydrogenotrophic 
methanogenesis, M. barkeri employs the energy-converting 
ferredoxin-dependent hydrogenase (Ech), F420-reducing hydrogenase 
(Frh), and membrane-bound methanophenazine-dependent 
hydrogenase (Vht; Thauer et  al., 2008; Kulkarni et  al., 2009; 
Welte and Deppenmeier, 2014). In the pathway of methylotrophic 
and aceticlastic methanogenesis of M. barkeri, Ech, Frh, and Vht 
also participate (Deppenmeier et  al., 1995; Meuer et  al., 2002; 
Welander and Metcalf, 2005; Kulkarni et  al., 2009, 2018; Mand 
et  al., 2018). Hydrogenases from M. barkeri can catalyze the H2 
production of electrodes in electrochemical reactors. Cathodes 
inoculated with Ms. barkeri, with the set potential of –0.6  V vs. 
the standard hydrogen electrode (SHE), could produce H2 at a 
rate of 120  ±  18  nmol  d-1  ml-1, and about half of this rate was 
detected with the cell extracts of M. barkeri (Yates et  al., 2014). 
Recently, it was shown that hydrogenases in combination with 
ferredoxin (Fd) and F420 from M. barkeri could attach to the 
electrode surface and catalyze the formation of H2. Then, the 
produced H2 could be  consumed rapidly by M. barkeri, resulting 
in a low or undetectable level of H2 accumulation (Rowe et al., 2019).

However, a hydrogenase deletion mutant of M. barkeri still 
exhibited the ability of electromethanogenesis with the cathode 
potential poised at –0.484 V vs. SHE, indicating a hydrogenase-
independent mechanism to facilitate the cathodic activity (Rowe 
et  al., 2019). Furthermore, M. barkeri is capable of conducting 
DIET to accept electrons from syntrophic growth with 
G. metallireducens on ethanol (Rotaru et  al., 2014a; Holmes 
et  al., 2018). The stoichiometric conversion of ethanol to 
methane (1.5 CH4 per ethanol) in the co-culture of 
G. metallireducens and M. barkeri indicated that M. barkeri 
not only metabolized the acetate produced by G. metallireducens 
but also used the electrons released from ethanol oxidation. 
The transcriptome was compared between the co-culture of 
G. metallireducens/M. barkeri and the co-culture of Pelobacter 
carbinolicus/M. barkeri (H2 was used as the electron transfer 
mediator) (Holmes et  al., 2018). It showed the significant 
upregulation of gene expression of the most subunits of the 
membrane-bound F420-dehydrogenase (Fpo) in the co-culture 
of G. metallireducens/M. barkeri. In addition, the expression 
of nine genes predicted to be  involved in ubiquinone/
menaquinone biosynthesis and those genes coding for HdrA1B1C1, 
HdrA2, and HdrB2 were also upregulated in the co-culture of 
G. metallireducens/M. barkeri. Therefore, a model for the electron 
and proton flux of the CO2 reduction to CH4 in M. barkeri 
during DIET-based growth has been postulated based on the 
above transcriptome comparison (Figure 1; Holmes et al., 2018). 
M. barkeri may obtain electrons from an unknown electron 
carrier and donate the electrons to methanophenazine (MP), 
a membrane-bound electron carrier analogous to ubiquinones. 
Then, the membrane-bound, proton-pumping F420-dehydrogenase 
(Fpo) may transfer electrons from MPH2 to F420, resulting in 
the formation of F420H2. Half of the F420H2 is proposed to 
serve as a reductant in the CO2 reduction pathway, while the 
remaining F420H2 donates electrons to HdrABC. With participation 
of electron bifurcation, HdrABC may transfer electrons to Fdox 
and CoM-S-S-CoB, respectively (Holmes et  al., 2018).
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M. barkeri does not contain MHC, and Fpo has no active 
sites on the outer surface of the membrane (Welte and 
Deppenmeier, 2014); how the external electrons are channeled 
into Fpo thus remains an important question (Figure 1). Future 
research shall focus on the alternate redox-active proteins in 
M. barkeri that can potentially aid in direct electron uptake. 
Moreover, a few studies have shown that the membrane-bound 
methanophenazine greatly contributes to the electrical 
conductivity of the membrane of Methanosarcina acetivorans 
growing on methanol (Duszenko and Buan, 2017; Yan et  al., 
2018). Further research is necessary to identify the effect of 
methanophenazine on the possible augmentation of membrane 
conductivity in Ms. barkeri performing direct electron uptake.

Methanothrix harundinacea
Both Methanosarcina and Methanothrix are known as the 
aceticlastic methanogens, while Methanothrix species are the 
specialists having a much lower threshold concentration for 
acetate metabolism (Jetten et al., 1992; Welte and Deppenmeier, 
2014). Methanothrix species have no genes coding for the 
hydrogenases like Ech, Frh, and Vht (Welte and Deppenmeier, 
2011). Although Methanothrix species are restricted to acetate 
degradation, the gene repository for CO2 reduction exists in 
their genome (Rotaru et al., 2014b). Afterwards, Mt. harundinacea 

has been suggested to perform DIET with G. metallireducens 
(Rotaru et  al., 2014b; Yee and Rotaru, 2020). The co-culture 
of G. metallireducens and M. harundinacea converted ethanol 
to methane in a stoichiometry of ca. 1.5 moles CH4 per mole 
ethanol. The inability of G. metallireducens to generate H2 or 
formate and the inability of M. harundinacea to metabolize 
H2 or formate ruled out the possibility of electron transfer 
via mediated electron carrier. So, the finding strongly suggested 
that DIET occurrence in the co-culture of G. metallireducens 
and M. harundinacea (Rotaru et  al., 2014b). In addition, the 
genes coding for CO2 reduction were highly expressed in 
Mt. harundinacea from the co-culture (Zhu et al., 2012; Rotaru 
et  al., 2014b). This methanogen, however, cannot utilize the 
cathode as the sole electron donor (Rotaru et  al., 2014b; 
Yee and Rotaru, 2020).

The specific electron transfer route for DIET remains elusive 
in M. harundinacea. The cell surface of Methanothrix genera 
consists of a protein sheet that is thought to be  composed of 
amyloid proteins. The amyloid proteins can cluster together 
binding peptides and metal irons, which may facilitate the 
direct electron uptake from external electron donors (Maji 
et  al., 2009; Viles, 2012; Dueholm et  al., 2015; Yee and Rotaru, 
2020). However, this is highly speculative and the experimental 
evidence has yet to be  obtained.

FIGURE 1 | Prediction model of direct electron uptake in Methanosarcina barkeri, cited (Holmes et al., 2018). The black arrows represent the possible transfers of 
electrons via F420 and Fd. The red arrow represents the possible route for electron uptake from the outside. The unknown electron transfer proteins may gain 8 e— 
from external sources and then channel these electrons via MP/MPH2 to Fpo. Fpo can utilize F420/F420H2 to deliver electrons to the process of CO2 to CH4.
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Methanosarcina horonobensis
M. horonobensis has a relatively narrow substrate spectrum 
compared with M. mazei and M. barkeri, only growing on 
methanol, dimethylamine, and acetate but not on H2/CO2 
(Shimizu et  al., 2011). M. horonobensis is able to retrieve 
electrons from G. metallireducens via DIET. Specifically, the 
co-culture of G. metallireducens and M. horonobensis converted 
8.8  ±  0.4  mM ethanol to 13.1  ±  0.8  mM CH4. Therefore, each 
mole of ethanol yielded ca. 1.5 moles of CH4, indicating complete 
conversion of the added ethanol to CH4 (Yee et  al., 2019). 
Similar to the co-culture of M. harundinecea/G. metallireducens, 
the inability of G. metallireducens to generate H2 or formate 
and the inability of M. horonobensis to metabolize H2 ruled 
out the possibility of electron transfer via the mediated electron 
carrier. However, M. horonobensis failed to perform 
electromethanogenesis at the cathode potential poised at –0.4 V 
vs. SHE (Yee et  al., 2019; Yee and Rotaru, 2020). Further 
research needs to elucidate why M. horonobensis can accept 
electrons from electroactive microbes (typically G. metallireducens) 
rather than from electrodes. M. horonobensis has the membrane-
bound MHC (Yee and Rotaru, 2020), and future efforts to 
study DIET of the co-culture of G. metallireducens and 
M. horonobensis must be  intensified and eventually provide 
the clarified membrane-bound electron transport chain and 
MHC expression response to DIET.

Methanosarcina mazei and Methanothrix 
soehngenii
M. mazei is closely related to M. barkeri in the phylogenetic 
relationship and can consume a wide range of substrates, 
including H2/CO2, methanol, methylamine, and acetate (Welte 
and Deppenmeier, 2014). It is possible that hydrogenases are 
coupled with ferredoxin (Fd) and F420 from M. mazei to capture 
electrons from cathodes to form H2, which is then consumed 
for the CH4 production. However, the experimental evidence 
for this speculation has yet to be  revealed (Welte and 
Deppenmeier, 2014; Rowe et  al., 2019). M. soehngenii is a 
strict non-hydrogenotrophic methanogen. A recent study showed 
that both M. mazei and M. soehngenii could pair with 
G.  metallireducens (Yee and Rotaru, 2020). However, only 
7.7  ±  0.7  mM CH4 was produced from 10  mM ethanol in 
the co-culture of M. mazei and G. metallireducens, and only 
1.8  ±  1.0  mM CH4 was produced from 20  mM ethanol in 
the co-culture of M. soehngenii and G.  metallireducens (Yee 
and Rotaru, 2020), indicating incomplete conversion of the 
added ethanol to CH4. Therefore, laboratory study should further 
verify if M. mazei and M. soehngenii can establish DIET with 
G. metallireducens or other Geobacter species.

Methanosarcina acetivorans
M. acetivorans does not possess Ech and Vht hydrogenases 
and hence is incapable of H2-dependent methanogenesis 
(Ollivier et  al., 1984; Sowers et  al., 1984; Ferry, 2020). The 
presence of the membrane-bound Rnf complex (homolog of 
rhodobacter nitrogen fixation complex) can oxidize Fdred or 
hydroquinone of flavodoxin A (FldAhq) to Fdox or semiquinone 

of flavodoxin A (FldAsq), which distinguishes M. acetivorans 
from all the H2-utilizing methanogens among Methanosarcina 
(Li et  al., 2006; Wang et  al., 2011; Schlegel et  al., 2012; 
Prakash et  al., 2019b). It is worth noting that the Rnf genes 
in M. acetivorans cluster with the gene coding for a c-type 
cytochrome with multiheme-binding motifs (MmcA) (Galagan 
et  al., 2002; Li et  al., 2006; Schlegel et  al., 2012). The n
mmcA mutant strain of M. acetivorans, however, still grows 
on acetate, indicating MmcA is unnecessary for the acetotrophic 
growth (Holmes et  al., 2019).

M. acetivorans has been shown to perform Fe(III)-dependent 
respiratory growth on acetate with the simultaneous reduction 
of Fe(III) to Fe(II) and production of CH4. The relevant 
pathway is illustrated in Figure  2A (Prakash et  al., 2019a). 
One-carbon transformations leading to CH4 are the same as 
its aceticlastic pathway of methanogenesis where Fdred can 
be  generated. By reversal of reactions of the CO2 reduction 
pathway, the respiratory electron transport occurs through 
oxidation of methyl-tetrahydrosarcinapterin (CH3-H4SPT) to 
formyl-methanofuran (CHO-MFR) and then to HCO3¯ along 
with the generation of F420H2 and Fdred (Lessner et  al., 2006; 
Prakash et  al., 2019a; Ferry, 2020). Then, through the 
combination of Rnf enzyme complex with MmcA, electrons 
are transferred from Fdred for the reduction of Fe(III) to Fe(II). 
Two Na+ are translocated for each Fe(III) reduced to Fe(II) 
in this process (Yan et  al., 2018; Prakash et  al., 2019a). Given 
that the expression of Fpo is down-regulated, it is postulated 
that the reoxidation of F420H2 occurs through the electron 
bifurcation performing by HdrA2B2C2 (Prakash et  al., 2019a; 
Ferry, 2020). Importantly, the Fe(III)-dependent respiratory 
growth showed higher acetate consumption, a greater ratio 
of ATP/ADP, and a higher growth rate, indicating the improved 
energy conservation (Prakash et  al., 2019a; Ferry, 2020). 
Interestingly, Ms. acetivorans can also perform respiratory 
growth on methanol with AQDS (anthraquinone-2,6-disulfonate, 
an analog of humic substances in the environment) as the 
external electron acceptor in the presence of methanogenesis 
inhibitor 2-biomoethanesulfonate (BES; Figure  2B; Holmes 
et  al., 2019). F420H2 and Fdred generated from the oxidization 
of methanol are probably reoxidized by Fpo and Rnf complex, 
respectively, and electrons are channeled via either MP/MPH2 
or MmcA for the external reduction of AQDS. Fpo and Rnf 
can pump H+ and Na+, respectively. Notably, the n mmcA 
mutant strain is incapable of methanol-dependent respiratory 
growth, indicating the importance of MmcA in the external 
electron transfer (Holmes et  al., 2019).

M. acetivorans is also capable of Fe(III)-dependent anaerobic 
oxidation of methane through the reversal of aceticlastic 
and CO2-reducing methanogenesis (Figure  2C; Moran et  al., 
2005, 2007; Soo et  al., 2016; Yan et  al., 2018). Methane is 
assumed to be  oxidized by the methyl-coenzyme M methyl 
reductase (Mcr) to yield methyl-coenzyme M (CH3-SCoM), 
and the methyl group is transferred through Mtr to 
tetrahydrosarcinapterin (H4SPT). During the oxidation of 
CH3-H4SPT to CO2, Fdred and F420H2 are formed. Fdred is 
probably used for the reduction of Fe(III) through the 
combination of the Rnf complex with MmcA. The Na+ gradient 
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generated by the Rnf complex can power the transfer of the 
methyl group of CH3-SCoM to H4SPT (Yan et  al., 2018). 
F420H2 is probably reoxidized by HdrA2B2C2 through electron 
bifurcation for the coupling reduction of CoM-S-S-CoB and 
Fdox. The produced HSCoM and HSCoB are postulated to 
be  reoxidized by the membrane-bound HdrE1D1, driving the 
AQDS mediated reduction of Fe(III) to Fe(II) (Yan et  al., 
2018). Additionally, MP is postulated to gain electrons via 
Fpo from F420H2, and the produced MPH2 is reoxidized for 
the reduction of Fe(III) (Yan et  al., 2018).

Notably, though MHC (also MmcA here) in Ms. acetivorans 
is analogous to MHC in Shewanella and Geobacter species 
(Yan et  al., 2018; Holmes et  al., 2019), the exact route for the 
MHC-mediated electron transfer has yet to be  elucidated. Up 
to now, there has been no evidence indicating that Ms. acetivorans 
can gain electrons directly from electrodes or materials. It is 
also unknown whether this methanogen can develop an electrical 
connection with other microbes like Geobacter species.  

In addition, the deletion of the MHC gene does not obviously 
impair the growth of Ms. acetivorans on acetate and especially 
does not influence the expression of Rnf genes, indicating 
MHC gene might be  independent of Rnf (Holmes et al., 2019). 
This independence, however, may promise the flexibility of 
MHC to interact with other enzymes like Fpo and make 
M. acetivorans adaptable to varying environmental conditions.

STRATEGIES IN HYDROGENOTROPHIC 
METHANOGENS

Methanospirillum hungatei With 
Electrically Conductive Protein Filaments
Methanospirillum species belong to the members of 
Methanospirillaceae within the order of Methanomicrobiales and 
represent a group of methanogenic archaea utilizing hydrogen 
or formate. Methanospirillum hungatei JF1 is the first isolated 

A

C

B

FIGURE 2 | Pathway proposed for Fe(III)-dependent respiratory pathway and CH4 oxidation by Ms. acetivorans. (A) Fe(III)-dependent respiratory pathway on 
acetate, cited (Prakash et al., 2019a). (B) Fe(III)-dependent respiratory pathway on methanol with 2-bromoethanesulfonate (BES), cited (Holmes et al., 2019). 
(C) Fe(III)-dependent CH4 oxidation, cited (Yan et al., 2018).
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strain of Methanospirillum genera (Gunsalus et  al., 2016). The 
potential c-type cytochrome in M. hungatei is predicted to 
be  located in the cytoplasm, indicating that it may not take 
part in the extracellular electron transfer (Yee and Rotaru, 
2020). A unique trait of M. hungatei is the synthesis of 
extracellular filaments, called archaella, that can drive cellular 
motility, promote biofilm formation, and participate in cellular 
adhesion (Schopf et  al., 2008; Jarrell et  al., 2011; Jarrell and 
Albers, 2012; Albers and Jarrell, 2015). The archaella more 
resemble the bacterial type IV pili in terms of evolution and 
structure than the bacterial flagella (Faguy et al., 1994; Thomas 
et  al., 2001; Jarrell and Albers, 2012; Albers and Jarrell, 2015, 
2018). The type IV pili in the Geobacter species have been 
found to be  electrically conductive (hence named e-pili in 
short), mediating the long-distance extracellular electron transfer 
(Malvankar et  al., 2012; Shi et  al., 2016). So far, the e-pili 
have been explored mainly in bacteria, which raises the question 
of whether such conductive protein filaments have ever been 
evolved in archaea.

Initial screening of the relative conductivity of bacterial 
pili is typically determined with conductive atomic force 
microscopy (Reguera et  al., 2005; Steidl et  al., 2016; Sure 
et  al., 2016; Liu et  al., 2019), so a similar method was applied 
to the M. hungatei archaella (Walker et  al., 2019). To avoid 
chemical alteration of the archaellum structure and determine 
the conductivity of hydrated archaella, 100  μl of a culture of 
M. hungatei grown in low-phosphate medium to induce 
archaellum expression (Faguy et  al., 1993) was drop-cast onto 
highly oriented pyrolytic graphite (HOPG), washed, dried, 
and equilibrated at 40% relative humidity. Then, a conductive 
tip serving as a translatable top electrode was used for 
conductivity measurements. The above process could mimic 
physiologically relevant conditions (Walker et  al., 2019). The 
local conductive imaging showed that the archaella of M. hungatei 
were electrically conductive. The linear-like current response 
to applied voltage was revealed in the point-mode current-
voltage spectroscopy. The conductance estimated from this 
response curve was 16.9  ±  3.9  nS for the archaella of M. 
hunagtei, compared with 4.5  ±  0.3  nS for the pili of wild-
type Geobacter sulfurreducens and 0.004  ±  0.002  nS for the 
pili of G. sulfurreducens strain Aro-5 designed for producing 
pili with poor conductivity (Reguera et al., 2005; Walker et al., 
2019). The atomic model from the cryo-electron microscopy 
structure of archaella at 3.4  Å resolution revealed that the 
archaella of M. hungatei possessed a core of closely packed 
phenylalanines (Poweleit et  al., 2017). This amino acid 
arrangement was considered as the key to the electrical 
conductivity of M. hungatei archaella (Walker et  al., 2019).

The function of the electrically conductive archaella of 
M. hungatei in nature remains elusive. An earlier study showed 
that M. hungatei could reduce extracellular electron acceptors 
in which H2 was used as the electron-transfer mediator (Cervantes 
et  al., 2002). Electrically conductive archaella of M. hungatei 
may merely facilitate cell attachment by dissipating charge barriers 
between cells and minerals/electrodes (Walker et  al., 2019). 
Whether the archaella of M. hungatei can be  used as conduits 
for the extracellular electron transfer remains an open question. 

It will be a great challenge to clarify mechanisms of archaellum-
mediated electron transport and determine how this electron 
transport process is coordinated with the catabolic electron flux 
during growth of M. hungatei.

Methanococcus maripaludis Capable of 
Extracellular Enzyme-Dependent Electron 
Uptake
Methanococcus maripaludis, which belongs to the order 
Methanococcales, is often used as a model for genetic investigation 
(Leigh et  al., 2011). This methanogen utilizes H2 and formate 
as the electron donor to reduce CO2 to methane (Brileya et al., 
2014). M. maripaludis possesses cytoplasmic heterodisulfide 
reductase (HdrABC) but does not contain membrane-bound 
HdrDE. The cytoplasmic HdrABC and F420-nonreducing 
hydrogenase (Vhu) form a complex which can perform the 
flavin-based electron bifurcation, driving the endergonic 
reduction of oxidized ferredoxin (Fdox) by coupling with the 
exergonic reduction of heterodisulfide. The reduced ferredoxin 
(Fdred) is used for the first step of CO2 reduction by the formyl-
methanofuran dehydrogenase (Fwd; Thauer et al., 2008). When 
formate is supplied, the formate dehydrogenase (Fdh) can 
be  activated and incorporated into the complex of Vhu, Hdr, 
and Fwd (Thauer et  al., 2008; Costa et  al., 2010; Kaster et  al., 
2011). F420-reducing hydrogenase (Frh) in the cytoplasm consumes 
H2 to produce F420H2 feeding electrons into the pathway of 
methanogenesis (Thauer et  al., 2008). Overall, M. maripaludis 
contains six catabolic hydrogenases and an additional energy-
converting ferredoxin-dependent hydrogenase (Eha).

Analysis of bioelectrochemical performance revealed that 
the methane formation rate of the hydrogenase-deprived 
MM1284 strain of M. maripaludis was only about one-tenth 
of the rate of the wild-type strain (Lohner et  al., 2014). The 
MM1284 mutant carries markerless in-frame deletions of all 
five catabolic hydrogenase genes except Eha, which is essential 
to reduce ferredoxin for anabolic reactions (Lie et  al., 2012; 
Costa et  al., 2013a; Lohner et  al., 2014). The significantly 
reduced rate of methane production of the MM1284 strain 
suggested that most of the cathodic electrons used for methane 
production in the wild type M. maripaludis were derived 
from a hydrogenase-dependent mechanism (Lohner et  al., 
2014). It was further showed that the hydrogenases and other 
redox enzymes (like formate dehydrogenases) from cells could 
precipitate on Fe(0) or the electrode surface. Meanwhile, these 
enzymes catalyzed the formation of H2, or formate, which 
was then consumed by M. maripaludis cells (Deutzmann 
et  al., 2015). In the early view, it was thought that H2 or 
formate was produced from electrodes via the abiotic way 
in the cathode chamber with methanogens. While the above 
studies showed that H2 or formate production was mainly 
catalyzed by hydrogenase, or formate dehydrogenase from 
methanogens (biotic way), resulting in the high conversion 
efficiency of current to methane (Cheng et  al., 2009). And 
this process of electron uptake from electrodes can be defined 
as surface-associated redox enzyme-dependent electron uptake 
in methanogens (Figure  3).
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The composition of these cell-free and surface-associated 
redox enzymes however might be  complicated. Many studies 
have shown that hydrogenases and formate dehydrogenases 
are electroactive and capable of generating hydrogen, or formate 
by consuming electrons from electrodes (Cracknell et al., 2008; 
Parkin et  al., 2008; Reda et  al., 2008; Armstrong et  al., 2009; 
Lojou, 2011; Baffert et  al., 2012; Sakai et  al., 2016; Chica 
et  al., 2017; Hu et  al., 2018; Lienemann et  al., 2018; Yuan 
et  al., 2018; Cordas et  al., 2019). Recently it has been shown 
that the M. maripaludis-derived NiFeSe hydrogenase and the 
NiFe hydrogenase, when immobilized at a cathode in a 
cobaltocene-functionalized polyallylamine (Cc-PAA) redox 
polymer, could mediate the rapid and efficient hydrogen 
evolution (Ruth et  al., 2020). In addition, a multi-enzyme 
heterodisulfide reductase supercomplex (Hdr-SC) of 
M. maripaludis was purified. In Fe(0) corrosion experiments, 
hydrogen formation rates from Fe(0) in the crude  
lysate amended and purified Hdr-SC vials were 
0.14  ±  0.04  μmol  d−1  μl−1 and 0.007  ±  0.03  μmol  d−1  μl−1 
lysate equivalent, respectively. The formate formation rate from 
Fe(0) by cell lysate was 0.62  ±  0.03  μmol  d−1  μl−1, and a 
quarter of this activity (0.15  ±  0.01  μmol  d−1  μl−1 lysate 
equivalent) was recovered from purified Hdr-SC (Lienemann 
et  al., 2018). The electrocatalytic activity of purified Hdr-SC 
was also examined. Upon applying a potential of –0.6  V vs. 
SHE, the electrochemical reactors with 60  μg of purified 
Hdr-SC accumulated formate and hydrogen at initial rates of 
266  μmol  h−1  L−1 catholyte and 17  μmol  h−1  L−1 catholyte, 
respectively (Lienemann et  al., 2018). Therefore, the hydrogen 

formation of cell lysate was more likely to be  catalyzed by 
a non-Hdr-SC hydrogenase activity, while Hdr-SC was the 
main component catalyzing formate production from Fe(0)-
derived and cathode-derived electrons. The Hdr-SC in 
M. maripaludis consists of a heterodisulfide reductase (HdrABC), 
a formate dehydrogenase (FdhAB), and a NiFe-hydrogenase 
(VhuABDG; Costa et al., 2010, 2013b; Lienemann et al., 2018). 
In a recent study, homodimeric Hdr complexes containing 
either (Vhu)2 or (Fdh)2 have been identified and purified 
(Milton et  al., 2018). Although the structure and function of 
flavin-based electron bifurcation of Hdr-SC have been 
documented, it remains unclear why the Hdr-SC deposited 
on Fe(0) or the cathode surface tends to produce more formate 
than hydrogen.

It is worth noting that, albeit at a slow rate, the 
bioelectrochemical methane formation in the hydrogenase-
deficient MM1284 strain of M. maripaludis was detected (Lohner 
et  al., 2014). Lowering the cathode potential did not increase 
the rate of methanogenesis, and no formate was detected in 
the reactors containing MM1284 cells, indicating that a direct 
electron uptake might occur in the MM1284 strain (Lohner 
et  al., 2014). However, the absence of a detectable level of 
electron-carrying mediators cannot rule out the possibility of 
rapid cycling of these redox mediators in the electrochemical 
reactors. For instance, the cell extracts from MM1284 strain 
can catalyze formate formation on cathodes (Deutzmann et al., 
2015). A recent study designed a combined method using a 
hydrogen microsensor system and cyclic voltammetry (CV) 
to determine in situ hydrogen concentration within the cathodic 

FIGURE 3 | Enzyme-dependent external electron uptake in Methanococcus maripaludis, cited (Lienemann et al., 2018). Hydrogenase and formte dehydrogenase 
can be released from the living or dead cells of methanogens and then are absorbed on the cathode surface. These surface-associated enzymes can catalyze the 
formation of H2 or formate, which was then rapidly consumed by M. maripaludis cells to produce CH4 (Deutzmann et al., 2015).
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biofilm (Cai et  al., 2020). A similar method can be  explored 
to detect other in situ redox mediators, like formate, within 
the cathodic biofilm of reactors with MM1284 strain.

FUTURE PERSPECTIVES

M. barkeri has been demonstrated to perform DIET and utilize 
electrons from electrodes. M. harundinacea and M. horonobensis 
can retrieve electrons from G. metallireducens via DIET but 
cannot perform electromethanogenesis. M. acetivorans can 
perform Fe(III)-dependent respiratory growth and anaerobic 
oxidation of methane. Ms. mazei is capable of 
electromethanogenesis under the potential of –0.4  V vs. SHE. 
A strain of Methanobacterium, designated strain YSL, can 
establish DIET with G. metallireducens (Zheng et  al., 2020), 
indicating that the DIET pathway is more broadly distributed 
among methanogens than previously thought.

However, the external electron-acquisition/donation 
mechanisms have remained unclear. The external electron-
acquisition/donation processes need to coordinate with the 
internal energy metabolism. Different methanogens perform 
different energy conservation; as a consequence, the possible 
external electron-acquisition/donation gadgets may show a high 
diversity among methanogens. Some methanogens contain 
MHC, or electrically conductive archaella (M. hungatei), while 
others may have unknown electron-acquisition/donation gadgets.

Many puzzles on the extracellular electron transfer of 
methanogens remain to be resolved. It warrants further research 
to figure out why some methanogens can accept electrons 
from other microbes but cannot utilize electrons from electrodes. 
Additionally, it remains unclear whether the electrically 
conductive archaella of M. hungatei can help M. hungatei 

electrically interact with other microbes, minerals, or electrodes. 
It is also unknown whether M. acetivorans can gain electrons 
directly from the outside. Moreover, given the diversity of 
Methanosarcina species, different kinds of external electron-
acquisition/donation gadgets may exist and are worthy to 
be  further explored. The novel technologies, such as 
metagenomics, metatranscriptomics, and high-resolution cryo-
electron microscopy, may help us identify more methanogens 
that may perform DIET or DET in nature methanogenic 
communities. The biochemical approaches, for example, using 
the washed everted membrane vesicles to study Fe(III)-dependent 
anaerobic oxidation of methane in M. acetivorans (Yan et  al., 
2018), can also be  employed to explore the mechanisms of 
DIET/DET in other methanogens.
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