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INTRODUCTION

Red mold rice (RMR), the fermented product of Monascus strains, also called Hongqu, red
fermented rice (RFR), and red yeast rice (RYR), has been used as a food coloring agent, food
preservative, and traditional medicine for about 2,000 years in China (Chen et al., 2015). There
are also historical records regarding the use of RMR in other oriental countries (Chen et al., 2015).
Due to regional and cultural differences, there are many other names for RMR, such as beni-koji,
red koji, or anka in Japan and Rotschimmelreis in Europe (Chen et al., 2015). Although RMR has a
long history of consumption, we didn’t know theMonascus strain until it was isolated from RMR in
1884 (Tieghem, 1884). Since then, scholars have gradually turned their attention toMonascus strain
and its metabolic products (Patakova, 2013; Shao et al., 2014).Monascus species have great abilities
to produce polyketides, such as well-knownMonascus azaphilone pigments (MonAzPs), monacolin
K (MK), and citrinin. Genomic information mining shows thatMonascus spp. have great potential
to produce multiple secondary metabolites (Chen et al., 2015), attracting more and more attention
worldwide. Based on current progress of RMR andMonascus species, this opinion puts forward the
issues that need to be further studied and discussed.

THE CATEGORIES OF RMR AND THEIR APPLICATIONS

According to the applicable scope of RMR, it can be divided into three main categories, namely,
color RMR (CRMR), functional RMR (FRMR), and brewing RMR (BRMR) (Feng and Yu, 2020).
CRMR is the product rich in MonAzPs, which have been extensively used in the food industry as
a natural food colorant. It is estimated that more than one billion people consume food containing
MonAzPs-related products during their daily life (Yang et al., 2015). Currently, MonAzPs have
become one of the fastest growing categories of natural food colorants in the Chinese market
(Sun and Wang, 2019). Annual production of MonAzPs is estimated to exceed 20,000 metric tons
in China alone (Yang et al., 2015). MonAzPs also possess a wide range of biological activities,
making them potential as a functional food ingredient (Lin et al., 2017). In addition, MonAzPs
have many promising applications in the cosmetics, textile, printing, and dyeing industries (Chen
et al., 2019). FRMR is a product rich in MK. Since MK can reduce the synthesis of cholesterol
by inhibiting the activity of HMG-CoA reductase to lower blood lipids, it has been developed as
a blood lipid-lowering drug and health care product (Zhang et al., 2020). There are two forms
of MK produced by Monascus strains containing the active β-hydroxy acid form that exerts
pharmacological effects, as well as an inactive lactone form, which makes the side effects of MK less
than currently reported statin-like drugs (Beltran et al., 2019; Zhang et al., 2020). BRMR is a kind of
fermented product rich in esterification enzymes, which can be used to enhance the unique aroma
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components of food. In China, it is mainly used for
the enhancement of the aroma of liquor and soy sauce
(Xu et al., 2021).

CURRENT RESEARCH AND FUTURE

DIRECTION

Given large-scale utilization and economic importance of RMR,
scholars make more efforts to study the Monascus species to
improve the product quality. In an attempt to summarize the
published articles, the themes regarding Monascus research
can be clustered into six groups: (1) the classification and
identification of Monascus strains; (2) the methods to improve
useful metabolites but inhibit citrinin; (3) the isolation and
identification of new metabolites; (4) the exploration of
the functional activity of metabolites; (5) the biosynthetic
pathway and genetic regulation of secondary metabolites and
developmental process; and (6) genomic information mining.
These studies have brought new life to the RMR. However, many
issues about RMR and the Monascus species still need to be
further discussed, which are summarized as followed.

The Production of RMR
The method of producing RMR by solid-state fermentation
(SSF) has continued from ancient times to today in China
(Chen et al., 2015). This method looks simple and does not
require large equipment, but it is time-consuming and relies on
manual labor (Chen et al., 2015). So it is difficult to control
RMR quality among different batches. Comparatively, liquid-
state (submerged) fermentation (LSF/SF) has the characteristics
of short period, not easy to be contaminated, and a higher degree
of automation, so it is more and more favored by manufacturers.
This has been practiced in MonAzPs production and also been
considered to produce MK (Silveira et al., 2013; Feng et al.,
2016). But the confusing problem is that the content of MK
produced by LSF is much lower than the yield by SSF. This
phenomenon has also been observed in antibiotic-producing
bacteria Cylindrocarpon sp. LL-Cyan426 and Acremonium sp.
LL-Cyan416, which was attributed to the interface of SSF
providing various exceptional habitations, such as the gradient
of pH, O2, and substrate concentrations as well as product
concentrations for mycelia growth (Bigelis et al., 2006). If all
kinds of RMR can be produced by LSF, the RMR fermentation
industry will be bought to a new level.

Generally, Monascus purpureus, Monascus ruber, and
Monascus pilosus are widely used as the producers of various
types of RMR (Patel, 2016). In fact, since van Tieghem first
isolated Monascus strains from RMR (Tieghem, 1884), more
than 20 species of Monascus have been recorded (Li and Guo,
2003). These Monascus species come from a wide range of
ecological environments, such as sand pine (Barnard and
Cannon, 1987), the surface sediment samples of water (Cannon
et al., 1995), soil (Celestino et al., 2014), honey, and nests
of stingless bees (Barbosa et al., 2017), showing their high
adaptability in complex environments. We know that Monascus

strains for fermentation usually grow slowly and are easily
contaminated. However, how do these Monascus strains survive
in such a diverse natural environment? What is the ecological
role of a Monascus strain in nature? There is no doubt that
different environments should influence the genetic regulation
and cell development even influence the secondary metabolites.
So the exploration of these issues will help us to better understand
and utilizeMonascus resources.

Correlation of Polyketide Biosynthetic

Pathway and Their Regulation
Currently, MonAzPs, MK, and citrinin are the most well-known
secondary metabolites produced by Monascus strains, and their
biosynthetic pathways had been explained by several research
groups (Fu et al., 2007; Chen et al., 2008, 2017; Balakrishnan et al.,
2014; He and Cox, 2016). But there is a complicated relationship
among these compounds. Usually, the production of MonAzPs
was often accompanied by the contamination of mycotoxin
(citrinin), meaning thatMonAzPs high-producing strains usually
have strong abilities to synthesize citrinin (Wang et al., 2012). For
this reason, scholars made great efforts to decrease or eliminate
the production of citrinin in RMR and the related products
through optimization of fermentation parameters and strain
screening. Yet, it is still not clear why citrinin and MonAzPs
always coexist in RMR.

It was proposed that the initial synthesis of citrinin shared
the same precursor and biosynthetic steps with MonAzPs (Hajjaj
et al., 1999). With the application of molecular biology tools, it
has been demonstrated thatMonAzPs and citrinin have their own
independent biosynthetic pathways, and genes encoding these
two biosynthetic pathways form separate gene clusters located on
two different chromosomes (Balakrishnan et al., 2014; Li et al.,
2015; Ding et al., 2016; He and Cox, 2016; Chen et al., 2017),
which presents a new idea for people to control citrinin in RMR
through knocking out the genes responsible for citrinin synthesis.
However, this didn’t achieve the desired expectations but even
led to some results contradictory to our current understanding of
biosynthetic pathways with respect to MonAzPs and citrinin. An
example is that the deletion of specific genes involved in citrinin
synthesis decreased the production of citrinin and MonAzPs
(Li et al., 2015); another example is that the deletion of genes
in the MonAzPs biosynthetic pathways resulted in decreased
MonAzPs and citrinin (Liang et al., 2017). Therefore, it is
currently hard to explain the puzzling phenomenon of MonAzPs
and citrinin from the perspective of biosynthetic pathways.
Interestingly, strains with high MK production rarely produce
citrinin but can produce visible MonAzPs. So it is necessary to
explore the relationship among these three polyketides at the
genetic level.

The biosynthesis of secondary metabolites are regulated
by multiple levels. It is well-known that certain regulatory
factors, such as global regulator MrLaeA (Liu et al., 2016),
components of G-protein signaling pathway, including MrFlbA
(a regulator of G-protein alpha subunit) α, β, and γ subunits
(Yang et al., 2012; Lei et al., 2019), and response regulator
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MrSkn7 have been demonstrated to modulate the production
of MonAzPs, MK, and citrinin (Shao et al., 2016). But
it is a remarkable fact that the regulation trend of these
regulators on MonAzPs and citrinin is consistent. Are there
any regulators that provide reverse regulation of the production
of MonAzPs and citrinin? This is also an interesting question
worthy of investigation.

The Relationship Between Development

and Secondary Metabolism
Secondary metabolism is always coupled with developmental
processes (Chen et al., 2019). At present, the regulators reported
in Monascus strains have played important regulatory roles in
the production of MonAzPs and citrinin, and usually affected
their growth, sexual, and asexual development (Yang et al.,
2012; Liu et al., 2016; Shao et al., 2016; Lei et al., 2019).
Do these regulators affect the secondary metabolic process by
influencing the developmental process, or vice versa? This is
a common problem with other filamentous fungi and a great
challenge. If this question can be explained clearly, it will
play an important guiding role in the rational improvement
of industrial strains.

SUMMARY

Although RMR has been used as a traditional fermented food
for nearly 2,000 years, we still lack a deep understanding of
Monascus species at the genetic level. With the application
of genome information mining and modern biotechnology,
the genetic information of Monascus species will be
continuously deciphered, which will help us make better
use ofMonascus resources.
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