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Diabetic retinopathy (DR) has been reported to associate with gut microbiota alterations
in murine models and thus “gut-retina-axis” has been proposed. However, the role
of gut microbiome and the associated metabolism in DR patients still need to be
elucidated. In this study, we collected fecal samples from 45 patients with proliferative
diabetic retinopathy (PDR) and 90 matched diabetic patients (1:2 according to
age, sex, and duration of diabetes) without DR (NDR) and performed 16S rRNA
gene sequencing and untargeted metabolomics. We observed significantly lower
bacterial diversity in the PDR group than that in the NDR group. Differential gut
bacterial composition was also found, with significant depletion of 22 families (e.g.,
Coriobacteriaceae, Veillonellaceae, and Streptococcaceae) and enrichment of two
families (Burkholderiaceae and Burkholderiales_unclassified) in the PDR group as
compared with the NDR group. There were significantly different fecal metabolic
features, which were enriched in metabolic pathways such as arachidonic acid and
microbial metabolism, between the two groups. Among 36 coabundance metabolite
clusters, 11 were positively/negatively contributed to PDR using logistic regression
analysis. Fifteen gut microbial families were significantly correlated with the 11 metabolite
clusters. Furthermore, a fecal metabolite-based classifier was constructed to distinguish
PDR patients from NDR patients accurately. In conclusion, PDR is associated with
reduced diversity and altered composition of gut microbiota and specific microbe-
metabolite interplay. Our findings help to better understand the disease pathogenesis
and provide novel diagnostic and therapeutic targets for PDR.

Keywords: diabetic retinopathy, microbiome, metabolome, cross-omics analysis, diagnostic targets

INTRODUCTION

Diabetes mellitus is growing fast and estimated to affect 10.2% (578 million) of the global population
in 2030 (Saeedi et al, 2019). Diabetic retinopathy (DR) is its most common microvascular
complication and a major cause of the worldwide vision impairment (Duh et al, 2017).
Proliferative diabetic retinopathy (PDR) is the advanced stage of DR and the leading cause of
blindness. The pathological hallmarkers of PDR include capillary occlusion and neovascularization
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(Duh et al.,, 2017). Accordingly, intravitreous injection of anti-
VEGF drugs, laser, and vitrectomy have been developed to
treat PDR. Although these treatments seem to be effective,
some of the treated eyes still deteriorate and lose vision finally
(Duh et al., 2017), necessitating the development of novel
therapeutic approaches.

Recent progresses in basic science greatly improve our
knowledge about how diabetes impacts retina such as the
proposed “gut-retina axis.” Gut microbiota is the most densely
populated microbial ecosystem in human body and is integral
to the maintenance of human health. Alterations in the gut
microbiota have been implicated in the onset and development
of various human diseases including diabetes (Wu et al., 2020)
and ocular disorders (Floyd and Grant, 2020). Previous studies
in murine models have demonstrated that type 2 diabetes-
altered gut microbiota is associated with the exacerbation of
DR, indicating a possible role of gut-retina axis (Floyd and
Grant, 2020). Targeting the gut microbiota and their-associated
metabolites such as tauroursodeoxycholate (TUDCA) via diet
or probiotics might be a new therapeutic strategy (Floyd and
Grant, 2020). However, the specific gut microbiota composition
and the related metabolic profiling in DR, particularly the
highly blindness-causing PDR, is still unknown in human. We
herein conducted the pioneering human study to identify the
pathological mechanism of PDR from a deep understanding
of gut-retina axis and to seek the novel predictive and
therapeutic targets.

MATERIALS AND METHODS
Study Cohort and Samples

We recruited patients with type 2 diabetes in Eye Center,
the Second Affiliated Hospital, Zhejiang University School of
Medicine between January 2020 and July 2020. This study was
approved by the ethical committee of the Second Affiliated
Hospital, Zhejiang University School of Medicine (approval
number 2020776) and conformed to the ethical guidelines of
the 1975 Declaration of Helsinki. Written informed consents
were obtained from all subjects. The inclusion criteria were all
adult patients with age > 18 years, Han population, a history
of type 2 diabetes, ECOG score 0-1, receiving visual acuity,
dilated fundoscopy, optical coherence tomography (OCT), and
fundus fluorescein angiography (FFA). The exclusion criteria
were as follows: sepsis in need of antibiotics within 12 weeks prior
to enrollment, specifically infection such as hepatitis virus or
tuberculosis, cancers, severe systemic diseases, and hospitalized,
unhealthy lifestyle such as alcohol abuse and smoking. The
patients with the presentation of retinal neovascularization in
FFA were diagnosed as PDR. During the study period, a total
of 45 enrolled patients were diagnosed as PDR and received
vitrectomy (PDR group, n = 45). Another 90 matched patients
(1:2 according to age, sex, and duration of diabetes) without DR
were included using propensity score (NDR group, n = 90). Stool
samples were obtained and immediately frozen in liquid nitrogen
before storage at —80°C. Clinical data including biochemistry
were acquired and analyzed.

DNA Extraction and 16S rRNA Gene
Sequencing

DNA was extracted using a kit (TTANGEN Biotech, Beijing,
China). The V3-V4 region of the bacterial 16S rRNA gene was
amplified and sequenced using an Illumina HiSeq2500 platform
(lumina, San Diego, CA, United States) as we described
previously (Lu et al., 2019). Quality-filtered sequences were
clustered into operational taxonomic units (OTUs) and displayed
using R software (version 2.15.3). Bacterial richness and diversity
analyses were calculated. Principal component analysis (PCA)
using weighted and UniFrac distance metrics were conducted.
Wilcoxon rank-sum test was performed for comparison between
the two groups. Linear discriminant analysis (LDA) effect size
(LEfSe) method was used for distinguishing taxonomic types.
Phylogenetic investigation of communities by reconstruction of
unobserved states (PICRUSt) analysis was performed to predict
functional composition profiles.

Liquid Chromatography-Mass
Spectrometry-Based Metabolomics
Analysis

Fecal samples were used for liquid chromatography-mass
spectrometry-based metabolomics (UPLC-MS) analysis as we
described previously (Zhang et al., 2020). A portion of 100 mg
sample was weighted precisely and mixed with 1 ml of
chilled methanol/deionized water (4:1, v:v) and homogenized at
5,000 rpm for 5 min by a Precellys 24 (Bertin Technologies,
Paris, France) with 200 mg glass beads (Sigma-Aldrich, St Louis,
MO, United States). The homogenate solution was then bathe
in ice for 20 min and centrifuged at 15,000 rpm for 10 min.
Finally, the supernatant was lyophilized and reconstructed with
200 pl methanol/water (4:1, v:v) for UPLC-Q-TOF/MS analysis.
Quality control (QC) samples were preprocessed in the same
method for data quality assessment. A Waters Q-TOF Premier
mass spectrometer (Waters, Manchester, United Kingdom) was
used to perform the mass spectrometry in both positive and
negative electrospray ionization (ESI) mode. The raw data were
analyzed with Compound Discoverer 3.0 (CD 3.0, Thermo Fisher
Scientific). Peaks were matched with the database of mzCloud'
and ChemSpider’. MetaboAnalyst 4.0 and SIMCA software were
used for functional analysis (Zhang et al., 2020). Batch effect
was removed with quantile normlization. The ESI+ and ESI—
mode features were then concatenated for the downstream
analysis. Samples that failed to exceed 50% meaning values
would be excluded. Zero values were replaced by the half of
the minimum positive value on a per-sample basis. Feature
filtering based on median absolute deviation were performed
to remove noise. Individual features were log-transformed to
variance stabilize the data. During correlation calculation, if
multiple metabolomic features/compounds matched the same
MS2 metabolites, the feature/compound with the highest
absolute correlation would be selected.

'https://www.mzcloud.org/
Zhttp://www.chemspider.com/
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Unsupervised Clustering of Coabundant
Metabolites

Clusters of coabundant metabolites were identified
using the R package WGCNA. Top 75% median
absolute deviation of identified MS1/MS2 features were
filtered to cluster a signed and weighted metabolite
coabundance  correlation  network.  The  correlation
method in all functions was biweight midcorrelation
(bicor) (maxPOutliers = 0.05) because of its robustness
(Langfelder and Horvath, 2012). The power value of our
scale-free topology was 3.

Cross-Omics Correlation Network

Analysis

Spearman correlations between the gut microbiota and
metabolite modules were performed using R 4.0.2. We also
performed biweight midcorrelation (Langfelder and Horvath,
2012) to calculate correlation between metabolite modules and
clinical phenotype. Adjusted p-values (FDR) were controlled
by the Benjamini-Hochberg method. Logistic regression was
performed using stats R package. Simulated Residuals test was
performed using DHARMa R package. Multicollinearity test was
performed using car R package.

Support-Vector Machine Classification

We performed support-vector machines (SVMs) with Radial
asis Function Kernel classification using the implementation
of this method in caret R package. We considered SVM
classifiers for predicting NDR/PDR status. SVM was trained
on 70% of the samples and tested on the remaining 30%.
Features were not selected in any way before training.
Data were scaled and centered before training, and cross-
validated (fivefold and repeated 100 times) for resampling.
Parameter used for the model were sigma = 0.0002563017
and C = 0.25. The performance of models was measured
by area under curve (AUC), which was calculated
using pROC R package.

Statistical Analysis

The significance was compared using Students ¢-test,
ANOVA, or the Kruskal-Wallis test. Other statistical
approach in dataset bioinformatics analyses has been
described above. Data were analyzed using GraphPad
Prism software version 6.1 (GraphPad software, Inc.), R
version 4.0.2 (R foundation for Statistical Computing),
and SPSS 13.0 (SPSS Inc). A p-value of <0.05 was
statistically significant.

RESULTS

Patient Characteristics

A total of 45 patients receiving operation for PDR were
included. Another 90 propensity score-matched diabetic patients
without PDR according to age, gender, and history of
diabetes were enrolled as control group. Patient characteristics

are shown in Table 1. There was no significant difference
between the two groups in body mass index (BMI), diabetic
complications, metabolic comorbidities, therapeutic strategies,
and laboratory data.

Reduced Gut Microbiota Diversity in PDR

We performed 16S rRNA gene sequencing to assess the
landscape of gut microbiome. A total of 8,569,316 high-
quality valid tags (range: 46,269-80,826 per sample) were
obtained. PDR group showed a decreased value of observed
OTUs than NDR group, indicating reduced richness and
bacterial diversity (Figure 1A). We further evaluated the
differences in gut microbiome diversity between the two
groups using alpha diversity and beta diversity. There was
significantly lower alpha diversity of gut microbiome in the
PDR group than that in the NDR group according to
four independent indices including species richness indices
(observed OTUs and Chaol) and species diversity indices
(Shannon and Simpson) (Figure 1B). PCA displayed segregation
of the microbiota between the two groups (Figure 1C).
The score plot of principal coordinate analysis based on
unweighted/weighted UniFrac distances showed differences in

TABLE 1 | Patient characteristics.

PDR (n = 45) NDR (n = 90) p-value
Age (year) 599+ 113 60.9 £9.9 0.599
Male (n) 25 50 1.000
BMI (kg/m?) 244 +£27 249 +38 0.400
History of diabetes (year) 10.0 (2.5, 16.7) 10.0 (2.0, 15.3) 0.277
Complications (n)
Macrovascular 10 18 0.764
Kidney 7 13 0.864
Neuropathy 9 19 0.881
Comorbidities (n)
Hypertension 17 29 0.521
Fatty liver 10 24 0.575
Dyslipidemia 12 19 0.469
Medication (n)
Oral antidiabetic drugs 30 68 0.275
Metformin 22 48 0.626
Glycosidase inhibitors 12 22 0.779
DPP4 inhibitors 9 18 1.000
Insulin secretagogues 9 15 0.633
Insulin injection 24 43 0.5643
Proton pump inhibitor 0 3
Laboratory data
Fasting glucose (mmol/L) 6.6 +2.3 6.6+29 0.992
HOMA-IR 2.6(1.8,4.7) 2.5(1.5,4.6) 0.244
HbA1c (%) 9.6+22 8.8+2.3 0.144
Triglyceride (mmol/L) 1.40 (0.99, 2.06) 1.44 (1.02, 2.18) 0.590
Cholesterol (mmol/L) 437 £1.28 4.35+1.11 0.929
Creatinine (wmol/L) 66.0 £ 30.4 69.9 £+ 23.6 0.569

PDR, proliferative diabetic retinopathy, NDR, diabetic patients without retinopathy;
BMI, body mass index; DPP4, dipeptidyl peptidase-4; HOMA-IR, homeostasis
model assessment of insulin resistance.
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the structure and composition of bacterial community between
the two groups (Figure 1D).

Alterations of Gut Microbiome
Signatures in PDR

To investigate the gut microbiome signatures, we assessed the
relative abundance of gut bacterial composition by microbial
taxon assignment at both phylum and family levels. At the
phylum level, Firmicutes, Actinobacteria, and Proteobacteria
accounted for most microbial communities (Figure 1E).
However, no significant difference was found between the two

groups including the Firmicutes/Bacteroidetes ratio. At the
family level, PDR group showed significantly less abundant
in 22 families including Coriobacteriaceae, Veillonellaceae,
and Streptococcaceae and more abundant in two families
(Burkholderiaceae and  Burkholderiales_unclassified)  than
NDR group (Figure 1F). The representative high-abundance
families are shown in Figure 1G. At the genus levels, there
were 66 significantly different taxa between the two groups
(Supplementary Figure 1).

To characterize the distinct microbial compositions, we
further identified key discriminative OTUs in the PDR group
relative to the NDR group using LEfSe analysis. There were
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28 discriminative features with LDA scores > 3.5 level
(Figure 2A). At the family level, PDR group was enriched
by Burkholderiaceae, whereas NDR group was enriched
by Coriobacteriaceae, Streptococcaceae, and Veillonellaceae
(Figure 2B). At the genus level, the PDR group was enriched
by Morganella, while the NDR group was enriched by

Collinsella, Streptococcus, Erysipelotrichaceae_UCG_003,
Ruminococcaceae_UCG_002, Ruminococcaceae_UCG_014,
Faecalibacterium, Eubacterium_coprostanoligenes_group,

Agathobacter, Roseburia, and Dorea.

To predict the functional alteration of gut microbiota in
PDR patients, we performed PICRUSt analysis. The PDR group
showed significant difference in nucleotide metabolism, amino
acid metabolism, and lipid metabolism as compared with the
NDR group (Supplementary Figure 2). There were 32 KEGG
pathways that were significantly differentially enriched between
the two groups (all p < 0.05) including secretion system,
ribosome, peroxisome, purine metabolism, and carbohydrate
metabolism (Figure 2C).

Fecal Metabolic Profiles of PDR

To directly evaluate the influence of PDR on gut microbial
metabolism, we performed UPLC-MS-based analysis of
metabolomics using fecal samples. PCA score plots displayed
that the QC samples in both ESI+ and ESI— models were
clustered tightly together, indicating the analysis was stable
and repeatable (Supplementary Figure 3). The partial least
squares discriminate analysis (PLS-DA) score plots showed
apparent separation between the PDR group and NDR group
in both ESI+ and ESI— models (Figure 3A). There were 133
and 129 features in the ESI + and ESI— models significantly
altered between the two groups according to selection criteria of
p < 0.05, the variable importance in the projection (VIP) > 1,
and | log2(fold change)| > 1. Most of the metabolites belonged to
lipids and lipid-like molecules, organoheterocyclic compounds,
organic acids and derivatives, and benzenoid superclasses
(Figure 3B). They were significantly enriched in metabolic
pathways including arachidonic acid metabolism, microbial
metabolism in diverse environments, linoleic acid metabolism,
and purine metabolism (Figure 3C). Of interest, 34 metabolic
features were significantly enriched in microbial metabolism
in diverse environment, indicating a potential impact of gut
microbiota on the metabolic profiling.

Cross-Omics Correlation Network

Analysis

Gut bacteria provide bioactive metabolites, which enter the
bloodstream of host and affect the disease progression. We
performed cross-omics analysis to show the link between gut
bacteria, the associated metabolites, and PDR. A total of 8,208
identified MS1/MS2 features were filtered by top 75% median
absolute deviation from 10,944 features. First, we classified
the metabolites into 36 coabundance clusters including 15
clusters that were significantly correlated with PDR (p < 0.05,
Figure 4A). Various kinds of mechanism can come up with
clusters of coabundance metabolites such as: (1) metabolites
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FIGURE 3 | | Fecal metabolic profiles in patients with and without proliferative
diabetic retinopathy. (A) The three-dimensional PLS-DA score plots of the two
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The enriched KEGG pathways of altered metabolic features. PDR, proliferative
diabetic retinopathy; NDR, diabetic patients without retinopathy; PCA,
principal component analysis; PLS-DA, partial least squares discriminate
analysis.

correlated with the same biological process/pathway; (2) the
same/similar precursor metabolite chemical modification; and
(3) metabolites coyielded by the specific gut microbiome. Second,
we performed correlation analysis between gut microbiota
families and the metabolite clusters. We found a significant
correlation between 19 families and 25 clusters (Figure 4B). For
instance, Burkholderiaceae was significantly positively correlated
with clusters 5 and 19 but negatively correlated with clusters
12, 22, 29, and 36, while Coriobacteriaceae was significantly
positively correlated with clusters 7 and 32. We further entered
the gut microbiota-correlated 25 metabolite clusters into logistic
regression and identified 11 clusters that significantly contribute
to the risk of PDR (Figure 4C). The detailed information of
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FIGURE 4 | Relationship network between proliferative diabetic retinopathy-linked microbes and metabolites. (A) PDR-associated coabundance clusters as revealed
by biweight midcorrelation analysis. (B) Significantly correlated gut microbiota families with coabundance clusters as shown by Spearman correlation analysis

(**p < 0.001; *p < 0.01; *p < 0.05). (C) The positive/negative metabotypes of PDR as identified by logistic regression analysis. (D) The detailed description of
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the 11 clusters including MS2 metabolites, MS2 superclass, and to the contribution power (risk ratio), we classified the 11
compassion significance between the PDR group and NDR clusters into five PDR-positive metabotypes and six PDR-
group are provided in Supplementary Table 1. According negative metabotypes. The most representative risk (cluster 8)
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and protective metabotypes (cluster 20) for PDR are shown in
Figure 4D. Cluster 8 contained 46 features including desogestrel
and dehydrosalsolidine that were significantly more abundant
in the PDR group, whereas cluster 20 contained 37 features
including N-methyl-L-alanine and D-erythro-sphinganine that
were significantly less abundant in the PDR group as compared
with the NDR group. Finally, we construct an interaction network
for 15 gut microbiota families and the 11 PDR-positive/negative
metabotypes, suggesting that gut microbiota might contribute to
the development of PDR through interacting with metabolites
(Figure 4E).

Predictive Model for PDR

To assess the predictive role of fecal metabolites in PDR, we
trained SVM classifiers on patient fecal metabolite profiles. We
divided all patients into a train set and a test set according to a
ratio of 7:3. Classification performance was evaluated by AUC.
We found that the MS2 metabolites could well distinguish PDR
patients from NDR patients, as shown by AUCs of 0.960 and
0.943 in train and test sets (Figure 5A). The metabolites model
presented high accuracy in predicting PDR with sensitivity of
0.846 and specificity of 0.936 (Figure 5B). The most discriminate
metabolites included alantolactone, desogestrel, adenine, D-
erythro-sphinganine, and corosolic acid (Figure 5C).

DISCUSSION

Gut-retina axis has been proposed according to the mice
experiments (Floyd and Grant, 2020) and hypothesize that
diabetic-associated microbiome could lead to increased
inflammation and vascular permeability, which influence
the development and progression of DR (Fernandes et al., 2019).
However, alterations of gut microbiota have not been directly
linked to DR in human studies. A previous study using fecal
colony culture and PCR strategy did not find a significant
difference in the abundance of Bacteroides between diabetic
patients with and without DR (Moubayed et al., 2019). A pilot-
scale study using only 16S rRNA sequencing showed dysbiosis
in microbiomes in 28 DR patients as compared with 30 healthy
individuals and 24 type 2 diabetic patients (Das et al., 2021). This
is a pioneering study that explores the DR-associated alterations
of human gut microbiome and metabolome. We enrolled PDR
patients as the DR group, which were compared with the NDR
group, to maximize the diversity between DR and NDR. We
demonstrated sharply decreased bacteria abundance and gut
microbiota diversity in diabetic patients with PDR as compared
with those without DR. The loss of microbial taxonomic
diversity is frequently observed in many human diseases such
as diabetes and cancer and is recognized to be associated with
systemic inflammation (Estaki et al., 2016; Arnoriaga-Rodriguez
and Fernandez-Real, 2019), which play a clear role in the
pathogenesis of DR (Duh et al., 2017). Therefore, we suppose
that microbial diversity might reflect the severity of DR.
Moreover, we showed the change of microbiota composition
and specific population of bacterial species in diabetic patients
with PDR as compared with those without DR. There was

no significant difference in bacterial abundance at phylum
level between the two groups. However, at family level,
PDR was found to be associated with significantly decreased
abundance of a series of bacteria including Coriobacteriaceae,
Veillonellaceae, and Streptococcaceae. Several bacteria have
known function particularly in metabolic diseases. For instance,
Coriobacteriaceae may regulate host glucose homeostasis via
liver energy metabolism and protect against hyperglycemia (Liu
et al., 2018). Veillonellaceae are the key organisms in human
gut that metabolize lactate (Scheiman et al, 2019), thereby
reducing the risk of developing diabetic complication including
PDR (Mieno et al,, 2019). In addition, Clostridiales_unclassified,
Ruminococcaceae, Firmicutes_unclassified, Clostridiaceae, and
Rikenellaceae were the top bacterial taxa at the family level
contributing to the ClpB-like gene function that leads to reduced
fat mass (Arnoriaga-Rodriguez et al., 2020). In contrast to the
bacteria with decreased abundance, the family Burkholderiaceae
was the only bacterial taxa that are enriched in the gut of
PDR patients and the key discriminative microbial marker
as identified by LEfSe analysis. Burkholderiaceae is a known
heterotrophic bacteria that was reported to colonize in the gut
of patients with immunosuppression (Yang et al., 2016) and
positively correlate with chemokine IP-10, inducing systemic
inflammation (Zhang et al., 2019). Moreover, Burkholderiaceae,
along with Coriobacteriaceae and Streptococcaceae, were closely
correlated with altered glutamate metabolism (Palomo-Buitrago
et al., 2019), which has been proven to be an early pathogenic
event in the development of DR (Lieth et al., 1998).

We further demonstrated that not only the abundance
and composition of gut microbiome but also the gut-derived
metabolites displayed PDR-specific biosignature. The significant
differentially expressed metabolites were enriched in metabolic
pathways, such as, linoleic acid metabolism, purine metabolism,
tyrosine metabolism, and carbohydrate metabolism. Some
metabolic pathways including arachidonic acid metabolism and
purine metabolism were predicted to be altered by microbiome
and further proved by metabolome. We found that the
arachidonic acid metabolites such as hydroxyeicosatetraenoic
acids (HETEs) and leukotriene, which are known mediators for
DR development (Bapputty et al., 2019; Wang et al., 2020),
were increased in the fecal of PDR patients, making them as
the potential diagnostic markers and therapeutic targets. Our
results were consistent with previous studies that HETEs were
also increased in the serum of DR patients as compared with
NDR patients (Xuan et al., 2020). On the other hand, there
were 34 fecal metabolites including vanillate, D-galactonate, D-
gluconic acid, and aerobactin that were significantly enriched in
microbial metabolism, showing an extensive interplay between
the gut microbiota and the host through metabolic exchange and
substrate cometabolism (Nicholson et al., 2012).

We next revealed an integrated cross-omics framework
to better understand the link between gut microbiome
and metabolome particularly under the circumstance of
PDR. We enriched coexpression-based clusters to classify
metabolites with similar physicochemical properties. The
method greatly shortened the numbers of metabolomics
parameters from thousands of metabolite features to dozens of
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metabolite clusters, which made the risk analysis using logistic
regression available. We then identified several metabolite
clusters that were significantly associated with PDR risk.
For instance, the metabolic pattern of cluster 8, including
33 upregulated (e.g., desogestrel and acylcarnitine 21:2) and
13 downregulated metabolite features (e.g., LysoPA 21:0 and
linoleic acid) in PDR patients as compared with NDR patients,
sharply increased the risk of PDR by 18.5-fold in diabetic
patients. In contrast, the metabolic pattern of cluster 20,
including 12 upregulated (e.g., succinic anhydride) and 25
downregulated metabolite features (e.g., acylcarnitine 22:2
and (—)-riboflavin) in PDR patients, dramatically reduced
the PDR risk by 17.6-fold. The results not only confirmed
the previously identified PDR-associated metabolites such
as the arginine and carnitine metabolites (Liew et al., 2017;
Sumarriva et al., 2019) but also provided new candidates
from unlabeled metabolites. Furthermore, we correlated the
gut microbiota with the metabolic phenotype and found
significant relationships between certain bacteria families and
PDR-associated metabolite clusters. For example, cluster 3,

the most microbial-affected metabolite cluster containing 19
organic acids and derivatives, was significantly correlated with
nine microbial families including Clostridiaceae, Lachnospiracea,
Lactobacillaceae, and Bifidobacteriaceae. The PDR-negative
metabotype cluster 32 was only positively correlated with
Coriobacteriaceae. The results shed light on the PDR-linked
microbe-metabolite interaction.

There were limitations in this study. First, the sample size was
relatively small. Therefore, we used propensity score-matched
cohort to minimize the selection bias. Second, there were some
confounding factors. Although the diabetic complications and
medications, which have impact on the gut microbiome and
metabolomics, did not differ significantly between the two
groups, the diet habit and lifestyle were not controlled and may
also affect the results. Third, the casual relationship between
gut microbe-metabolite and PDR could not been determined
by this study. Lastly, most coabundance metabolite clusters
remained largely uncharacterized and need further exploration.
The therapeutic significance of restoration of gut microbiota in
PDR also needs to be proved.
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In conclusion, to the best of our knowledge, it is the first study
to identify the alterations in both gut microbial community and
metabolism in diabetic patients with PDR versus NDR. There
was sharply reduced richness and bacterial diversity in PDR
patients, making supplemental probiotics a potential therapeutic
strategy through restoring the balance. Moreover, there was a
specific interplay between gut microbiome and host metabolome
under the circumstances of PDR. A fecal metabolite-derived
classifier was constructed and could effectively discriminate
PDR patients from NDR patients. Our results not only help
to better understand the physiopathological mechanisms of
PDR but also provide novel strategies in disease prevention,
diagnosis, and treatment.

DATA AVAILABILITY STATEMENT

The data are deposited in the SRA repository, accession number
is PRINA753622 (Bioproject ID).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethical Committee of the Second Affiliated Hospital,
Zhejiang University School of Medicine (approval number

REFERENCES

Arnoriaga-Rodriguez, M., and Fernandez-Real, J. M. (2019). Microbiota impacts
on chronic inflammation and metabolic syndrome - related cognitive
dysfunction. Rev. Endocr. Metab. Disord. 20, 473-480. doi: 10.1007/s11154-
019-09537-5

Arnoriaga-Rodriguez, M., Mayneris-Perxachs, J., Burokas, A., Perez-Brocal, V.,
Moya, A., Portero-Otin, M., et al. (2020). Gut bacterial ClpB-like gene function
is associated with decreased body weight and a characteristic microbiota profile.
Microbiome 8:59.

Bapputty, R., Talahalli, R., Zarini, S., Samuels, I., Murphy, R., and Gubitosi-Klug,
R. (2019). Montelukast prevents early diabetic retinopathy in mice. Diabetes 68,
2004-2015. doi: 10.2337/db19-0026

Das, T., Jayasudha, R., Chakravarthy, S., Prashanthi, G. S., Bhargava, A., Tyagi, M.,
et al. (2021). Alterations in the gut bacterial microbiome in people with type 2
diabetes mellitus and diabetic retinopathy. Sci. Rep. 11:2738.

Duh, E. J., Sun, J. K, and Stitt, A. W. (2017). Diabetic retinopathy: current
understanding, mechanisms, and treatment strategies. JCI Insight 2:e93751.
Estaki, M., Pither, J., Baumeister, P., Little, J. P., Gill, S. K., Ghosh, S., et al. (2016).
Cardiorespiratory fitness as a predictor of intestinal microbial diversity and

distinct metagenomic functions. Microbiome 4:42.

Fernandes, R., Viana, S. D., Nunes, S., and Reis, F. (2019). Diabetic gut
microbiota dysbiosis as an inflammaging and immunosenescence condition
that fosters progression of retinopathy and nephropathy. Biochim. Biophys.
Acta Mol. Basis Dis. 1865, 1876-1897.  doi: 10.1016/j.bbadis.2018.09.
032

Floyd, J. L., and Grant, M. B. (2020). The gut-eye axis: lessons learned from murine
models. Ophthalmol. Ther. 9,499-513. doi: 10.1007/s40123-020-00278-2

Langfelder, P., and Horvath, S. (2012). Fast R functions for robust correlations and
hierarchical clustering. J. Stat. Softw. 46:i11.

Lieth, E., Barber, A. J., Xu, B., Dice, C., Ratz, M. J., Tanase, D., et al. (1998).
Glial reactivity and impaired glutamate metabolism in short-term experimental
diabetic retinopathy. Penn State Retina Research Group. Diabetes 47, 815-820.
doi: 10.2337/diabetes.47.5.815

2020776). The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

PY designed the study, obtained the samples and clinical records,
and wrote the manuscript. XZ analyzed the data. YX, JX, and
XS obtained the samples and clinical records. KY supervised the
study and revised the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This study was supported by the Zhejiang Natural Science
Foundation Project of China (No. LY18H120001) and the
National Natural Youth Science Foundation Project of
China (No. 31500795).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.667632/full#supplementary- material

Liew, G., Lei, Z., Tan, G., Joachim, N., Ho, I. V., Wong, T. Y., et al. (2017).
Metabolomics of diabetic retinopathy. Curr. Diab. Rep. 17:102.

Liu, H., Zhang, H., Wang, X,, Yu, X, Hu, C,, and Zhang, X. (2018). The family
Coriobacteriaceae is a potential contributor to the beneficial effects of Roux-
en-Y gastric bypass on type 2 diabetes. Surg. Obes. Relat. Dis. 14, 584-593.
doi: 10.1016/j.s0ard.2018.01.012

Lu, H. F, Ren, Z. G,, Li, A,, Zhang, H., Xu, S. Y., Jiang, J. W,, et al. (2019). Fecal
microbiome data distinguish liver recipients with normal and abnormal liver
function from healthy controls. Front. Microbiol. 10:1518. doi: 10.3389/fmicb.
2019.01518

Mieno, H., Marunaka, Y., Inaba, T., Kojima, K., Yoneda, K., Nagata, K., et al.
(2019). pH balance and lactic acid increase in the vitreous body of diabetes
mellitus patients. Exp. Eye Res. 188:107789.

Moubayed, N. M., Bhat, R. S., Al Farraj, D., Dihani, N. A, El Ansary, A., and Fahmy,
R. M. (2019). Screening and identification of gut anaerobes (Bacteroidetes) from
human diabetic stool samples with and without retinopathy in comparison to
control subjects. Microb. Pathog. 129, 88-92. doi: 10.1016/j.micpath.2019.01.
025

Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., et al.
(2012). Host-gut microbiota metabolic interactions. Science 336, 1262-1267.
doi: 10.1126/science.1223813

Palomo-Buitrago, M. E., Sabater-Masdeu, M., Moreno-Navarrete, J. M., Caballano-
Infantes, E., Arnoriaga-Rodriguez, M., Coll, C., et al. (2019). Glutamate
interactions with obesity, insulin resistance, cognition and gut microbiota
composition. Acta Diabetol. 56, 569-579. doi: 10.1007/500592-019-01313-w

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N.,
et al. (2019). Global and regional diabetes prevalence estimates for 2019
and projections for 2030 and 2045: results from the International Diabetes
Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157:107843.
doi: 10.1016/j.diabres.2019.107843

Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D.,
et al. (2019). Meta-omics analysis of elite athletes identifies a performance-
enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104
1109. doi: 10.1038/s41591-019-0485-4

Frontiers in Microbiology | www.frontiersin.org

September 2021 | Volume 12 | Article 667632


https://www.frontiersin.org/articles/10.3389/fmicb.2021.667632/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.667632/full#supplementary-material
https://doi.org/10.1007/s11154-019-09537-5
https://doi.org/10.1007/s11154-019-09537-5
https://doi.org/10.2337/db19-0026
https://doi.org/10.1016/j.bbadis.2018.09.032
https://doi.org/10.1016/j.bbadis.2018.09.032
https://doi.org/10.1007/s40123-020-00278-2
https://doi.org/10.2337/diabetes.47.5.815
https://doi.org/10.1016/j.soard.2018.01.012
https://doi.org/10.3389/fmicb.2019.01518
https://doi.org/10.3389/fmicb.2019.01518
https://doi.org/10.1016/j.micpath.2019.01.025 
https://doi.org/10.1016/j.micpath.2019.01.025 
https://doi.org/10.1126/science.1223813
https://doi.org/10.1007/s00592-019-01313-w
https://doi.org/10.1016/j.diabres.2019.107843
https://doi.org/10.1038/s41591-019-0485-4
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Ye et al.

Gut Microbiome and Metabolome in PDR

Sumarriva, K., Uppal, K., Ma, C., Herren, D. J., Wang, Y., Chocron, I. M., et al.
(2019). Arginine and carnitine metabolites are altered in diabetic retinopathy.
Invest. Ophthalmol. Vis. Sci. 60, 3119-3126. doi: 10.1167/iovs.19-27321

Wang, M. H,, Hsiao, G., and Al-Shabrawey, M. (2020). Eicosanoids and oxidative
stress in diabetic retinopathy. Antioxidants 9:520. doi: 10.3390/antiox9060520

Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Kramer, M.,
etal. (2020). The gut microbiota in prediabetes and diabetes: a population-based
cross-sectional study. Cell Metab. 32, 379-390.e3. doi: 10.1016/j.cmet.2020.06.
011

Xuan, Q., Ouyang, Y., Wang, Y., Wu, L, Li, H, Luo, Y., et al. (2020).
Multiplatform metabolomics reveals novel serum metabolite biomarkers in
diabetic retinopathy subjects. Adv. Sci. 7:2001714. doi: 10.1002/advs.202001714

Yang, L., Poles, M. A,, Fisch, G. S., Ma, Y., Nossa, C., Phelan, J. A, et al.
(2016). HIV-induced immunosuppression is associated with colonization of the
proximal gut by environmental bacteria. AIDS 30, 19-29. doi: 10.1097/QAD.
0000000000000935

Zhang, X., Ye, P., Huang, H., Wang, B., Dong, F., and Ling, Q. (2020). TCF7L2
rs290487 C allele aberrantly enhances hepatic gluconeogenesis through allele-
specific changes in transcription and chromatin binding. Aging 12, 13365-
13387. doi: 10.18632/aging.103442

Zhang, Y., Zhao, R, Shi, D, Sun, S, Ren, H., Zhao, H., et al. (2019).
Characterization of the circulating microbiome in acute-on-chronic liver failure
associated with hepatitis B. Liver Int. 39, 1207-1216. doi: 10.1111/1iv.14097

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ye, Zhang, Xu, Xu, Song and Yao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org

11

September 2021 | Volume 12 | Article 667632


https://doi.org/10.1167/iovs.19-27321
https://doi.org/10.3390/antiox9060520
https://doi.org/10.1016/j.cmet.2020.06.011
https://doi.org/10.1016/j.cmet.2020.06.011
https://doi.org/10.1002/advs.202001714
https://doi.org/10.1097/QAD.0000000000000935
https://doi.org/10.1097/QAD.0000000000000935
https://doi.org/10.18632/aging.103442
https://doi.org/10.1111/liv.14097
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Alterations of the Gut Microbiome and Metabolome in Patients With Proliferative Diabetic Retinopathy
	Introduction
	Materials and Methods
	Study Cohort and Samples
	DNA Extraction and 16S rRNA Gene Sequencing
	Liquid Chromatography-Mass Spectrometry-Based Metabolomics Analysis
	Unsupervised Clustering of Coabundant Metabolites
	Cross-Omics Correlation Network Analysis
	Support-Vector Machine Classification
	Statistical Analysis

	Results
	Patient Characteristics
	Reduced Gut Microbiota Diversity in PDR
	Alterations of Gut Microbiome Signatures in PDR
	Fecal Metabolic Profiles of PDR
	Cross-Omics Correlation Network Analysis
	Predictive Model for PDR

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


