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The human body is inhabited by a vast diversity of probiotic microorganisms that could
positively affect human physiology. Besides, prebiotic food substances may induce
symbiotic relationship among probiotic species through the successful establishment
of commensal microbiota, whose connections with the host are multifaceted and
multidirectional. As deliberated throughout this review, prebiotic and synbiotic foods
contain the capability to stimulate numerous health characteristics in host organisms
through various means. Predominantly, the normal microbiota fosters the digestion of
food and may boost the innate and adaptive immune system’s functionalities. Therefore,
live probiotic bacteria, for instance, probiotic Bacilli obtained together with prebiotic
food, can help stimulate healthiness in humans. Thus, we discuss how certain dietary
fibers may preserve the probiotic efficacy by serving as the scaffold for probiotic Bacilli to
colonize them through forming symbiotic interactions. The fibers can essentially promote
protection by encapsulating probiotic Bacilli against various environmental and physical
stresses that might kill the free-living bacterial cells. Besides, these fibers would serve
as prebiotic substances that would eventually be utilized for the proliferation of probiotic
cells. It is believed that applying this conceptual idea will provide a novel platform toward
developing probiotic and synbiotic foods, as discussed in this review.

Keywords: probiotics, Bacillus subtilis, LAB, beneficial biofilm, synbiotic food, probiotic Bacilli, dietary fibers,
symbiotic encapsulation

INTRODUCTION

The human body is normally populated with an extensive assortment of microorganisms that may
have a positive impact on human physiology and functions, such as the symbiotic relationship of
probiotics along with prebiotics in the prevention of diseases (Hooper and Gordon, 2001; Lebeer
et al., 2010; Davani-Davari et al., 2019). Historically, much before scientific research could examine
the impacts of microbes on the internal human environment, many probiotic species were being
used in dietary consumption for centuries. For example, they were used in the fermentation of
dairy products, such as cheese and yogurt, as well as wine (Bokulich et al., 2015; Wolfe and Dutton,
2015). We now know that probiotics are live microorganisms, which reside in an organism and
can contribute beneficially to the host’ health (Lebeer et al., 2010; Fukuda et al., 2011; Piewngam
et al., 2018). The probiotic supplements field is continuously growing since evidence suggests gut
microbiota’s essentiality in promoting body healthiness and well-being (Clemente et al., 2012; Wu
and Wu, 2012; Dhar and Mohanty, 2020). Therefore, possible manipulations of the microbiome
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composition in the gastrointestinal tract (GIT) of a host
organism, specifically through consuming probiotic food,
become a potential remedy.

The molecular interactions of the host with the microbiota
are complex, numerous, and multidirectional. For instance,
the microbiota of the human GIT exists in a crosstalk that
ranges between mutualism and pathogenicity, fostered by
residential and ingested microorganisms. The normal microbiota
contributes to proper food digestion as well as the optimal
functioning of the immune system (Hooper and Gordon, 2001).
The gut microbiota is supposed to significantly regulate the
development and function of the innate and adaptive immune
system (Negi et al., 2019a). The gut microbiota and immune
homeostasis seem to have a back and forth relationship and are
a subject of intense research in the field of infectious diseases.
Also, gut microbiota-derived signals regulate the immune cells
for pro and anti-inflammatory responses, thereby affecting the
susceptibility to various diseases (Negi et al., 2019b).

Interest in the microbiota’s beneficial functions has resulted
in the eventual selection of specific species with putative health-
promoting capacities. To exemplify, the Gram-positive Bacilli are
prominent colonizers of the human GIT and thus have been
widely used as probiotic species in clinical applications (Lebeer
et al., 2010; Ilinskaya et al., 2017). Among the main benefits of
those species are the positive interactions with the host organism
by metabolizing various dietary components that may affect
commensal microbiota composition as well as inducing defense
mechanisms against infectious diseases (Figure 1). Specifically,
probiotic Bacilli can metabolize different prebiotic compounds
that promote the healthiness of the host organism in which they
reside using different mechanisms; these mechanisms include:
pathogen obstruction due to antagonism and competition, pH
level preservation, and defense of intestinal mucosal barrier and
its functions (Ilinskaya et al., 2017; Davani-Davari et al., 2019;
Seifert et al., 2019). In addition, probiotic Bacilli have been
related to the production of many health-promoting factors for
the host organism, for instance, vitamins and small molecules
such as aminobutyric acid (GABA; Gu et al., 2015; Wang et al.,
2019; Ren et al., 2020); this four-carbon non-proteinogenic amino
acid is well-known for its diverse biological functions such as
anxiety inhibition, sleep promotion, blood pressure reduction,
diabetes treatment, and immune enhancement (Li et al., 2016;
Wang et al., 2019).

Among the most crucial mode of actions of probiotic Bacilli
in mitigating pathogenic species, from either intestinal or
respiratory tract, appears to be by modifying the microbiota
composition within the GIT through creating a more favorable
balance in the microbial population (Fukuda et al., 2011;
Gagliardi et al., 2018; Li et al., 2019). The exclusion of pathogenic
species often occurs by two major mechanisms: (i) through
production of antimicrobial substances that may eliminate the
undesired bacteria (Caulier et al., 2019; Kimelman and Shemesh,
2019) and (ii) by affecting gene expression patterns of pathogenic
microorganisms resulting in the suppressed ability to colonize
the GIT of the host organism (Piewngam et al., 2018). Besides,
probiotic Bacilli may affect both innate and adaptive immunity
through upholding intestinal homeostasis as well as improving

different aspects of GIT functionality (Fukuda et al., 2011;
Lefevre et al., 2015; Jager et al., 2018; Johnson et al., 2019).
By improving the digestibility of nutrients, for instance, certain
types of indigestible dietary fibers, could probiotic Bacilli vastly
contribute to the host organism’s healthiness (Rajasekharan
et al., 2020). The pathogen eliminating, immunomodulatory
and additional beneficial capabilities of probiotic Bacilli for the
host organism, summarized in Table 1, paving the way for
developing novel probiotic formulations as well as probiotic food
for potential application in clinical dietetics as well as agriculture
and food industry.

CURRENT CHALLENGES TOWARD
EFFECTIVE APPLICABILITY OF
PROBIOTIC BACILLI

Preserving the efficacy of probiotic Bacilli exhibits paramount
challenges that need to be addressed toward developing
functional and health-promoting products, such as probiotic and
symbiotic foods (Cruz et al., 2012; Yahav et al., 2018; Terpou et al.,
2019). It was recently postulated that there could be a pronounced
improvement in health when probiotics are administered along
with antibiotics (Li et al., 2018). Moreover, probiotic organisms
can comprise a solution to antibiotic resistance in certain
conditions. Yet, there is a challenge due to broad-spectrum
antibiotics usage, which could be targeting the beneficial
probiotic bacteria too. On the other hand, complex microbial
comminutes called biofilms have been revealed to stimulate
antibiotic resistance; therefore, the biofilms could protect
probiotic cells against the administered antibiotics. Besides,
probiotic Bacilli are capable for the removal of pathogenic species
such as Staphylococcus aureus from the intestinal and respiratory
tract (Piewngam et al., 2018). This finding opens new thinking
and opportunities for developing novel antimicrobial strategies
instead of using standard or topical antibiotics.

Another challenge in the field is that the known prebiotic
substances that can alter the gut microbiota do not include a
protein source. Given that proteins digested in the small intestine
provide a nitrogen source for commensal species, it is very
limited and competitive among colonic bacteria (Seifert et al.,
2019). Since some proteins possess functional attributes that
make them suitable for the encapsulation of bioactive agents
(Fathi et al., 2018), they may provide an excellent delivery system
for the nanoencapsulation of appropriate probiotic species. This
approach would further facilitate the development of protein-
based symbiotic food.

Dietary Fibers and Their Prebiotic Role
Dietary fibers, defined as carbohydrate polymers (which are
neither digested nor absorbed), are normally subjected to
bacterial fermentation in the GIT (Holscher, 2017); thus, they
may impact the composition of bacterial communities as well
as microbial metabolic activities, including the production of
different fermentative end products (Hamaker and Tuncil, 2014;
Bindels et al., 2015). Some dietary fibers can also be classified
as prebiotic substances referred to as “selectively fermented
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FIGURE 1 | Health promoting modes of action by probiotic Bacilli.

ingredients that result in specific changes, in the composition
or activity of the gastrointestinal microbiota, thus conferring
benefit(s) upon host health” (Slavin, 2013; Holscher, 2017).

Studies have shown that the consumption of fibers in the
diet may account for a decrease in mortality, coronary heart
disease, cancer, type 2 diabetes, gastrointestinal issues, and
strokes (Anderson et al., 2009; Reynolds et al., 2019). Blood
pressure and cholesterol can also be decreased as a result of
increasing fiber intake. Moreover, consumption of the fibers may
improve conditions associated with glycemia and insulin issues in
non-diabetic and diabetic persons. Additionally, it can enhance
weight loss in obese individuals (Anderson et al., 2009).

It appears that fibers are nearly entirely broken down by
the active microflora in either small or large bowel, mainly
through fermentation processes (Anderson et al., 2009; Holscher,
2017). Therefore, dietary fibers fermented by the gut microbiota
through producing certain metabolic substances can shape the
immunological environment in the host organism and influence
the severity of allergic inflammation (Trompette et al., 2014).
Moreover, the normal gut microbiota can resist adipose tissue
formation due to fiber consumption by the probiotic bacteria
(Delzenne et al., 2019). Thus, fibers may significantly contribute
to establishing and maintaining healthy gut microbiota, which
would help against pathogens, expansion of the gut immune
system, and synthesize health promoting metabolites (Hamaker
and Tuncil, 2014; Reynolds et al., 2019).

Apparently, probiotic Bacilli consumption can also enhance
the normal functionality of the GIT by reducing the inflammation

rate in humans (Rhayat et al., 2019). Besides, it was shown
that a Lactobacillus reuteri could reduce the blood cholesterol
level in mice through increasing a ratio of high to low
density lipoprotein, which might indirectly account for the
permanency of the lactobacilli in the gut (Taranto et al.,
2000). Despite many evidences for beneficial functionalities
of bacteria and fungi in the GIT that can play a significant
role in positive cross-talk with the host organism (Wolfe
et al., 2014; Bokulich et al., 2015; Wolfe and Dutton, 2015),
they have not been fully categorized or characterized up
until now.

SYMBIOTIC ENCAPSULATION AS AN
EFFECTIVE METHOD FOR DEVELOPING
FUTURE PROBIOTICS

It is conceivable that using prebiotics to encapsulate and
transport probiotics would result in the simultaneous
distribution of pre and probiotics into the colon (Seifert
et al., 2019). Accordingly, innovative encapsulation techniques
have been suggested for the food and probiotics industry to
shield probiotic species from severe storage environments and
gastrointestinal conditions (Li et al., 2018). Another efficient
method for coating beneficial microbes has been recently
reported using biointerfacial supramolecular self-assembly of
lipid membranes (Cao et al., 2019). This method exhibited
significantly improved survival of bacterial cells against

Frontiers in Microbiology | www.frontiersin.org 3 April 2021 | Volume 12 | Article 638830

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-638830 April 5, 2021 Time: 17:33 # 4

Szlufman and Shemesh Probiotic Bacilli for Synbiotic Food

TABLE 1 | Putative health-promoting modes of action by probiotic Bacilli.

Mode of probiotic activity Resulting functionality Type of bacteria References

Modification of microbiota in the GIT Creating a more favorable microbial population
due to a shift in the balance toward beneficial
microorganisms

Various probiotic Bacilli Fukuda et al., 2011;
Gagliardi et al., 2018;
Vrancken et al., 2019

Alteration in gene expression of pathogenic
microorganisms by affecting quorum sensing

Interfering signaling mechanisms in pathogenic
bacteria through influencing their pathogenicity
or survivability

B. subtilis Piewngam et al., 2018

Production of antimicrobial substances:
bacteriocins or lipopeptide compounds

Growth inhibition of pathogenic microorganisms
in the intestine

Typical to all probiotic
Bacilli

Hong et al., 2005;
Caulier et al., 2019

Spore-forming capability Remarkable ability to survive in harsh
environmental conditions

Typical to all Bacillus
species

Hong et al., 2005

Improving the digestibility of nutrients, mainly
due to enhanced enzyme activity in the
intestine, especially of α-amylase, cellulase,
phytase, proteases, and metalloproteases

Optimize mineral absorption, carbohydrate
digestion, reduction in cholesterol level, and
production of nutrients.

Bacillus coagulans Jager et al., 2018

Immunomodulation affecting both innate and
adaptive immunity

Upholds intestinal homeostasis and improves
adaptive immune response

Lactobacillus and
Bifidobacterium

Fukuda et al., 2011;
Yan and Polk, 2011

Protecting probiotic cells via inducing biofilm
matrix production

Sustain enzymes and offer safety against
osmotic stress, elevated temperatures, freeze
thawing, and drying processing protocols

Different probiotic
Bacilli

Yahav et al., 2018;
Terpou et al., 2019

Production of health-promoting factors for the
host organism, for instance, vitamins and small
molecules such as (GABA)

Modulating diverse biological functions and
immune enhancement of host organism

Different probiotic
Bacilli

Li et al., 2016; Wang
et al., 2019

Triggering anticariogenic activity Effective metabolism of sugar alcohols
reinforces the probiotic potential of Bacillus
spp. against pathogenic Streptococci

B. subtilis Duanis-Assaf et al.,
2020

Inducing antiviral activity modulating infectivity through either affecting
microbiota composition or production antiviral
substitutes

Different probiotic
Bacilli

Lefevre et al., 2015;
Johnson et al., 2019

Protecting against acute liver injury and
hyperammonemia

Reducing inflammatory cell infiltration into the
liver and decreasing ammonia levels

L. salivarius Yang et al., 2020

Triggering anti-tumorogenic activity through
producing a probiotic bacteriocin

Modulation of tumorogenic effect induced by
periodontal pathogens

Different probiotic
Bacilli

Kamarajan et al., 2020

environmental assaults during oral delivery and treatment using
two murine models of colitis (Cao et al., 2019). Besides, it was
also reported that the integration of different factors as abiotic
as well as biotic should be taken into account during proper
selection method for probiotic encapsulation for the specific
system (Šipailienë and Petraitytë, 2018).

Additional bio-coating technique established lately may
permit symbiotic advancement of biofilm-forming probiotic
Bacilli with distinctive lactic acid bacteria (LAB; Kimelman
and Shemesh, 2019). Besides, certain vitamins produced by
probiotic Bacilli can promote cellular function if they survive
harsh environmental barriers such as the colon and GIT. For
example, LAB can synthesize folate, a B-group vitamin that
humans cannot synthesize and must be exogenously obtained
(Mosso et al., 2018). Therefore, increasing the folate content
of tuber-based foods using LAB may provide novel food
matrices to delivery probiotic microorganisms to humans (Mosso
et al., 2018). Furthermore, probiotic Bacilli may facilitate the
production of vitamin B12 an essential water-soluble vitamin vital
to prevent severe pathologies, some of which are irreversible
(Molina et al., 2012).

Although the LAB are among the most prominent probiotic
microorganisms (Yang et al., 2015; Yahav et al., 2018), they
should be successfully established within the GIT system of the

host organism to exert their beneficial effect. Consequently, it
was recently proposed using the biofilm-inspired encapsulation
of live probiotic cells through facilitating production of
protecting extracellular matrix (Yahav et al., 2018; Kimelman
and Shemesh, 2019) or by lipid-coated delivery system (Cao
et al., 2019). Besides, induced production of different health-
promoting molecules, such as vitamins and neuroprotective
substances, would facilitate the beneficial effects of the probiotic
formulations (Figure 2). Therefore, it is believed that this
conceptual idea will provide a basis for the development of a
synbiotic food system facilitating the survivability of probiotic
cells through inducing the production of health-promoting
functional molecules.

FUTURE PERSPECTIVES IN
DEVELOPING EFFECTIVE SYNBIOTIC
FOOD INCORPORATING THE
PROBIOTIC BACILLI

One of the potentially manageable foods for developing an
effective synbiotic food system can be cereal grains, which
offer the positive benefits of combining probiotic species
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with whole grains that may serve as a staple prebiotic
substance. Recent studies indicate that certain probiotic
microorganisms contain necessary components to be established
as synbiotic food, for instance, cereal-based efficient products
(Budhwar et al., 2020). Additionally, the usage of certain
microorganisms as beginning cultures throughout the food
fermentation process is a notably favorable technique to
improve the taste and mineral bioavailability in native cereal-
based fermented foods (Nkhata et al., 2018; Ogunremi et al.,
2020). Fermented foods are superior in nutrients compared
to their unfermented counterparts due to the activation of
endogenous enzymes that degrade antinutritional factors.

Antioxidant properties of fermented foods are also elevated
compared to their unfermented counterparts due to increased
vitamin C and ease of release of different health-promoting
bioactive compounds resulting from a weakening of grain matrix
(Nkhata et al., 2018).

The preparation of cereals with advanced approaches creates
an enhanced nutrient platform with a preferred amino acid
pattern. Fermentation is considered an essential and accepted
method, significantly decreasing the antinutrients existing in
coarse cereals such as trypsin inhibitor, phytic acid, and
tannins (Budhwar et al., 2020). Phytase activity is a beneficial
technological characteristic in LAB proposed to be administered

FIGURE 2 | The conceptual idea for developing synbiotic food system through facilitating survivability of probiotic cells and inducing production of health promoting
functional molecules. Dietary fibers, for instance originated from cereals, can function as a scaffold for proliferation of probiotic species. Besides, these fibers can
serve as a prebiotic substances for growth of probiotic bacteria as well as may facilitate production of health promoting molecules. Overall, it is believed that this
symbiotic system will enhance survivability of probiotic bacteria against various environmental stresses.

FIGURE 3 | Putative health benefits of synbiotic cereals.
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as starters in cereal and legume fermentations. Significant
phytase activity in the presence of simulated gastrointestinal
(SGI) fluids along with the ability to produce phytases
post-exposure to the SGI fluids becomes of high interest
(Amritha and Venkateswaran, 2018). Therefore, it augments
the full nutritional value of coarse cereals and other
food grains.

It is also apparent that different food matrices, for instance,
dietary fibers of various food products, might serve as a natural
scaffold for probiotic bacteria to adhere to and grow as biofilms.
It was lately reported that the probiotic Bacilli could interact
with resistant starch fibers of chickpea milk (CPM), along with
the production of a reddish-pink pigment (Rajasekharan et al.,
2020). Interestingly, the probiotic cells could use the resistant
starch fibers as a scaffold and modify them to digestible fibers
from another side (Rajasekharan et al., 2020). This finding may
inspire the use CPM as a dietary supplement enriched with
probiotics. CPM could serve as a natural source for prebiotics, the
microbiome-shaping components that provide the carbon source
for the beneficial microbes in the human gut. These fibers pass
through the GIT virtually intact and undigested. In the lower
GIT, they are utilized by gut microbiota, which digests them to
distribute nutrients to the colonic epithelium, thus maintaining
a functional and healthier digestive system (Rhayat et al., 2019).
Enriching CPM with probiotics will generate a blend of the
synbiotic complex, which might help the probiotic cells during
transit through the acidic gastric environment without being
killed (considering prebiotics might protect them and allow fast
passage through the GIT).

Arguably, synbiotic cereals can promote health because gut
microbiota demonstrated to imply a pronounced impact on
numerous cellular and host functions (Figure 3). For example,
these foods show an improvement in immunology, neurological
functions, energy, storage, etc. Several bio-polymers can be
hydrolyzed by probiotic bacteria into tiny metabolites that
can be used right away. Some of these metabolites include
amino acids, essential vitamins, and anti-oxidants, which are
produced by the beneficial microbiota strains (Cukkemane
et al., 2020). Additionally, it was reported that cereal grains
consumption might prevent coronary disease and strokes (Anand
et al., 2015). Moreover, probiotics are efficient in managing
bowel movement and controlling pathogens such as Clostridium
difficile, Campylobacter jejuni, and Helicobacter pylori (Roman
et al., 2019). Since cereals are made of grains they contain
a staple source of carbohydrate, dietary fiber, and protein. In
addition, they are a suitable source of vitamins, such as the B- and
E-groups of vitamins, and different vital minerals, such as iron,
zinc, magnesium, and phosphorus. Moreover, phytochemicals,
including phytoestrogens, antioxidants, and phenolics, are
found in whole grain foods. When the phytochemicals are
combined with vitamins and minerals, they could defend
against gastrointestinal cancers and cardiovascular disease
(Flight and Clifton, 2006).

Apparently, biofilm-forming probiotic Bacilli incorporated
into the synbiotic cereals have a vast potential in survivability
during the transition of acidic pH and subsequent establishment
in the GIT. Moreover, the health-promoting activity of the cereals

may further contribute to strengthening important immune
responses to various infectious agents.

CONCLUDING REMARKS

As discussed throughout this communication, prebiotic and
synbiotic foods can promote various health aspects in host
organisms through different mechanisms. Primarily, the
probiotic microbiota should promote the digestion of dietary
fibers through enabling the proper functionality of the innate and
adaptive immune system of the host organism.

Since Gram positive Bacilli are noticeable colonizers of
the human GIT tract, they could be used as probiotic
species in clinical practices to increase the body’s defense
mechanisms against infectious diseases. Predominantly, the
normal microbiota contributes to food digestion and the
development as well as the optimal functioning of the immune
system. Therefore, the probiotic Bacilli obtained with food can
be beneficial in stimulating a healthiness in human through
obtaining bacterial viability in the acidic conditions of the
stomach and the high bile concentration in the small intestine.
Thus, recently developed biofilm-inspired encapsulation systems
may protect probiotic Bacilli using food matrices such as dietary
fibers. We discussed how certain dietary fibers might serve as
the scaffold for the probiotic Bacilli to colonize them through
forming multicellular communities. The fibers can essentially
promote protection by encapsulating probiotic bacteria against
various environmental and physical stresses that might kill the
free-living bacterial cells. Besides, these fibers would serve as
a prebiotic substance that would eventually be utilized by the
probiotic cells. Therefore, it is feasible to apply this novel platform
for various applications, for instance, probiotic and synbiotic
food: snacks, candies, and cereals. Additionally, the synbiotic
food harboring probiotic species can antagonize pathogenic
bacteria, involved in different diseases from dental caries to
irritated bowel syndrome.
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