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The oriental white stork (Ciconia boyciana) is considered an endangered species
based on the International Union for Conservation of Nature (IUCN) Red List. This
study presents the first evidence on comparative analysis of gut microbial diversity of
C. boyciana from various breeding conditions. To determine the species composition
and community structure of the gut microbiota, 24 fecal samples from Tianjin Zoo and
Tianjin Qilihai Wetland were characterized by sequencing 16S rRNA gene amplicons
using the Illumina MiSeq platform. Firmicutes was found to be the predominant
phylum. Analysis of community structure revealed significant differences in the species
diversity and richness between the populations of the two breeding conditions. The
greatest α-diversity was found in wild C. boyciana, while artificial breeding storks from
Tianjin Zoo had the least α-diversity. Principal coordinates analysis showed that the
microbial communities were different between the two studied groups. In conclusion,
this study reveals the species composition and structure of the gut microbiota of oriental
white storks under two breeding conditions, and our findings could contribute to the
integrative conservation of this endangered bird.

Keywords: gut microbiota, oriental white storks, microbial diversity, high-throughput sequencing, conservation

INTRODUCTION

Gut microbiota plays a crucial role in the health of animal hosts through many factors, such as
genetics, geography, nutrition, diet, and immunity (Kohl, 2012; van Dongen et al., 2013; Kong
et al., 2014; Waite and Taylor, 2014, 2015). It is well-established that the gut microbiota of an animal
functions from the moment the animal is born, the amount and species of gut microbiota are not
fixed (Xiong et al., 2019; Li et al., 2020). The external environment and the host itself influence the
diversity of gut microorganisms (Ley et al., 2006; Mueller et al., 2006; Waite and Taylor, 2014). Thus,
research on gut microbiomes can improve survival of animals in different living environments
and an emerging suite of novel tools from this research is being applied for animal health and
conservation field (Clemente et al., 2012; Lee and Hase, 2014; Waite and Taylor, 2015).
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Studies of gut flora are being conducted in many animals,
but among these, there is considerably less research on birds
than mammals (Clemente et al., 2012). Many factors influence
the intestinal flora of birds, such as population diversity
and different life-history characteristics including migratory
behavior, diet, flight ability, and mating system (Xenoulis
et al., 2010; van Dongen et al., 2013; Stanley et al., 2015;
Colston and Jackson, 2016).

Nowadays 16S rRNA high-throughput sequencing
technologies has been used to determine composition and
compare structures of the intestinal flora recent years (Cole
et al., 2009; Wang et al., 2015; Wu et al., 2016; Cui et al.,
2019). With the development of high-throughput sequencing,
the study of avian gut microbiota has become feasible and
economical (Salter et al., 2014; Hird et al., 2015). Consequently,
the amount of data generated in this field has markedly increased,
providing more information on the relationships among gut
microbiomes across different bird species and habitats (Michel
et al., 2018). For instance, it is found that cecal microbes of
wild and captive western grouse are significantly different since
the living environments, including diet and exercise intensity,
differ between the two groups (Wienemann et al., 2011). Wang
et al. (2020) compared the compositions and differences in gut
microbiomes of black-necked cranes (Grus nigricollis) from six
wintering areas in China, and found that the overwintering food
sources might lead to specific gut microbes (Wang et al., 2020).

The oriental white stork (Ciconia boyciana) is a large water
fowl that is endangered due to the loss of habitat and disturbance
through human activities (Cheng et al., 2019; Fan et al., 2020).
The main breeding areas of oriental white storks are limited to
northern China and southeastern Russia (Liu et al., 2008; Zan
et al., 2008; Yamada et al., 2019). The number of wild oriental
white storks has declined sharply past decade, with approximately
1,000–2,499 mature individuals globally (IUCN, 2020), and this
species is listed as nationally protected animals in China (Itoh
et al., 1997; Cardoso et al., 2016; Han et al., 2016). Conservation
of C. boyciana is of great significance and considerable efforts
from various research fields have been conducted in this
endangered species (e.g., Liu et al., 2008; Han et al., 2016; Wei
et al., 2016; Cheng et al., 2020). However, the environmental
influence on the intestinal flora of oriental white storks have
yet to be elucidated. Considering the integrative conservation of
endangered species, one related comparative analysis is therefore
required to understand whether gut microbiota of oriental white
storks differ between different regions.

The present study aimed to compare fecal microbial
community compositions and diversity of oriental white storks
from two breeding conditions by using the Illumina MiSeq
platform for high-throughput sequencing for the first time.
Differences in the community structure as well as species
composition of the fecal microbiota in C. boyciana were
compared, and the unique and shared bacteria were identified
with the aim of finding relationships between different groups.
Results of the study will facilitate understanding of the
fecal microbiota in oriental white storks under two breeding
conditions and could help improve population conservation of
this endangered species.

MATERIALS AND METHODS

Ethics Statement
All applicable international, national, and/or institutional
guidelines for the care and use of animals were strictly followed.
All animal sample collection protocols complied with the current
laws of China. According to the Law of the People’s Republic of
China on the Protection of Wildlife (Order of the President of
the People’s Republic of China, No. 16, 2018), all experimental
procedures carried out in this study were under permitted.
The non-invasive genetic sampling taken in this work enables
collecting samples (fecal samples) without the need to directly
disturb or contact individuals of oriental white storks.

Sample Collection
Twelve fecal samples of oriental white storks (Ciconia boyciana)
were collected at Tianjin Zoo (Z Group) and Tianjin Qilihai
Wetland (W group), respectively in 2019 (Table 1). Tianjin
Qilihai Wetland is one of the main stopover habitats of wild
C. boyciana during their migration periods. All samples were
carefully taken from the inside of the fecal matter using sterilized
equipment, and then were placed on dry ice and transported to
the laboratory as soon as possible.

DNA Isolation and Illumina MiSeq
Sequencing
The total genomic DNA of all fecal samples was isolated by CTAB
extraction method; Sodium dodecyl sulfate (SDS) extraction
method; Guanidine thiocyanate (GuSCN) extraction method and
TIANamp Stool DNA Kit (TIANGEN, China). For all methods,
DNA extraction was conducted according to the references and
manufacturer’s instructions (Hosomi et al., 2017; Kachiprath
et al., 2018). The concentration and quality of DNA samples were
determined by a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, United States).

The V3–V4 region of the 16S rRNA gene was amplified based
on the literature using specific PCR primers (Wu et al., 2016).
Forward primer 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and reverse primer 806R (5′- GGACTACHVGGGTWTCTAAT-
3′) were used (Caporaso et al., 2012). Amplification was carried
out in 50-µL reactions with 10 ng template DNA and 25 µL
Pfu DNA polymerase mix. The PCR cycle comprised an initial
denaturation at 94◦C for 5 min, followed by 30 cycles of 94◦C for
15 s, 60◦C for 15 s, and 72◦C for 30 s.

TABLE 1 | Basic information on experimental samples.

Sample
group

Collection
location

Collection
time

Sex
composition

Age
composition

Z group Tianjin Zoo 2019/10/31,
2019/11/20

8 males and 4
females

The age ranges
from 4 years old to
30 years old, with
an average age of
15 years old

W group Tianjin Qilihai
Wetland

2019/12/3 unknown unknown
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Purified PCR amplicons were sequenced on an Illumina MiSeq
platform at Majorbio Bio-Pharm Technology Co., Ltd., Shanghai,
China. PE amplicon libraries were constructed, and all raw reads
were screened according to the primer sequences.

Bioinformatics, Sequence Analysis and
Statistical Analyses
Raw files of the total genomic DNA from fecal samples were
demultiplexed by QIIME (version 1.9.1), and high-quality reads
were clustered as an operational taxonomic unit (OTU) by
UPARSE pipeline (version 7.1) when the sets of sequences shared
at least 97% identity (Edgar, 2013). In this study, gene sequence
taxonomy was analyzed by RDP Classifier (version 2.2)1 (Wang
et al., 2007) using a confidence threshold of 80% against the Silva
16S rRNA database (Release 128)2 (Quast et al., 2013).

Rarefaction curves were plotted for each sample to determine
the abundance of communities and sequencing data of each
fecal sample (Amato et al., 2013). α-diversity and species
accumulation curve were calculated by mothur software (version
v.1.30.1), which showed the complexity of gut flora species in
two groups. β-diversities analysis was performed and principal
coordinate analyses (PCoA) based on OTU compositions were
determined, in order to investigate structural variation in
microbial communities of two groups using unweighted and
weighted UniFrac distance metrics (Lozupone and Knight,
2005). The one-way analysis of variance ANOVA (Permutational
multivariate analysis of variance) was performed to compare
α-diversity estimates and p < 0.05 was considered statistically
significant. Differences in the UniFrac distances for pairwise
comparisons were determined using the Student’s t-test.

Taxa abundances in two groups at the phylum, class,
order, family, and genus levels were statistically compared
by Metastats (an improved statistical method for analysis of
metagenomic data) (White et al., 2009). Microbial functions
were predicted by PICRUSt based on high-quality sequences and
the linear discriminant analysis effect size (LEfSe) was used to
present bacterial taxonomic distributions of sample communities
(Segata et al., 2011).

RESULTS

Comparison of Different DNA Extraction
Methods
DNA extraction is a very critical step for high-throughput
sequencing and the choice of a DNA extraction method has
an important impact on DNA yield and purity. As the results
shown, the GuSCN extraction method and the TIANamp Stool
DNA Kit produced much higher DNA yields than the CTAB
and SDS methods (Table 2). The obtained DNA yields by all the
four extraction methods were higher than 10 ng/µl. The 260/230
absorbance ratios GuSCN extraction method and TIANamp
Stool DNA Kit were above 1.8, indicating a low contamination
with proteins. However, the average 260/280 absorbance ratios

1http://rdp.cme.msu.edu/
2https://www.arb-silva.de

detected for the CTAB and SDS were below 1.8 which might
suggest protein contamination from the two methods. In the
study of oriental white stork’s fecal sample, the DNA obtained
by GuSCN extraction method and TIANamp Stool DNA Kit
could both be used successfully in library preparation for high-
throughput sequencing. Moreover, DNA extraction using the
GuSCN protocol was more cost efficient compared to the
commercially TIANamp Stool DNA Kit.

Sequencing Data Analysis
Across the 24 samples of oriental white storks, a total of 1,263,339
raw reads with an average length of 415 bp were obtained
after denoising by Illumina MiSeq sequencing. The total number
of raw reads, base pairs, and the mean length of the reads
were compared in all the 24 samples (Supplementary Table 1).
The number of sequences varied from 42,700 to 70,383, and
a total of 2,390 OTUs with 97% sequence similarity threshold
representing 43 bacterial phyla were identified in the feces of
C. boyciana. The α-diversity indices for bacteria, including Sobs,
Shannon, Chao1, ACE, and Good’s coverage are shown in Table 3.
The total number of OTUs in the W group (2,134) was much
higher than that in the Z group (1,555), these values include
1,299 OTUs shared by both groups. There was a significant
difference in α-diversity indices between Z group and W group
(p > 0.05) (Supplementary Figure 1). Average Good’s coverage
was 99.28± 1.57% (mean± SD) around all 24 fecal samples, and
thus the majority of the bacterial diversity in feces was obtained
thereby ensuring accuracy of the analyses (Table 3).

To assess whether the depth of sequencing in this study was
large enough to estimate the richness of gut microflora, the
observed species rarefaction curves were calculated. According
to species accumulation curves and Good’s coverage estimator,
the curve tended to gradually flatten, indicating that the sample
size collected was large enough to identify the majority of OTUs
in the gut of oriental white storks (Supplementary Figure 2), and
the high Good’s coverage indicated that the majority of bacterial
phylotypes in all the samples were identified.

Microbiota Composition and Relative
Abundance of All Samples
The taxonomic composition of each fecal sample clustering at
the 97% phylotype similarity level was outlined at phylum, class,
order, family, and genus levels (Supplementary Table 2). Overall
gut microbiomes of the oriental white storks comprised of 43

TABLE 2 | DNA yield and DNA purity (absorbance ratios of 260/280 nm) of four
different DNA extraction methods.

CTAB
extraction

SDS
extraction

GuSCN
extraction

TIANamp
Stool

DNA Kit

DNA yield
(ng/µl)

28.95 ± 2.96 16.89 ± 2.35 101.02 ± 1.45 98.12 ± 2.43

Abs
260 nm/
280 nm

1.32 ± 0.58 1.53 ± 0.41 1.81 ± 0.35 1.79 ± 0.95
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TABLE 3 | Estimated OTU richness and diversity indices for each fecal sample of oriental white storks.

Sample ID Sobs ACE Chao1 Shannon Simpson Coverage (%)

Z1 582 660.8866 646.901 3.3475 0.098 0.9983

Z2 571 710.6577 685.8542 2.9449 0.1824 0.9968

Z3 245 285.3304 279.45 2.9651 0.1116 0.999

Z4 534 644.1314 619.6827 1.4346 0.6281 0.9974

Z5 279 415.1391 436.814 1.4611 0.3824 0.9974

Z6 208 456.6761 346 1.3184 0.3959 0.9983

Z7 1459 1764.5793 1744.6276 4.621 0.046 0.991

Z8 1284 1552.5374 1530.0135 3.8731 0.0896 0.9924

Z9 1580 1886.014 1860.5814 4.3103 0.0946 0.9926

Z10 1106 1180.2196 1211.6117 5.0927 0.0197 0.9967

Z11 1244 1411.9333 1384.2027 3.321 0.2654 0.9951

Z12 792 880.9801 888.6757 2.956 0.1936 0.9971

W1 2783 3584.8701 3612.0146 6.1687 0.0099 0.9805

W2 2664 3493.8137 3403.4703 5.606 0.0212 0.9805

W3 3000 3469.189 3424.9702 6.1289 0.0108 0.9877

W4 1091 2267.6478 1819.1977 3.6838 0.0633 0.9905

W5 2720 3713.3214 3695.4599 5.4219 0.0189 0.9848

W6 1604 2125.7942 2123.18 4.7485 0.0315 0.9893

W7 664 1397.0354 1014.0273 3.5062 0.0916 0.9937

W8 2406 3072.3858 3009.0795 5.7545 0.0114 0.9842

W9 1968 2459.6551 2446.1631 5.1929 0.0249 0.9873

W10 2958 3645.6935 3586 6.1753 0.0128 0.983

W11 2134 2353.736 2381.8266 5.8923 0.0106 0.9925

W12 2878 3662.8558 3666.8014 6.3666 0.0055 0.9833

phyla, 96 classes, 188 orders, 338 families, 675 genera, and
1,222 species; microbial compositions at these different levels are
shown in Figure 1 and Supplementary Figures 3–5, respectively.

At the phylum level, 43 prokaryotic phyla were identified from
the 16S rRNA gene sequences (Figure 1A). Gut microbiota of
C. boyciana from Z group was dominated by Firmicutes (65.59%),
Actinobacteria (17.23%), and Proteobacteria (10.48%). These
three dominant phyla accounted for 93.30% of all sequences
across all the samples, while unclassified bacterial sequences only
occupied 0.01% (Figure 1A and Supplementary Table 2). The
gut microbiota from W group was dominated by Firmicutes
(28.43%), Proteobacteria (23.58%), Actinobacteria (14.71%),
Chloroflexi (11.57%), and unclassified bacterial sequences
accounted for 0.04% of all sequences in the W group (Figure 1A
and Supplementary Table 2).

At the genus level, 15 genera had abundances greater than 2%
in all the sequences (Figure 1B). The most abundant genera in
W group were Lactobacillus (8.33%), norank_f_Anaerolineaceae
(5.92%), norank_f_Xanthomonadales_Incertae_Sedis (3.91%),
norank_f_Bacteroidales_S24-7_group (3.38%), norank_c_
Cyanobacteria (3.35%), and Thiobacillus (2.943%). The
most abundant genera in Z group were Paeniclostridium
(23.82%), Lactobacillus (8.55%), Peptostreptococcus (7.78%),
Clostridium_sensu_stricto_1 (7.17%), Actinomyces (3.99%),
and Romboutsia (3.77%). Mean relative abundances of the
10 most abundant genera are listed in Table 4. Community
heatmap analysis at the genus level of the 24 samples can be seen
in Figure 2A.

α-diversity, which refers to the diversity within a particular
region, was calculated for two groups to examine differences
between oriental white storks from Tianjin Zoo and Tianjin
Qilihai Wetland. Community richness measured by OTUs (Sobs
and Chao indices) showed that the index of the W group was
higher than that of the Z group, indicating that richness of gut
microbiota was greater in W group (Supplementary Figure 1).
Differences between two groups were statistically significant
(p < 0.05) (Figure 2B). Bacterial community diversity (Shannon
index) was measured in the two groups, and the index of W group
was higher than that of Z group (Supplementary Figure 1). There
was a significant difference in community diversity between the
W and Z groups (p < 0.05) (Figure 2C).

β-Diversity Analysis and Community
Structures
The relationship between the feces samples from two breeding
conditions were represented by a dendrogram using Bray-
Curtis distances (Figure 3A). This dendrogram indicated that
the gut microbiota of the oriental white stork in Tianjin
Zoo clustered together, while those in Tianjin Qilihai Wetland
located on similar branches. To evaluate the difference in
β-diversity of the 24 samples, PCoA was used to visualize
similarities or dissimilarities between the Z and W groups
(Figures 3B,C). Each symbol represents one gut microbiota on
the PCoA plot, and most of the fecal samples in two groups
were distinguishable by PCoA when considering the relative
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FIGURE 1 | Microbial structure of all fecal samples at phylum and genus levels. (A) Bar-plots showing the abundance and distribution of the 11 most abundant
phyla. (B) Bar-plots showing the abundance and distribution of the 11 most abundant genera.

abundances of gut microbiomes. Congruent with the cluster
analysis, bacterial communities of group Z clustered tightly and
were separated from those of group W under both weighted
and unweighted UniFrac metrics. The two groups tended to
cluster separately from each other, indicating that each group
had distinctive microbial populations. Using weighted UniFrac
distance, bacterial communities of group Z were separated from
those of group W along principal coordinate axis 1 (PC1) with
the largest amount of variation (42.10%) (Figure 3B). Using
unweighted UniFrac distance, bacterial communities of the 24
fecal samples explained the largest amount of variation (47.89%)
along PC1 (Figure 3C). This clustering pattern was confirmed by
an analysis of similarities (ANOSIM) and unweighted UniFrac
showed a clearer separation of communities (ANOSIM, R = 0.71).
Microbial composition between two groups at the phylum
level (ANOSIM, R = 0.5621, p = 0.001) and genus level
(ANOSIM, R = 0.6196, p = 0.001) were significantly different
(Supplementary Figure 6).

Unique and shared bacterial taxa of the gut microbiota from
two groups were analyzed. A Venn diagram demonstrated that
1,299 OTUs from the 24 samples were shared as core bacterial
OTUs and the unique OTUs in each group were 256 (Z group)
and 839 (W group), respectively (Supplementary Figure 7).

There were some similarities in gut microbiota of oriental
white storks from two groups. The top five abundant core phyla
were Firmicutes, Proteobacteria, Actinobacteria, Chloroflexi,
and Bacteroidetes, while the top five abundant core genera
were Paeniclostridium, Lactobacillus, Peptostreptococcus,
Clostridium_sensu_stricto_1, and Actinomyces. Next, LEfSe was
used to identify OTUs differentially represented between oriental
white storks from two groups (Figure 4A). LEfSe identified 10
and 28 taxa (LDA > 4.0) with discrepancies in relative abundance
in the Z group and W group, respectively (Figure 4A).

The cladogram revealed that the core bacterial species in
all 24 fecal samples were significantly different at all levels
(Supplementary Figure 8). At the phylum level, the abundance
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of Firmicutes was significantly higher in the Z group than
tin the W group, while the abundance of Bacteroidetes was
significantly higher in the W group than in the Z group
(p < 0.001) (Figure 4B). At the genus level, Paeniclostridium had
a significantly higher abundance in the Z group than in the W
group (p < 0.01) (Figure 4C).

A total of 296 KOs (KEGG Orthologs) and 42 KEGG pathways
were mapped based on the high throughput sequencing,
which were then classified into secondary KEGG pathways.
The secondary KEGG pathways associated with the gut
microbiotas included cell processes, metabolism, and genetic
information processing, indicating that the differences in gut
microbiota had important influences on the metabolism of
C. boyciana (Figure 5).

DISCUSSION

This study characterized 24 fecal samples of oriental white storks
living in two breeding condition, by sequencing of 16S rRNA
gene amplicons using the Illumina MiSeq platform, analyzed the
composition of the gut microbiota and compared the difference.
The oriental white stork is one endangered waterbird species, and
many conservation strategies have been brought up to protect
C. boyciana, including establishment of suitable nature reserves
(Zhou et al., 2013; Zheng et al., 2016; Tawa and Sagawa, 2020).
However, there is limited knowledge of the gut microbiome of
C. boyciana to efficiently support related conservation efforts.
Therefore, to identify the gut microbiota associated with oriental
white storks and differences in bacterial communities arising
from captive and wild breeding groups, high-throughput 16S

TABLE 4 | Mean relative abundance of the 10 most abundant genera for
each sample group.

Sample group Genus (%)

Z group Paeniclostridium (23.82)

Lactobacillus (8.55)

Peptostreptococcus (7.78)

Clostridium_sensu_stricto_1 (7.17)

Actinomyces (3.99)

Romboutsia (3.77)

Mobiluncus (3.01)

Psychrobacter (2.73)

Catellicoccus (2.37)

Ruminococcaceae_UCG-014 (1.41)

W group Lactobacillus (8.33)

norank_f_Anaerolineaceae (5.92)

norank_f_Xanthomonadales_Incertae_Sedis (3.91)

norank_f_Bacteroidales_S24-7_group (3.38)

norank_c_Cyanobacteria (3.35)

Thiobacillus (2.94)

Actinomyces (2.86)

Paenisporosarcina (2.51)

norank_c_Acidobacteria (1.92)

Planomicrobium (1.68)

rRNA gene sequencing technology was employed to compare gut
microbial compositions of oriental white storks from Tianjin Zoo
and Tianjin Qilihai Wetland, respectively. This method allowed
exploration of the microbiota composition and abundance
without the need for cultivation (Caporaso et al., 2010; Gloor
et al., 2010; Knutie and Gotanda, 2018).

Microbiota Composition and Relative
Abundance
Characterization of bacterial communities in the feces of oriental
white storks provided evidence that the microbiota compositions
were similar between the captivity and wild breeding groups,
but abundances of the bacteria were significantly different
between two groups. Gut microbiota of C. boyciana were
predominantly composed of Firmicutes, Proteobacteria, and
Actinobacteria at the phylum level, and Firmicutes was
the most abundant phylum of Gram-positive bacteria in
both Z group and W group. This microbiota composition
was consistent with that of other wild bird species such
as Canada goose (Lu et al., 2009), red-crowned cranes
(Xie et al., 2016), Darwin’s finches (Michel et al., 2018),
chinstrap penguins (Barbosa et al., 2016), northern bald ibis
(Spergser et al., 2018), and kakapo (Waite et al., 2014),
where members of the phylum Firmicutes dominated the
microbiota of avian guts.

Members of the phylum Firmicutes play important roles
in metabolism, digestion, and absorption of protein and other
nutrients (Bernini et al., 2016; Berry, 2016). For example,
Firmicutes are associated with breakdown of fatty acids, and
Firmicutes produce more butyrate are which is considered
a health-promoting molecule, since it can increase insulin
sensitivity, regulate energy metabolism, and increase leptin gene
expression. Bacteroidetes mainly produce acetate and propionate.
Propionate could reduce the expression of enzymes involved in
the de novo synthesis of fatty acids and Acetate could promote
the secretion of insulin and ghrelin (Kong et al., 2013; Million
et al., 2013; Lee et al., 2015). Although some studies speculated
that the Firmicutes-to-Bacteroidetes (F/B) ratio may be related to
obesity both in many animal models (Turnbaugh et al., 2006) and
humans (Ley et al., 2006), the evidence suggesting an association
between obesity and alterations of the Firmicutes/Bacteroidetes
ratio is not convincing (Magne et al., 2020). In our study,
the F/B ratio in Z group was higher than the ratio in W
group, indicating that the gut microbiota of C. boyciana living
in Tianjin Zoo could help the host use the nutrients more
efficiently and collect calories from food since Firmicutes are
more effective. It is difficult to obtain the physical indicators
of oriental white storks living in Tianjin Qilihai Wetland, such
as weight and health status, thus the relationship between
the Firmicutes/Bacteroidetes ratio and obesity of two groups
were still unknown.

Paeniclostridium was the most common genus in Z group,
while Lactobacillus was the most common genus in W group
and was also a major component of the gut microbiota in Z
group. The abundance of Lactobacillus was relatively high in
both Z group and W group (8.55% and 8.33%, respectively).
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FIGURE 2 | Community heatmap analysis at genus level and α-diversities of gut microbiota among the two populations. (A) Community heatmap analysis on genus
level. (B) Bacterial community richness (measured by Sobs index) in the Z and W groups. (C) Bacterial community diversity (measured by Shannon index) in the Z
and W groups. p < 0.05 was considered statistically significant. ***P ≤ 0.001.

In previous reports, Lactobacillus were represented in gut
microbiota communities that had relatively high β-xylosidase
and β-glucosidase levels (Ruggiero et al., 2009; Cabre et al.,
2012). The similarity in relative abundance of Lactobacillus
in both groups in the current study might be due to the
formulation of the diet. The diet of oriental white storks is
relatively large, and although the dietary structure is different
in two groups, the amounts of sugar consumed in the different
environments might be similar. Thus, it would be interesting to

study the relationship between dietary structure with habitation
and explore the functions of these bacteria in the metabolism
pathways of C. boyciana.

β-Diversity Analysis and Community
Structures
The UniFrac method that focused on the phylogenetic
relationships was developed by Lozupone and Knight (2005).
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FIGURE 3 | Clustering analysis of the gut microbiotas and PCoA plots analysis. (A) Clustering analysis of the evolution of gut microbiotas in the Z and W groups. Gut
microbiota trees were generated based on the Bray–Curtis distances generated by mothur. (B) PCoA plots based on weighted UniFrac distances of gut microbiome
of oriental white storks. (C) PCoA plots based on unweighted UniFrac distances of gut microbiome of oriental white storks.

Both weighted and unweighted UniFrac metrics are very useful
for analyzing the differences and associations of microbial
communities (Lozupone and Knight, 2005; Campbell et al.,
2015). In this study, both weighted and unweighted UniFrac
metrics suggested that each fecal sample harbors different
microbial communities, and the majority of gut microbiotas
were conserved and clustered together among different breeding
conditions of oriental white storks (Z group and W group).

PICRUSt was used to analyze the microbial functions of
oriental white storks. Gut microbial taxa of C. boyciana were

associated with functions such as cell processes and metabolism.
These data facilitate understanding of the relationship between
gut microbial taxa and metabolism, as well as the influence of gut
microbes on host health (Sommer and Backhed, 2013). However,
as in other avian studies on gut microbiota, one limitation of the
current study is the acquirement of DNA from each individual
bird, as this affects the study of gut microbiota in relation to host
genetics and physiology at the individual level (Liu et al., 2020).

Analysis of the 24 fecal samples demonstrated that the gut
microbiota of oriental white storks was similar to those of
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FIGURE 4 | LEfSe analysis of gut microbiota and comparison of core gut microbiotas. (A) LEfSe analysis based on characterizing discriminative features of OTUs.
(B) Top five abundant core phyla in two groups of oriental white storks. (C) Top five abundant core genera in two groups of oriental white storks.

red-crowned cranes and black-necked cranes at the phylum
level, while Firmicutes was the predominant phylum (Xie et al.,
2016; Wang et al., 2020). Comparison of the relative abundance
of gut microbiota in C. boyciana between Z group and W

group revealed that community structure and abundance of
gut microbiota were relatively stable at the phylum level, but
were variable and complex at the genus level. There was a
significant difference in the richness and diversity of microbial
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FIGURE 5 | Heatmap of predictive KEGG functions in each sample.

composition, and host intestinal microbiota may be related
to diet (Turnbaugh et al., 2009), geography, and seasonal
changes (Mueller et al., 2006). The differences between Z group
and W group were living conditions and dietary conditions.
Oriental white storks inhabiting Tianjin Qilihai Wetland required
higher energy and had a more diverse diet, so W group had
a greater abundance of gut microbiota than Z group. This
study suggests that biogeographical and dietary factors may
contribute to the community structure of the gut microbiota
of C. boyciana since the metabolism and energy harvest needs
were different between two groups. This is consistent with
previous related avian findings that community structure and
abundance of the gut microbiota are mainly affected by dietary
conditions (Wang et al., 2020). The difference on diet patterns

may contribute to the differences of fecal microbiota on two
groups, and more work is needed to understand the functions
of diet patterns and living condition on fecal microbiota. So
next, whether living condition changes in the fecal microbiota
will be investigated using a combination of metagenomics and
metabolomics. Furthermore, since the different microbiota could
have different effects on the digestion ability of carbohydrates,
protein, and cellulose, the differences in feed composition
will have important influences on the changes in host gut
microbiota. This may affect nutrient utilization and could
cause gastrointestinal diseases in oriental white storks. Hence,
studies on the gut microbiota of C. boyciana will facilitate
understanding of the specific functions of different bacteria
related to digestion and absorption in the host, and could help
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improve conservation for threatened species both in artificial
breeding groups and in wild groups.

CONCLUSION

This study characterized the gut microbiota of oriental white
storks under different breeding conditions using 16S rRNA
gene sequencing analysis. Microbiota compositions were similar
between Z group and W group, but the abundances of bacteria
differed. The genetic factors were the same, therefore it is
hypothesized that the differences are mainly related to the
environment and diet. Most gut microbiotas were clustered,
respectively, between the different breeding conditions, and the
gut microbiota were related to host metabolic pathways. This
study provides insights into the composition and differences
in gut microbiota of oriental white storks living in two
breeding conditions. The findings will facilitate our further
understanding of the relationship between biogeography, diet
structure, and species diversity of the gut microbiota in oriental
white storks, and thus help for the integrative conservation of this
endangered species.
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