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Genotyping methods are used to distinguish bacterial strains from one species. Thus,

distinguishing bacterial strains on a global scale, between countries or local districts

in one country is possible. However, the highly selected bacterial populations (e.g.,

local populations in hospital) are typically closely related and low diversified. Therefore,

currently used typing methods are not able to distinguish individual strains from each

other. Here, we present a novel pipeline to detect highly variable genetic segments for

genotyping a closely related bacterial population. The method is based on a degree of

disorder in analyzed sequences that can be represented by sequence entropy. With the

identified variable sequences, it is possible to find out transmission routes and sources

of highly virulent and multiresistant strains. The proposed method can be used for

any bacterial population, and due to its whole genome range, also non-coding regions

are examined.
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1. INTRODUCTION

Healthcare-associated infections (HAIs) are a serious worldwide threat with significant impact on
mortality andmorbidity of hospitalized patients (Arefian et al., 2016). They are defined as infections
developed in a hospital or other health care facility that first appear 48 h or more after hospital
admission, or within 30 days after having received health care (Haque et al., 2018). Therefore, the
ability to identify the source of the infection and monitor the spread of disease is essential. To reach
that goal, a process called bacterial typing is used (Ruppitsch, 2016) as it can distinguish individual
bacterial strains from one species. However, rapid laboratory and computational techniques’
resolution for typing is limited and the ability to distinguish strains among a low diversity hospital
bacterial population is practically impossible. Methods such as pulsed-field gel electrophoresis
(PFGE) (Schwartz and Cantor, 1984), repetitive sequence-based PCR (rep-PCR) (Skutkova et al.,
2019), multilocus sequence typing (MLST) (Maiden et al., 1998), or mini-MLST (Bezdicek et al.,
2019) are used to characterize and investigate outbreaks. As housekeeping genes used in MLST
or mini-MLST may not have sufficient variability in some cases, there is still a need to develop
new approaches to identify variable sequences. One of them is multispacer typing (MST) which
uses sequences occurring in junk DNA (intergenic regions and pseudogenes) as they show higher
variability than coding genome parts (Foucault et al., 2005). Another approach is single-locus
sequence typing (SLST), where one variable sequence identified based on a genome mining
approach can have similar discriminatory power to MLST (Scholz et al., 2014). However, if precise
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analyses of the low diversified bacterial population are required,
the only method that can be used is whole-genome sequencing
(WGS). For WGS typing, two main approaches exist: single
nucleotide variant analysis (SNV) and core genome MLST
(cgMLST) or whole genomeMLST (wgMLST) (Henri et al., 2017;
Schürch et al., 2018), where genes common to bacterial isolates
are compared. Nevertheless, the typing methods which require
WGS are not suitable for routine clinical practice. Additionally,
the comparison of different studies is difficult as different data
quality assessment, genome assembly, and results analysis are
done (Ruppitsch, 2016).

In this article, we present a new approach to localize highly
variable sequences in bacterial genomes of Escherichia coli
and Enterococcus faecium. Detecting new typing fragments is
based on a calculation of word entropy in genomes assembled
from NGS data. Potential variable sequences are evaluated by
phylogenetic analysis, and the obtained results are compared to
cgMLST. The core genome was chosen as the identified markers
must be presented in all bacterial strains of given species. For
that reason, it is not appropriate to study the pan-genome as it
contains the core genome and the dispensable genome (Medini
et al., 2005). The identifiedmarkers will be used for closely related
bacterial typing via standard laboratory methods without the
need for furtherWGS. Our approach can be used for any bacteria;
the only requirement is aligned isolate genomes.

2. MATERIALS AND METHODS

2.1. Dataset
For this article, samples were collected in the University
Hospital of Brno. In total, 23 E. faecium isolates were obtained
from seven hospital departments between 6/2017 and 2/2018
and 21 E. coli isolates were collected from a single hospital
department between 5/2019 and 7/2019. Therefore, the datasets
have different variability rates as they were collected during
different periods and from a different number of departments.
Sequencing libraries were prepared with KAPA HyperPlus
Kits (Roche, Switzerland), and a quality check was performed
using a 2100 Bioanalyzer (Agilent Technologies, USA). Libraries
were quantified with KAPA Library Quantification kit (Roche,
Switzerland). Sequencing was performed on an Illumina MiSeq
platform using MiSeq Reagent Kit v2 (500-cycles) (Illumina,
USA) and paired-end reads (250 bp) were acquired.

2.2. Reference-Based Genome Mapping
After the sequenced data’s quality control, the reads were
mapped via BBMap (v38.71, Bushnell, 2014) to the human
genome (GRCh38.p13) to remove contamination which could
emerge during sample preparation. Reads which did not map
to the human genome were further analyzed and quality
assessment was done. Adapters and low-quality parts of reads
were trimmed via Trimmomatic (v0.36, Bolger et al., 2014).
The reads length was about 250 bp; thus the reference-based
genome mapping approach was chosen, and for this purpose, the
Burrows-Wheeler Alignment MEM (v0.7.17-r1188, Li, 2013) was
used. The reference sequences were obtained from the GenBank
database (Clark et al., 2016). As reference sequence for assembly

of E. faecium genomes was chosen CP003351.1 (Lam et al.,
2012) and E. coli genomes were assembled against the sequence
BA000007.3 (Hayashi, 2001). Then Samtools (v1.7, Li et al.,
2009) was used to remove low-quality and duplicated reads, and
consensus sequences were generated.

2.3. The Entropy-Based Detection of
Variable Sequences
To locate highly variable regions in sequences, the entropy value
can be used. The DNA sequences entropy estimation (Schmitt
and Herzel, 1997) is based on the Shannon-entropy (Shannon,
1948). In this paper, the entropy calculation modification as
inverse value to information content is utilized. Thismodification
commonly used for sequence logo determination (Schneider and
Stephens, 1990) measures the conservation of position in bits
which better respects different charsets with variable content of
ambivalent bases.

Entropy Hi (Schneider and Stephens, 1990) can be
calculated as

Hi = −

∑

a=A,C,G,T

fa,i · log2 fa,i, (1)

where i is the position in the sequence, f is the frequency of one
of four nucleotides’ occurrence (a = A, C, G, T) in position i and
can be calculated as

fa,i =
na

n
, (2)

where na is number of occurrences of one nucleotide in one
position and n is number of all characters at the given position.

In the ideal case, we want to find such a region capable of
distinguishing each isolate. For that reason, the current method
for entropy calculation in one position (Nykrynova et al., 2019)
in the sequence’s alignment cannot be used, as it can only
distinguish four variants because four nucleotides (A, C, G, T)
are presented. In this article, a new unique approach using word
entropy is presented, where the word is a nucleotide sequence of
defined length.

As reference-based genome assembly is not perfect during
consensus calling ambiguous nucleotides can appear in the
consensus sequences, and they artificially increase the entropy
value as shown in Figure 1. To prevent detecting falsely variable
sequences, the whole columns of aligned sequences where
ambiguous nucleotides occur were removed and to preserve the
original length of the created consensus sequences replaced by
gaps. Also, the detected markers should occur in all analyzed
isolates. Thus, when gaps appear in some sequences, the gaps
represented by dashes are added to the whole columns as is also
shown in Figure 1.

In the window w, whose size corresponds to word length, the
number of unique words is determined, and then the entropy of
words Hw is calculated as

Hw = −

∑
(
kw

n
· (log2

kw

n
)), (3)
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FIGURE 1 | Example of sequence preprocessing. (A) Example of aligned sequences before preprocessing and their entropy of word values for words of length five.

(B) Aligned sequences after preprocessing and corresponding entropy of word values.

FIGURE 2 | Scheme of entropy of words’ calculation for a set of sequences after preprocessing and for word length of 5 bp and one nucleotide window shift.

where kw is the number of occurrences of unique words in each
alignment in the current window, and n is the number of isolates.
The sum is applied over the alignment in the current window.
After estimating the entropy value, the windowmoves with a shift
of one nucleotide. The principle of entropy of words’ calculation
is shown in Figure 2.

For defined sliding window sizes w (also called word length),
the entropy signal with length N − w+ 1 is obtained, where N is
the analyzed genome’s length.

In the signal, the maximum value is identified. In theory,
the maximum value can be defined as a binary logarithm
of the number of sequences. Based on the maximum value
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that occurs in the signal, the threshold is set as a maximum
value reduced by 0.4 bit, and signal peaks above the threshold
are labeled as potential genetic markers. The stated value
was chosen empirically based on the number of potential
variable regions to ensure that some regions will have sufficient
discriminatory power; however, it can be adjusted to analyzed
data by the user. The aligned sequences corresponding to
peaks are extracted and analyzed. If two peaks are distant
less than the window length, the sequences corresponding
to the peaks are merged and analyzed as one. Developed
source codes and functions in Matlab R2020a can be found
at https://github.com/marketanykrynova/markers_detection.

2.4. Phylogenetic Analysis
In the first part, each set of aligned sequences corresponding to
peaks was analyzed. The evolutionary distances were calculated
based on the Kimura (Kimura, 1980) model, which is used as
standard. From obtained distances, the phylogenetic trees were
constructed based on UPGMA. Cluster analysis was conducted,
and the clusters from the trees were established and compared
to results obtained from cgMLST. The threshold for clusters
determination was set to intersect the tree so that the maximum
number of clusters wasobtained.

The results showed that no set had sufficient discriminatory
power to distinguish between strains. That is why the
combination of two aligned sequences sets was used. The
identified variable sets of sequences were merged, which created
one long sequence for each analyzed bacterial isolate. Then
for merged sequences, again the evolutionary distances were
calculated and based on them, the phylogenetic trees were
constructed and examined. The length of a variable set of
sequences had a proportional impact on the created phylogenetic
tree. If the sequences in one variable set had a longer length,
they had a higher impact on the tree and vice versa, the set
of shorter sequences did not affect the final tree so much.
Nevertheless, sequences variability has the main impact on the
phylogenetic tree.

3. RESULTS AND DISCUSSION

3.1. Sequence Type Determination and
cgMLST Analysis
The incorporated E. coli and E. faecium cgMLST, cgSNV, and
wgSNV schemes in Ridom SeqSphere+ software (Ridom, DE)
were used to analyze the genetic relatedness of sequenced
bacterial genomes. For E. coli, this included 3,152 target genes
used to generate a cgMLST dendrogram. For the cgSNV
minimum spanning tree analysis, 152,212 aligned nucleotide sites
were analyzed. In total, 176,629 aligned nucleotide sites were used
for wgSNV minimum spanning tree analysis. For E. faecium, the
scheme included 1,423 target genes for cgMLST, 7,707 aligned
nucleotide sites for cgSNV and 10,858 aligned nucleotide sites
for wgSNV analysis. The WGS data were used to determine
sequence types (STs) of both, E. coli and E. faecium strains. For E.
coli, seven housekeeping genes (adk, fumC, gyrB, lcd, mdh, purA,
recA) and for E. faecium again seven housekeeping genes (atpA,
ddl, gdh, purK, gyd, pstS, adk) were analyzed. For E. faecium

three STs were identified (4 × ST 117, 1 × ST 18, 18 × ST 80),
and for E. coli eleven STs were recognized and one ST remains
unknown (1 × ST 69, 4 × ST 131, 1 × ST 95, 2 × ST 404, 2
× ST 38, 2 × ST 1049, 4 × ST 58, 1 × ST 297, 1 × ST 517, 2
× ST 101, 1 × ST UNW). The complete results are attached as
Supplementary File 1.

3.2. Potential Genetic Markers Analysis
Sequences with a high value of word entropy were identified
for word lengths from 50 to 400 bp with a step of 50 bp.
Traditional laboratory methods can use identified markers of
length from this range. In the first part, one variable fragment
with high word entropy values was used to distinguish the
strains of E. coli and E. faecium. Examining 1,358 fragments
with high variability for all word sizes showed that the
maximum number of clusters that can be distinguished for
E. coli was 13. For E. faecium, 104 potential genetic markers
for all word sizes were analyzed, and the maximum number
of distinguishable clusters was 5. The complete results are in
Supplementary File 2.

The number of distinguishable clusters using one variable
fragment is not high enough. For that reason, two variable
fragments with word entropy above threshold were analyzed.
For all combinations of two possible genetic markers, the
phylogenetic trees were constructed, and the number of clusters
was calculated. In the next step, the potential genetic markers
with the highest number of clusters were analyzed. For all word
sizes, 136,661 combinations of possible genetic markers for E. coli
and 685 for E. faecium were examined in total.

In case of need, the combination of even more markers
can be used; however, the time of analysis will grow as
the time complexity is O(nm), where m is the number of
variable fragments.

For E. coli, 29 trees were examined which divided the isolates
to 15 clusters. Ten trees classify the genomes according to the
11 predefined clusters from cgMLST. The results from cgMLST
with 11 marked sequence types and 11 defined clusters and a
cladogram created based on the combination of two genetic
markers with 15 labeled clusters are shown in Figure 3.

In each case for one genetic marker, the region which
contained the genes for hypothetical protein (NP_308436.2) and
S-formylglutathione hydrolase (NP_308437.1) was selected. In
five out of ten cases, the intergenic region in front of hypothetical
protein was also incorporated. As the second genetic marker,
two regions were most often (three times) chosen. The first one
contained outer membrane protein (NP_313225.1) and in one
case the intergenic region in front of the gene too. The second
one started in fimbrial-like adhesin protein (NP_310944.1) and
ended in hypothetical protein (NP_310945.1). Four other genetic
markers were selected only one time. Two of them consisted
of non-coding region and gene [PhoH family P-loop ATPase
(NP_309293.1) in the first case, excinuclease UvrABC subunit
UvrC (NP_310678.2) in the second case], for another marker
part of the gene valyl-tRNA synthetase (NP_313262.1) was
picked, and in the last case, as a genetic marker the non-
coding region was selected. Detailed information is available in
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FIGURE 3 | Classification of 21 E. coli genomes. (A) Core genome MLST analysis of 21 E. coli isolates with predefined marked clusters (outer circles) and sequence

types (inner circles). (B) Cladogram of 21 E. coli isolates based on two identified genetic markers with highlight clusters obtained from core genome MLST analysis

(outer circle) and subgroups obtained based on analysis of identified variable sequences (inner circle) created by Evolview (Subramanian et al., 2019).

FIGURE 4 | Classification of 23 E. faecium genomes. (A) Core genome MLST analysis of 23 E. faecium isolates with predefined marked clusters (outer circles) and

sequence types (inner circles). (B) Cladogram of 23 E. faecium isolates based on two identified genetic markers with highlight clusters obtained from core genome

MLST analysis (outer circle) and subgroups obtained based on analysis of identified variable sequences (inner circle) created by Evolview (Subramanian et al., 2019).

Supplementary File 2 and all phylogenetic trees that correctly
classified genomes are depicted in Supplementary Figure 1.

For E. faecium, 22 trees which divided the isolates into nine
clusters were examined. It was found that six trees classify the
genomes according to five predefined clusters from cgMLST. In
Figure 4, the results from cgMLST analysis with three labeled
sequence types, five clusters and a cladogram constructed based
on the identified combination of two genetic markers with nine
labeled clusters shown.

As in the previous case, in all possible combinations,
one genetic marker always remained the same, and it was
RNA methyltransferase (WP_002294889.1). In one of six cases,
the intergenic region around the gene was also incorporated

into the variable genetic part. Mg-translocating P-type ATPase
(WP_002304253.1) was in most cases (three times) selected as
the second marker. The region that contained the gene for
DUF1430 domain-containing protein (WP_002288541.1) was
chosen twice. For the last possible genetic marker, the gene for
nucleoside-diphosphate kinase (WP_002293327.1) was picked.
The complete results are available in Supplementary File 2 and
all phylogenetic trees correctly classifying genomes are shown in
Supplementary Figure 2.

3.3. Word Sizes
For definedword sizes, amaximumnumber of correctly classified
clusters for phylogenetic trees based on twomarker combinations
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FIGURE 5 | Analysis of word size impact on number of correctly classified clusters. (A) Maximum number of correctly classified clusters for combinations of two

variable fragments for different word sizes and number of two variable fragment combinations that corrected classified analyzed E. faecium isolates. (B) Maximum

number of correctly classified clusters for combination of two variable fragments for different word sizes and number of two variable fragment combinations that

corrected classified analyzed E. coli isolates.

was established, as is shown in Figure 5. For analyzed trees the
number of clusters was determined and the correct genomes
classification was controlled. The results showed that for E.
faecium the word lengths do not significantly affect themaximum
number of correctly established clusters, which is nine for all
word sizes except the length 50 and 300 bp. On the contrary, the
resolution power for E. coli grows with increasing word lengths
and the best results (distinguish 15 clusters) can be obtained for a
window of size 300 bp and more.

3.4. Results Verification
The analyzed datasets were extended by complete genomes
sequences of E. coli and E. faecium obtained from the
GenBank database. For each bacterium, six sequences were
downloaded, and the STs were determined. For E. coli
isolates (CP050212.1, CP050219.1, CP050211.1, CP050201.1,
CP050214.1, CP050205.1) five STs were identified (1 × ST 2705,
1 × ST 2280, 1 × ST 70, 1 × ST 602, 2 × ST 131), and
for E. faecium isolates (CP040236.1, CP036151.1, CP027501.1,
CP035666.1, CP035660.1, CP035220.1) one ST was recognized,
and one ST remains unknown (5 × ST 80, 1 × ST UNW).
The results are in Supplementary File 1. Using the BLAST+
(v2.6.0+, Camacho et al., 2009) the identified variable markers
were located in these genomes. The markers sequences for
both sets (original and database) were analyzed together. The
sequences were aligned, evolutionary distances were calculated,
and phylogenetic trees were constructed. Totally, 27 isolates of
E. coli belonging to nine STs were classified to 17 clusters and
29 isolates of E. faecium belonging to four STs were five times

classified to 11 clusters and once to 10 clusters. All created
phylogenetic trees are depicted in Supplementary Figure 3.

The identified genetic markers can be used to typing novel
isolates. However, if a large number of new isolates should
be analyzed, the algorithm should be run again to find
markers with the highest discriminatory power for the analyzed
bacterial population.

3.5. Analyzed Bacteria
The proposed approach was tested on two bacteria—E. faecium
and E. coli which belong among significant HAIs pathogens.
E. faecium is a Gram-positive bacterium and can be a source
of nosocomial infections, especially in immunocompromised
patients, and causes endocarditis, bacteremia or urinary tract
infection. In addition, some E. faecium isolates can develop drug
resistance to several antibiotics groups such as glycopeptides,
beta-lactams, fluoroquinolones, or aminoglycosides (Yoong
et al., 2004; Castillo-Rojas et al., 2013). Another pathogen
from Gram-negative bacteria is E. coli, which can be found
in human intestinal flora as a commensal. However, as an
opportunistic pathogen E. coli represents a huge public health
problem. It is one of the most common causes of HAIs
typically connected to meningitis, pneumonia, urinary tract
infections, and soft tissue infections (Jaureguy et al., 2008). E.
coli strains have the ability to accumulate resistance genes; thus,
the resistance to broad-spectrum cephalosporins, carbapenems,
aminoglycoside, fluoroquinolones, and polymyxins is often
observed (Poirel et al., 2018).
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4. CONCLUSION

As typing is crucial for identifying the source of infection
and outbreak monitoring, it is necessary to have a highly
sensitive typing method to distinguish closely related bacterial
strains. However, currently used methods have insufficient
discriminatory power except whole genome sequencing.
Nevertheless, WGS is time-consuming, and data processing is
not possible in routine clinical practice. For this reason, a new
approach to detect variable genetic markers from WGS data is
presented. The WGS is only used once to obtain the first set
of data for genetic markers detection. To locate highly variable
sequences, word entropy is employed. The located markers can
be used for typing a closely related bacterial population via
standard laboratory methods. Thus, another genome sequencing
will be necessary only if a large number of new isolates should
be analyzed.

Using the entropy-based approach, new genetic markers with
the same or even higher discriminatory power than cgMLST can
be identified. As the length of words from 50 to 400 bp with a
step of 50 bp is applied, potential markers can be used in standard
laboratory techniques because they have suitable length. The only
requirement for the proposed approach is that genomes must be
aligned, which can cause a problem mainly when large genomes
should be examined. The presented method was tested on both
Gram-positive and Gram-negative bacteria.

As in both tested datasets, one marker with sufficient
discriminatory power for typing of low diversity bacterial
population was not found, the combination of two markers
was employed. Based on two identified markers, we were able
to distinguish the Gram-negative and Gram-positive bacterial
population at the same and even a higher discrimination level
than via classic laboratory methods using only two variable
sequences instead of seven housekeeping genes. The identified
markers will be used in routine laboratory methods for bacterial
typing. The low number of variable fragments that should be
examined will shorten the time of analysis.

Commonly used typing methods mainly use coding regions
and analyze genes conserved and presented in all isolates
of the given species. Hence the variability rate is lower and
typing the closely related population is not possible. The

proposed method uses the whole genome range; thus, also
intergenic genome regions are analyzed as they have higher
variability than coding areas and can contain genetic markers
for typing related isolates. Based on identified markers, the
closely related bacterial population can be diversified and to
find out the transmission routes and source of outbreaks will
be possible.
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