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The ecological and medical significance of bacterial biofilms have been well recognized.
Biofilms are harder to control than their planktonic free-living counterparts and quite
recently, the focus of the study has shifted to the multispecies consortia, which represent
the vast majority of real-case infection scenarios. Studies have begun to explore the
complex interspecies interactions within these biofilms. However, only little attention
is currently given to the role of cellular metabolites in the cell-to-cell communication.
The concentration gradients of metabolic substrates and products affect the spatial
growth of bacteria in multispecies biofilm. This, if looked into more deeply, can lead
to identification of potential therapies targeting the specific metabolites and hence the
coordinated protection in the bacterial community. Herein, we review the interspecies
communications, including their metabolic cross-talking, in multispecies biofilm, to
signify the importance of such interactions on the initial formation and subsequent
growth of these biofilms. Multispecies biofilms with their species heterogeneity are more
resilient to antimicrobial agents than their single species biofilm counterparts and this
characteristic is of particular interest when dealing with pathogenic bacteria. In this
Review, we also discuss the treatment options available, to include current and emerging
avenues to combat pathogenic multispecies biofilms in the clinical, environmental, as
well as industrial settings.
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INTRODUCTION

Bacteria typically live in complex biological communities, known as biofilms; which dominate all
habitats on the surface of the Earth, except the oceans, where 20–80% of bacterial cells exist as
biofilms (Hall et al., 2014; Flemming and Wuertz, 2019). Biofilms are often comprised of multiple
microbial species, each carrying its own unique features, imparting certain evolved and unique
functions that are not present in their mono-species counterparts (Flemming et al., 2016). Such
biofilms, referred to as the multispecies biofilms, are commonly found on a wide range of medical
devices and are associated with a significant amount of human bacterial infections, posing a serious
human health concern and economic burden to the health-care systems (Bryers, 2008; Hall et al.,
2014; Kvich et al., 2020).
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The formation of multispecies biofilms is a complex
process, coordinated by the sequential interaction of different
species. These interactions in the bacterial community
are highly specific and often change the structural and
functional dynamics of the whole biofilm community,
enhancing protection as well as virulence characteristics
(Yang et al., 2011). These spatial interactions, arising from a
high level of species heterogeneity in these biofilms, renders
these biofilms highly resilient to conventional antimicrobial
treatments, urging the need for effective alternative therapies
(Flemming et al., 2016). Understanding the interspecies
communications in multispecies biofilms will enable the
discovery of novel targets for controlling biofilms in the
environmental, industrial and clinical settings. Herein,
we discuss important recent literatures to showcase our
current understanding of the interspecies interactions in a
multispecies biofilm. Later in the review, we describe the
metabolic heterogeneity in such biofilms, a factor influencing
their antibiotic susceptibility; and finally, we highlight the recent
advancements in the treatment of biofilm-related infections,
centering more on the discovery of non-antibiotic alternative
treatment options.

BUILDING THE MULTISPECIES
BIOFILMS

Critical to the formation and development of multispecies
biofilms is the cell-to-cell interactions, termed as co-adhesion
and co-aggregation, which together foster mutualistic
communications between adjacent cells in a biofilm. The
adherence of bacterial cells to immobilized cells is called as
co-adhesion whereas the binding of microbial cells in suspension
is known as co-aggregation (Kolenbrander et al., 2010). These
two binding interactions provide diverse attachment sites
for the planktonic bacteria to adhere to in the process of
biofilm development (Foster and Kolenbrander, 2004). The
formation of multispecies biofilms is a complex process that
in general is categorized into three steps: (1) the attachment
of primary colonizers to the surface, their clonal growth
and the production of exopolysaccharides, protein adhesins,
amyloids and nucleic acids, which together form the EPS
(Extracellular Polymeric Substance); resulting in the formation
of microcolonies, (2) the attachment of secondary colonizers
to these microcolonies, followed by their proliferation, and (3)
dispersion of biofilm, mediated by environmental stimulus,
which allows the cells to detach and establish a new biofilm at
other sites (Hobley et al., 2015; Steinberg and Kolodkin-Gal,
2015; Salinas et al., 2020). The first step, dependent on the
bacterial physiochemical interactions, is highly specific; such that
the primary colonizers can only co-aggregate with other primary
colonizers and not with any secondary colonizing bacteria.
The co-adhesion of initial primary colonizers is crucial for the
biofilm colonization, whereas an increase in EPS production
is essential for the attachment of secondary colonizers to
the microcolonies, as EPS works as an intercellular-cement
in biofilm proliferation by sticking the cells together and

mediating a successive co-aggregation as the biofilm matures
(Rickard et al., 2003).

INTERSPECIES INTERACTIONS IN
MULTISPECIES BIOFILMS

The interspecies interactions within a biofilm have been a
recent focus of many studies. Bacteria in a multispecies
biofilm consortium mainly communicate via four highly
specific mechanisms, namely, the physical interactions, exchange
of genetic material, metabolic networking and by using
diffusible signals, which in many cases, only take place when
the respective bacterial species form a multispecies biofilm
(Blehert et al., 2003; Flemming et al., 2016) (Figure 1).
These interspecies communications, depending on the intricate
molecular mechanisms, can cause social behaviors that can be
neutral, cooperative or competitive for the species involved
(Burmølle et al., 2014), with the latter two types mainly
shaping the organization and functionality of a multispecies
biofilm community.

Cooperation within the biofilm community is facilitated
through synergistic interactions that modulate the differential
gene expression and cellular responses of each species, allowing
them to evolve and better adapt to the biofilm conditions.
One such example is the association between Pseudomonas
putida KT2440 and Acinetobacter sp. C6, wherein P. putida
evolves in the presence of Acinetobacter by altering its outer
core lipopolysaccharide synthesis. This results in the formation
of rough variants that show enhanced fitness by acquiring
more benzoate – a by-product of Acinetobacter, making the
overall community more stable and productive (Hansen et al.,
2007). Synergistic interactions can also result from transfer
of genetic material between different species, either through
plasmid conjugation or DNA transformation, providing stability
to the biofilm and helps in resisting attacks from phages,
antibiotics and toxins (Wang et al., 2002; Molin and Tolker-
Nielsen, 2003; Reisner et al., 2006). For instance, the biofilm-
stimulating effects were observed due to the conjugative transfer
of F-like and IncIα plasmids between genetically diverse strains
of Escherichia coli (Reisner et al., 2006). Cell-to-cell physical
interactions are also an important factor in the synergistic
interactions in biofilms, resulting in the formation of cellular
aggregates. This, for example, has been seen in multispecies
biofilms causing dental plaque in oral cavities (Kolenbrander
et al., 2010). The inter-cellular communication, a key process in
the formation of oral biofilms, between Actinomyces naeslundii
and Streptococcus oralis [via the universal intergeneric signaling
molecule – Autoinducer 2 (AI2)], only occurs when these bacteria
co-aggregate (Hardie and Heurlier, 2008). Research inquiries
have indicated that synergistic interactions cause a particular
bacterium to thrive better in the presence of other bacteria
than they would on their own. For instance, Bacillus cereus
is known to release thiazolyl peptide antibiotics – thiocillins,
which increase the population of matrix-producing cells of
Bacillus subtilis, thereby enhancing its biofilm forming properties
(Bleich et al., 2015). Synergistic interactions could also manifest
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FIGURE 1 | Schematic representation of the mechanisms of interspecies interactions in multispecies biofilms and innovative biofilm-therapeutic strategies. (1)
Horizontal gene transfer via plasmid conjugation, where plasmid (black circles) is transferred from one species (green cells) to another (blue cells). (2) Quorum
sensing through intraspecific (black stars) and interspecific (wifi signals) communication by diffusible molecules. (3) Metabolic cooperation where the by-product of
one species (green cells) serve as nutrient (black hexagons) for another species (red cells). (4) Physical interactions, where specific cell-to-cell interactions occurs
between cells of different species through specific cell surface receptors. Available treatment options to combat biofilms are depicted in illustrations around the
biofilm, with yellow arrows pointing to their target in the biofilm. NPs: Nanoparticles, eDNA: extracellular DNA. Created using Biorender.
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in the form of an enhanced growth rate when the species
are present together, as demonstrated by a threefold increase
in multispecies biofilm of four soil isolates: Stenotrophomonas
rhizophila, Xanthomonas retroflexus, Microbacterium oxydans,
and Paenibacillus amylolyticus, compared to their respective
single species biofilms. This synergistic effect is suggested to result
from their shared evolutionary history that facilitates nutrient
cross-feeding between them (Ren et al., 2014).

Competitive interactions result from antagonistic
relationships in a biofilm, whereby one bacterial species
produces molecules that inhibit the growth of other species.
This has been observed in the dual species biofilm of Lactobacilli
and Streptococcus, in which the biofilm forming ability of
Streptococcus on glass surfaces was inhibited by Lactobacilli
in a pH-dependent manner (Söderling et al., 2011). In other
case, Pseudomonas aeruginosa displays a “blanketing” effect on
Agrobacterium tumefaciens microcolonies, when grown as dual
biofilms, facilitating better growth of the former bacterium. This
effect is thought to result from the motile nature of P. aeruginosa
cells, as the flagellar and type IV pili mutants of the bacterium did
not exhibit the “blanketing” effect (An et al., 2006). Antagonistic
relationship is also observed in the dual biofilm of P. aeruginosa
and Candida albicans, in which P. aeruginosa restricts the
maturation of C. albicans biofilms by regulating the expression
of adhesion molecules, quorum sensing (QS) molecules and the
virulence genes (Holcombe et al., 2010). In the meat processing
industry, Salmonella biofilms are shown to be inhibited by
P. aeruginosa through the production of acyl-homoserine
lactone (AHL), which is hypothesized to modulate the cell
division in Salmonella, also affecting the chemical composition
of EPS, reducing the adhesion ability of Salmonella (Wang et al.,
2013). Antagonistic activity of several molecules released by
the soil-bacterium B. subtilis has been demonstrated against
a range of different bacterial genera. This includes; surfactin,
which is shown to arrest the development of aerial hyphae in
Streptomyces coelicolor (Straight and Joanne, 2006), chlorotetain,
which degrades the colonies of Staphylococcus epidermidis
when these two bacteria come in proximity on the human skin
(Hernandez-Valdes et al., 2020), surfactin and plipastatin, which
alters the virulence factors of Staphylococcus aureus (Gonzalez
et al., 2011), and surfactin and cannibalism toxin, both of which
eliminate the colonies of Bacillus simplex and Bacillus toyonensis
(Rosenberg et al., 2016). On the other hand, research enquiries
have also identified the antagonistic effect of compounds
released by other bacterial species on the growth, physiology
and biofilm formation of B. subtilis. For example, the active
compound 2,4-diacetylphloroglucinol (DAPG), secreted by
Pseudomonas protegens, is shown to cause phenotypic alterations
and inhibit biofilm formation in B. subtilis (Powers et al., 2015),
and linearmycins, a family of polyketides, produced by the soil
bacterium Streptomyces sp. has been seen to cause cellular lysis of
B. subtilis (Stubbendieck and Straight, 2015).

Communication through chemical signaling, referred to as
QS, plays an important role in the establishment of multispecies
biofilms. QS systems in P. aeruginosa, a strong biofilm former,
are highly complex and among the most studied systems.
The production of amino-4-methoxy-trans-3-butenoic acid, a

QS-regulated toxic compound produced by P. aeruginosa, has
been associated with inhibition of other pathogenic microbes
(Rojas Murcia et al., 2015). The dual biofilm of Streptococcus
mitis and P. aeruginosa are commonly found in the endotracheal
tubes of infants. Although S. mitis is not a pathogen by itself, it
releases the QS autoinducer-2 (AI-2) molecule, which aids the
growth of P. aeruginosa, enhancing its biofilm forming capability
and apparently, its pathogenicity (Wang et al., 2016). QS has a
decisive role to play in the pathogenicity of P. aeruginosa, as
indicated by the differential QS profiling of its clinical isolates
and lab-cultured strains, primarily arising from the relative
abundance of a QS molecule AHL (Singh et al., 2000).

In addition to the specific molecular mechanisms and physical
interactions discussed above, metabolic communication also
facilitates inter-species cross-talk in a biofilm. These metabolic
interactions, dealt in the next section of this review, play
important roles in spatial organization of microbes and a proper
functioning of a biofilm.

METABOLIC COMMUNICATIONS IN
MULTISPECIES BIOFILMS

Matrix production, in addition to establishing the biofilm
structure, also results in metabolic diversification by
controlling the physical interactions between bacterial cells
and their immediate environment. This enables metabolic
cross-feeding, promoting the development of metabolically
differentiated subpopulations in a biofilm and making the
biofilms a metabolically heterogeneous community [refer
to the recent reviews by Evans et al. (2020) and Povolotsky
et al. (2021) for a comprehensive discussion on metabolic
heterogeneity in biofilms]. Interspecies interactions, along
with the biofilm structure, influence the signals that promote
metabolic differentiation, eventually shaping the nutrient
and chemical gradient of a biofilm. Interspecies interactions
facilitate metabolic cooperation in a biofilm when the metabolic
by-products of one species are used as nutrients by the
other species (Christensen et al., 2002). One example is
the use of lactic acid from S. oralis by Veillonella sp. in
the oral biofilm formed by these two species (Periasamy
and Kolenbrander, 2010). Structurally, EPS helps in the
absorption of nutrients, creating a nutrient gradient, whereby,
by-products of one species can be used as nutrient by the
other species, reducing unwanted, toxic waste in biofilms (Elias
and Banin, 2012). The spatial organization and composition
of P. protegens, P. aeruginosa, and Klebsiella pneumoniae
multispecies biofilm is influenced by nutrient availability,
which has an effect on their survival under stressful conditions
(Lee et al., 2014). Metabolically distinct subzones, based on
oxygen availability, were observed in P. aeruginosa PA14
biofilms; whereby cells in anoxic regions produced lactate
by expressing lactate dehydrogenase (LdhA). The lactate was
then cross-fed to cells in the oxic conditions, activating the
expression of lldE, the gene that encodes for lactate oxidizing
enzyme – lactate dehydrogenase, involved in utilization
of lactate (Lin et al., 2018). This metabolic cross-feeding
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allows the use of a carbon source – lactate, which would
else persist as a toxic metabolic waste product within the
biofilm. Similarly, metabolic cross-feeding mediated by high
redox potential compounds – phenazines, has been observed
in between the oxic and anoxic regions of a P. aeruginosa
biofilm. Phenazines, produced in oxic regions of the biofilm,
were observed to migrate to oxygen-limited regions, where
they served as alternate electron acceptors, supporting the
metabolic activity in these zones (Williamson et al., 2012;
Schiessl et al., 2019).

As the metabolic state of a cell is the determinant of
its antibiotic susceptibility (Stokes et al., 2019), numerous
studies have looked into the metabolic status of individual
cells as well as the metabolic cross-feeding in multicellular
systems (Evans et al., 2020); however similar research on
biofilms is still scanty, and only a few metabolites involved
have been identified. Biofilm formation in various bacterial
species is related to an increase in the activity of cyclic
diguanylate monophosphate (c-di-GMP) (Ross et al., 1987).
In Gram-negative bacteria, this secondary messenger molecule
regulates biofilm formation by acting as the main switch
between sessile and motile mode of bacterial growth, enabling
attachment of cells on surfaces through a signaling cascade
(Simm et al., 2004). In P. aeruginosa, c-di-GMP regulates the
production of exopolysaccharide alginate, a major component
of the biofilm matrix and is a factor in the persistence
of P. aeruginosa biofilms, frequently seen in lung infections
(Römling and Balsalobre, 2012). An elevated level of c-di-GMP
is also noted in the rough small colony variants (RSCV) of
P. aeruginosa, a hyper biofilm former, showing an increased
tolerance to antimicrobials (Starkey et al., 2009). S. aureus
produces c-di-AMP (cyclic diadenosine monophosphate) as a
secondary messenger, instead of c-di-GMP, which produces
components, most likely adhesins, required for biofilm formation
(Corrigan et al., 2011).

Cyclic adenosine monophosphate (cAMP) is another
important secondary messenger molecule that has been shown
to affect biofilm formation process through multiple signal
transduction cascades (Jackson et al., 2002; McDonough and
Rodriguez, 2012; Kalivoda et al., 2013). In Vibrio cholerae,
it activates biofilm formation by negatively regulating the
biofilm repressor HapR (QS transcriptional regulator) and
positively regulating the biofilm activator VpsR (transcriptional
regulator of the Vibrio polysaccharide synthesis operon) (Liang
et al., 2007). It also acts as a biofilm repressor by negatively
regulating an activator – diguanylate cyclase CdgA of biofilm
formation (Fong and Yildiz, 2008). cAMP was also found
to inhibit EPS synthesis and the formation of a multilayer
biofilm (Houot and Watnick, 2008). Another metabolite,
ppGpp plays crucial role in the formation and maintenance of
biofilms, as the ppGpp mutants were observed to form loose
biofilms due to their decreased ability to adhere to a surface
(De la Fuente-Núñez et al., 2014). Another study found that
eliminating ppGpp synthesis in a biofilm, reduced bacterial
growth compared to the wild type cells, and the cells that
grew were tolerant to the DNA replication targeting antibiotic
ofloxacin (Nguyen et al., 2011).

The interspecies interactions in a biofilm, described so far,
enhance the survival of bacterial biofilms, which pose a significant
issue in industrial and clinical settings (Kolenbrander and
London, 1993; Galié et al., 2018). Hence, in the subsequent
section, we discuss the recent technological advancements
in controlling biofilms and identify potential interspecies
interactions that can be targeted to combat a vast array of biofilm-
related infections.

INNOVATIVE TREATMENT STRATEGIES
FOR CONTROLLING BIOFILMS

The complex biofilm matrix makes the biofilms resilient to
almost all antimicrobial treatments. Besides the use of antibiotics,
research work on novel biofilm eradication strategies have been
primarily focused on the disruption of the protective EPS matrix,
leading to biofilm disintegration. These approaches, considered
an effective strategy to control biofilms, are schematically
summarized in Figure 1. Targeting alginate, one of the major
component of the EPS in P. aeruginosa biofilm, using the
alginase enzyme, has been identified as a potential strategy
for the treatment of cystic fibrosis patients (Glonti et al.,
2010). Combination therapies, comprising of a matrix degrading
agent and an antibacterial agent, have also shown efficacy in
dealing with biofilm infections. An antibiotic – Dnase1 (degrades
extracellular DNA) combination therapy was shown to disrupt
the EPS, enhancing the antibiofilm effects of antibiotics in
clearing bacterial single-species biofilms (Fanaei Pirlar et al.,
2020). A combination of DNase1 and plant-based essential
oils also disrupted the biofilm of methicillin-resistant S. aureus
(Rubini et al., 2018). Using Dispersin B, a biofilm-dispersing
enzyme, in combination with peptides, eradicated ∼70% of
S. epidermidis biofilms compared to only ∼35% by Dispersin
B alone (Chen and Lee, 2018). Further, D-amino acids from
B. subtilis, known to signal for biofilm disassembly, were found
to inhibit the development of S. aureus biofilms (Chen et al.,
2020). Intriguingly, honey – a natural product, has also shown
anti-biofilm effects by inhibiting P. aeruginosa biofilm formation
and reducing its established biofilms (Lu et al., 2019). The cell-
free supernatant of the yeast Saccharomyces cerevisiae has been
shown to exhibit anti-biofilm effects on Listeria monocytogenes
biofilms, primarily by decreasing the EPS production (Kim et al.,
2021). Another innovative approach in treatment of biofilm-
related infections is the use of iron chelators, which have
shown significant anti-biofilm activity on both Gram-positive
and Gram-negative bacteria (Richter et al., 2017).

Other treatment strategy involves the development of
nanoparticle (NP)-based systems to target biofilms. Proteinase
K-capped gold NPs were shown to degrade the mature biofilms
of P. fluorescens by disrupting its EPS components (Habimana
et al., 2018), while silver (Ag) NPs at concentrations as low
as 1µg/mL have shown efficacy in inhibiting the formation
of P. aeruginosa biofilms (Kora and Arunachalam, 2011). In
addition to their use as anti-biofilm agents, nanosystems have
also been successfully applied as carriers to enhance antibiotic
delivery in biofilm systems by co-mobilizing a matrix-disrupting

Frontiers in Microbiology | www.frontiersin.org 5 January 2021 | Volume 12 | Article 635432

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-635432 January 23, 2021 Time: 21:4 # 6

Joshi et al. Communications in Multispecies Biofilms

agent and an antibacterial agent onto NPs (Baelo et al., 2015;
Tan et al., 2018, 2020).

Studies have shown the use of QS inhibitors in the
treatment of biofilm-forming pathogenic infections. In
the dual biofilm of S. mitis and P. aeruginosa, whereby
the AI-2 molecule released from S. mitis promotes the
pathogenicity of P. aeruginosa; D-ribose, has been shown
to inhibit the activity of AI-2 by competing for its receptor
site (Wang et al., 2016). Naturally occurring halogenated
molecules, the furanones, can inhibit the QS signaling
molecule “AHL,” resulting in reduced biofilm thickness and
swarming motility of E. coli, V. cholerae, and P. aeruginosa
(Proctor et al., 2020). Bacteriophages have also shown
promising results in treatment of highly antibiotic-resistant
biofilm infections, as they prevented Klebsiella biofilm
formation on urinary catheters and demonstrated significant
clinical improvements in chronic otitis patients (caused by
P. aeruginosa and S. aureus biofilms) (Wright et al., 2009;
Townsend et al., 2020). The use of physical techniques
for biofilm dispersal has also gained attention in the last
decade. Combination ultrasonication-ozone treatment, for
example, has been shown to eliminate L. monocytogenes
biofilms from stainless steel surfaces through disruption of
proteins in the EPS (Baumann et al., 2009; Yu et al., 2020).
Photodynamic therapy, using the photosensitizing molecule
5-aminolevulinic acid was able to inactivate cells in mono-
species antibiotic-resistant S. aureus and S. epidermidis biofilms
(Li et al., 2013).

The cellular metabolites involved in interspecies interactions
in multispecies biofilms can be a potential target options
for the treatment of the biofilms, for example, c-di-GMP,
a signaling molecule required for biofilm formation is the
prime target candidate. A recent in silico study identified
“guanine-like” molecules that could limit diguanylate cyclase
activity, leading to reduced intracellular c-di-GMP signals,
which in turn, inhibited the initial attachment and induced
dispersion of P. aeruginosa biofilm (Sambanthamoorthy et al.,
2014). Anti-biofilm peptides, a subset of host defense peptides,
have been shown to interact with and degrade the ppGpp
molecule, which plays a role in biofilm establishment. As
low as 0.8 µg/mL concentration of the peptide was able to
initiate dispersal of P. aeruginosa biofilms, while treatment
at 10 µg/mL caused complete destruction of the biofilms
(De la Fuente-Núñez et al., 2014). However, despite showing
efficacy, these peptides are susceptible to degradation by
the innate presence of bacterial proteases. To address this,
studies have been developing d-enantiomeric protease resistant
peptides, which show a 10-fold decreased biofilm inhibition
concentration compared to the protease susceptible peptides
(de la Fuente-Núñez et al., 2015).

Above suggested treatments are generally applicable for both
single-species and multispecies biofilms. However, it is now well-
established that during infections, bacteria are mostly found
coexisting with other species, showing interspecies interactions,

metabolic heterogeneity and cross-feeding; which all can enhance
the cellular pathogenicity and antibiotic tolerance. Indeed,
studies have identified that metabolites involved in interspecies
interactions can interfere with ‘drug-cell’ interactions and
metabolic differentiation does contribute to antibiotic tolerance
in multicellular systems, which can critically influence our ability
to treat infections (Co et al., 2019; Schiessl et al., 2019). Hence,
the treatment outcome from a multispecies biofilm with complex
cross-species interactions would be different from a monospecies
biofilm, highlighting the need to incorporate these interactions
while designing our treatment strategies.

CONCLUSION

The negative effects of bacterial biofilms are well recognized.
Many biofilm treatment strategies have been focused on
targeting the protective polymer matrix that shields the
bacterial community from antimicrobial agents. Apart from
such structural targeting, we found from this review that the
physiological cell-to-cell interactions in biofilm can indeed serve
as another important avenue worth exploring as the potential
treatment target. A number of physiological interactions,
primarily the receptor-mediated cell aggregation, intercellular
signaling, metabolic communication and horizontal gene
transfer, are known to maintain a tightly regulated and functional
biofilm biomass, for a community-associated protection against
stress, including from antimicrobial agents. While inhibitors
of intercellular signaling (QS inhibitors) have been identified,
only little progress however, has been made on the targeting
of other intercellular interaction pathways. As an example, the
targeting of metabolic communications such as those via the
global transcriptional regulators such as cyclic AMP or c-di-GMP,
is anticipated to inhibit the cell-to-cell interactions, even those
between different species, presenting a potential implication in
the treatment of multispecies biofilms. The Review highlights
the need to shift biofilm eradication strategies from the current
targeting of biofilm structural entities to targeting metabolic
communications that underlie the cell-to-cell interactions, which
is anticipated to offer long-term treatment solutions.
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