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Epstein–Barr virus (EBV), which encodes >80 genes and nearly 50 non-coding
RNAs, is a double-stranded DNA virus. EBV is associated with various types of
lymphomas and lymphoproliferative disorders not only of B-cell but also T/NK-cell
origin. However, the oncogenic mechanism remains poorly understood, including the
EBV receptors expressed on T/NK cells, relationship of EBV with host genes, and
epigenetic regulation of EBV and host genes. The roles of host and viral non-coding
RNAs during tumorigenesis have been elucidated. EBV encodes at least 49 mature
microRNAs (miRNAs), of which 44 are located in BamHI-A rightward transcripts (BARTs)
region, and the remaining five are located in BamHI-H rightward fragment 1. BART
miRNAs modulate cell differentiation, proliferation, apoptosis, and the cell cycle, and
they are considered positive regulators of oncogenesis. We and others have recently
reported that EBV-positive lymphomas frequently possess large deletions in BART
miRNA clusters, suggesting that some viral miRNAs have suppressive effects on
oncogenesis, and that deletion of these miRNAs may aid lymphoma formation.
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INTRODUCTION

Epstein–Barr virus (EBV), which is the first human oncovirus, was isolated from Burkitt lymphoma
by Epstein et al. (1964). EBV is a 170–180 kb double-stranded DNA virus belonging to the
herpesvirus family and gammaherpesvirus subfamily, and its genome encodes approximately 80
genes (Longnecker et al., 2013). EBV belongs to the same subfamily as Kaposi’s sarcoma-associated
herpesvirus, which is the causative virus of Kaposi’s sarcoma, and both viruses infect B cells
and are related to B-cell lymphomas. In addition to Burkitt lymphoma, EBV is associated with
a variety of malignancies with B-cell origins, such as Hodgkin lymphoma, diffuse large B-cell
lymphoma (DLBCL), and immunodeficiency-related lymphoproliferative disorders detected after
organ/hematopoietic stem cell transplantation (Swerdlow et al., 2016).

Epstein–Barr virus is also associated with natural killer (NK)-cell and T-cell neoplastic diseases
including extranodal NK/T-cell lymphoma, nasal type (ENKTL) (Chan et al., 2017), chronic active
EBV disease (CAEBV) (Quintanilla-Martinez et al., 2017; Cohen et al., 2020), and epithelial tumors
such as nasopharyngeal carcinoma and gastric cancer (Cohen, 2000; Longnecker et al., 2013).
Although extensive studies have been conducted on the implication of MYC translocation and
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activation in Burkitt lymphoma (Longnecker et al., 2013),
the oncogenic mechanisms (including the T/NK-cell receptors
expressed, the relationship of EBV with host genes, and epigenetic
regulation of EBV and host genes) associated with other
lymphoid tumors are still unclear.

The roles of host and viral non-coding RNAs have
been elucidated during tumorigenesis in various malignancies,
including EBV-associated diseases (Cai et al., 2006; Qiu et al.,
2011; Klinke et al., 2014; Kuzembayeva et al., 2014; Dreyfus, 2017;
Iizasa et al., 2020). We and others have recently reported that
EBV-positive lymphomas frequently possess large deletions in
viral microRNA (miRNA) clusters, suggesting that some miRNAs
negatively regulate lymphomagenesis (Peng et al., 2018; Okuno
et al., 2019; Mabuchi et al., 2021). This review outlines the role
of viral non-coding RNAs in the lymphomagenesis of EBV-
associated diseases, focusing on EBV-encoded miRNAs.

Biology of EBV Infection
Epstein–Barr virus can cause either a latent or lytic infection.
In a latent infection, EBV exists as an episome in the nucleus.
No viral particles are produced in the host cell, and only a
limited number of genes are expressed. Latent infections are
classified into four patterns, type 0, I, II, and III, depending
on the host cell, tissue, and immune status (Longnecker et al.,
2013; Munz, 2019). Latency type 0 is seen in the memory B cells
of healthy individuals, and few viral proteins are expressed in
this type. In type I, EBV nuclear antigen (EBNA) 1 and EBV-
encoded small RNAs (EBERs) are expressed. In a type II infection,
latent membrane protein (LMP) 1 and LMP2 are additionally
expressed. EBNA2, 3s, and LP are expressed in type III infections.

In contrast, immediate-early, early, and late genes are
expressed one after another during lytic infection, and virus
particles are produced. It was previously considered that virus-
infected cells are immediately in a latent state after EBV infects
B cells. However, recent evidence suggests that these cells are
temporarily in an abortive lytic infection state, and that the
expression of EBV lytic genes plays an important role in the
immortalization of infected cells (Ma et al., 2011; Murata et al.,
2014; Munz, 2019). In fact, these lytic genes are expressed
in hydroa vacciniforme-like lymphoproliferative disorder and
DLBCL (Yamamoto et al., 2016; Cohen et al., 2018), which
suggests that the abortive lytic infection may be involved in
lymphomagenesis.

Oncogenesis of EBV and EBV-Related
Malignancies
Epstein–Barr virus is used to immortalize human B cells
in vitro to produce a lymphoblastoid cell line (LCL). LMP1
is a viral membrane oncoprotein essential for immortalization;
it mimics CD40 expressed by T cells and constantly activates
downstream NF-κB, PI3K/AKT, JNK, and p38/MAPK pathways,
immortalizing infected cells and suppressing apoptosis (Kanda,
2018). Although LMP2A is not essential for immortalization, it
is also an oncoprotein that mimics the B-cell receptor expressed
by B cells, resulting in constitutive calcium recruitment,
protein kinase C activation, cell proliferation, and differentiation

suppression (Longnecker et al., 2013). EBNA1, EBNA2, EBNA3A,
EBNA3C, and EBNA-LP are nuclear proteins that help
transform B cells and maintain latency (Tomkinson et al.,
1993; Kanda, 2018). All these latent infection-related genes
are expressed in a type III infection where host cell-mediated
immunity is suppressed, such as immunodeficiency-related
lymphoproliferative disorders. As only a limited number of
viral genes are expressed during latent type I and II infections,
it is easier to avoid host immunity with these infections
compared with a type III infection. However, immortalization
and suppression of apoptosis by viral oncoproteins are limited in
these latency types (Kimura, 2018).

Table 1 summarizes the latent infection patterns of EBV-
related malignancies, as well as the degree of EBV involvement,
type of cell infected, associated high-risk factors, and EBV
miRNA profile. As mentioned above, EBV is associated with a
variety of lymphomas and lymphoproliferative diseases, not only
of B-cell but also T/NK-cell origin, as well as with epithelial
malignancies. All malignancies with T/NK- or epithelial-cell
origins are associated with type I and type II latency, in which
a limited number of viral genes are expressed and evasion of
host immunity is easier (Longnecker et al., 2013). Notably, some
EBV-positive tumors have uneven distributions in specific areas
as shown in Table 1; whether this is due to genetic variations in
the host or differences in the infecting strains remains unclear.

EBV Non-coding RNAs
In addition to viral proteins, EBV encodes many non-coding
RNAs that also potentiate oncogenesis. EBER1 and EBER2,
which are long non-coding RNAs of 167 and 172 nucleotides,
respectively, are expressed most abundantly in EBV latently
infected cells at 107 copies per cell (Arrand and Rymo, 1982;
Howe and Shu, 1989). EBERs interact with a variety of RNA-
binding proteins and optimize B-cell transformation (Yajima
et al., 2005; Fok et al., 2006). However, the exact role of EBERs is
still unknown (Munz, 2019). EBV also encodes at least 49 mature
miRNAs. Of these 44 are located within the intronic regions
of BamHI-A rightward transcripts (BART miRNAs), and the
remaining five are located in the BamHI-H rightward fragment
1 (BHRF1 miRNAs) (Klinke et al., 2014; Iizasa et al., 2020).

BamHI-H rightward fragment 1 miRNAs are expressed during
EBV latency type III and lytic infections. These miRNAs inhibit
apoptosis and promote cell cycle progression and proliferation
to induce early-phase infection in B cells (Seto et al., 2010). In
addition, BHRF1 miRNAs regulate time-restricted expression of
the BHRF1 protein (viral BCL-2 homolog) to optimize B-cell
transformation (Bernhardt et al., 2016).

BamHI-A rightward transcript miRNAs are expressed in
latency types 0, I, II, and III (Amoroso et al., 2011). Their
expression is regulated by both the immediate-early protein
BZLF1 and feedback loops that involve the host transcription
factor NF-κB (Dreyfus, 2017). BART miRNAs are mainly
categorized into clusters 1 and 2 (Figure 1; Klinke et al., 2014),
which encode eight and 13 pri-miRNAs, respectively. BART
miRNAs target host genes and modulate cell differentiation,
proliferation, apoptosis, and the cell cycle to establish infection
and produce progeny viruses (Klinke et al., 2014). For, example,
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TABLE 1 | Representative EBV-associated malignancies and their characteristics.

Diseases EBV
association

Infected
cells

Type of
latency

EBV miRNA profile High risk population

Burkitt lymphoma, endemic >95% B I miR-BART15-3p (Haneklaus et al., 2012)
miR-BART16-5p (Hooykaas et al., 2017)
miR-BART18-5p (Qiu and Thorley-Lawson, 2014)

Children in equatorial
Africa, New Guinea

Hodgkin lymphoma, mixed
cellularity

75% B II miR-BART2-5p (van Eijndhoven et al., 2016)
miR-BART13-3p (Sakamoto et al., 2017)
miR-BART19-3p (Sakamoto et al., 2017)

Lymphomatoid granulomatosis 100% B II Westerners

EBV-positive diffuse large B cell
lymphoma, not otherwise specified
(DLBCL)

100% B II or III miR-BHRF1-2-5p (Chen et al., 2019)
miR-BHRF1-3-5p (Xia et al., 2008) mir-BART2 (Xia
et al., 2008) mir-BART13 (Higuchi et al., 2018)

Individuals > 50 years

Post-transplant lymphoproliferative
disorders

70% B III All BHRF1 miRNAs and BART miRNAs (Fink et al.,
2014)

Recipients with heart, lung,
or intestine transplantation

Plasmablastic lymphoma 60–75% Plasmablasts I HIV-infected individuals

Aggressive NK cell leukemia >90% NK II Asians

Extra nodal NK/T cell lymphoma,
nasal type (ENKTL)

100% NK, T II miR-BART8-3p (Huang and Lin, 2014)
miR-BART8-5p (Huang and Lin, 2014)
miR-BART20-5p (Huang and Lin, 2014)

East Asians

Systemic EBV-positive T cell
lymphoma of childhood

100% T II East Asians

Chronic active EBV disease of T/NK
type (CAEBV)

100% T, NK II miR-BART1-5p (Kawano et al., 2013)
miR-BART2-5p (Kawano et al., 2013)

East Asians

Severe mosquito bite allergy 100% NK, T II East Asians

Hydroa vacciniforme-like
lymphoproliferative disorder

100% γδT, NK II Asians, Native Americans

Nasopharyngeal carcinoma 100% Epithelial II Adults in southern China
and Southeast Asia

Gastric cancer 9% Epithelial I

miR-BART1-3p and miR-BART16 target CASP3 and inhibit
apoptosis (Vereide et al., 2014). BIM, a pro-apoptotic protein
of the bcl2 family, is targeted by several BART miRNAs
(Marquitz et al., 2011). Another BART miRNA (miR-BART5-
5p) targets PUMA to promote survival of host cells (Choy
et al., 2008). BART miRNAs also help establish EBV infection
and transformation by modulating viral and host functions
in B cells. Both miR-BART1-3p and miR-BART1-5p suppress
adaptive immunity mediated by CD4+ T cells by targeting
IL12B and LY75 (Skalsky et al., 2012; Vereide et al., 2014;
Tagawa et al., 2016). CD8+ T cell responses are also modulated
by miR-BART1-3p and miR-BART17-5p which target IFI30
and TAP2, respectively (Albanese et al., 2016). Thus, BART
miRNAs enhance lymphomagenesis. Similarly, BART miRNAs
potentiate tumorigenesis in epithelial cells (Cai et al., 2015;
Kanda et al., 2015; Qiu et al., 2015; Yang et al., 2017). The
notion that BART miRNAs positively regulate oncogenesis is
generally accepted.

In DNA viruses such as herpesviruses, exosomes released
from virus-infected cells contain virus-derived components that
contribute to the growth of the virus itself and the establishment
of viral infections by regulating the host’s immune system
(Ansari et al., 2013). LMP1, which is an oncoprotein bound
to cytoplasmic membranes, is incorporated into exosomes, and
plays a role in cancer progression (Nanbo et al., 2013; Sato et al.,
2017). EBV miRNAs are also released from infected cells via
exosomes to regulate uninfected adjacent cells and promote their

growth, which contributes to tumorigenesis (Pegtel et al., 2010;
Higuchi et al., 2018; Nanbo et al., 2018; Nkosi et al., 2020).

Deletion of BART miRNA in EBV-Related
Lymphomas
It has been reported that the lack of certain genes in human
T-cell leukemia virus type 1, human papillomavirus, and Merkel
cell polyomavirus results in increased tumorigenicity (Narisawa-
Saito and Kiyono, 2007; Moore and Chang, 2010; Kataoka
et al., 2015). In contrast, only a few studies have reported
specific gene deletions in EBV-associated malignancies (Alfieri
and Joncas, 1987; Palser et al., 2015; Mine et al., 2017). However,
in this next-generation sequencing era, whole viral genomes are
easily sequenced directly from patient samples. We performed
whole EBV sequencing by the hybrid capture method using
17,237 probes covering the entire EBV genome in EBV-infected
peripheral blood and tumor tissues from patients with various
EBV-associated diseases (Okuno et al., 2019; Mabuchi et al.,
2021). Interestingly, 22 of 77 cases (35%) of CAEBV, which
is a T- or NK-cell lymphoproliferative disease (Kimura et al.,
2012; Kimura and Cohen, 2017; Quintanilla-Martinez et al.,
2017), had a deletion of 73–49,847 bases in the EBV genome.
A similar deletion was found in ENKTL (43%) and EBV-positive
DLBCL (71%), which are lymphomas of NK- and B-cell origins,
respectively. However, this intragenic deletion was not observed
in infectious mononucleosis or post-transplant lymphoma,
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11,770 nt (NC_007605:138069- 149838)

Cluster 1 Cluster 2

CAEBV DLBCL ENKTL

3 4 1 15 5 16 17 6 21 18 7 8 9 22 10 11 12 19 20 13 14

B95-8 deletion

mir-BART

FIGURE 1 | Distribution of intragenic deletions in BamHI-A rightward transcript (BART) microRNA clusters 1 and 2. CAEBV; chronic active EBV disease of T/NK
type, DLBCL; diffuse large B cell lymphoma, not otherwise specified, ENKTL; extranodal NK/T cell lymphoma, nasal type.

suggesting that this deletion is a common phenomenon in certain
types of EBV-positive lymphoma. The rarity of the intragenic
deletion has been reported in healthy individuals and infectious
mononucleosis patients (Palser et al., 2015; Yajima et al., 2021).

In addition, EBV deletions were concentrated in the BART
miRNA cluster regions (Figure 1). The most frequently deleted
miRNAs were mir-BART6-5p and mir-BART6-3p, both of which
negatively regulate the EBV immediate-early genes BZLF1 and
BRLF1 (Iizasa et al., 2010). mir-BART18-5p and mir-BART20-
5p also downregulate these immediate-early genes (Jung et al.,
2014; Qiu and Thorley-Lawson, 2014). Mutated EBV lacking
this region enhances lymphoma formation by inducing BZLF1
expression in xenograft models (Lin et al., 2015). Elevated BZLF1
due to loss of BART miRNAs may cause abortive lytic infection
and promote lymphomagenesis (Munz, 2019).

In our genetic analysis, a group of lytic infection-related genes
was also frequently missing outside the BART miRNA clusters,
including core replication genes, which are essential for viral
replication. We generated a mutant EBV strain lacking BALF5
(viral DNA polymerase catalytic subunit) (Narita et al., 2015)
and used it to establish an LCL, which was then transplanted
into immunodeficient mice (Okuno et al., 2019). The BALF5-
deficient EBV produced lymphoma more frequently compared
with the wild-type strain. Additionally, the BALF5-deficient LCL
enhanced immediate-early/early gene expression, compared with
the wild-type strain. These results suggest that deletion of BALF5,
which is a core replication gene, induces the expression of
lytic infection-related genes triggered by the immediate-early

gene BZLF1 and promotes lymphoma formation. Multiple lytic
infection genes, such as BNRF1, BGLF5, and BALF3, are involved
in host genome instability (Manners et al., 2018; Xiong et al.,
2020), and BHRF1 (viral BCL-2 homolog) and BCRF1 (viral
interleukin-10 homolog) also promote cell proliferation (Xu et al.,
2001; Zuo et al., 2011). EBV lacking core replication genes cannot
produce virus particles or complete a lytic infection, but they
can induce an abortive lytic infection and promote oncolytic
infection by expressing a viral lytic infection gene (Munz, 2019;
Murata et al., 2020). Thus, defective EBV strains may have some
advantages during lymphomagenesis.

Interestingly, B95-8, which is the most potent laboratory
strain, lacks most of the BART region (Figure 1; Baer et al.,
1984; Klinke et al., 2014). Similar large deletions, including BART
miRNA clusters, have been reported in patients with ENKTL and
Hodgkin lymphoma (Peng et al., 2018; Kawatsuki et al., 2020).
However, these defective viruses are relatively rarely associated
with epithelial tumors (Cancer Genome Atlas Research Network
(CGARN), 2014; Lin et al., 2014). The roles of BART miRNAs
may differ between lymphoid and epithelial malignancies. The
expression patterns of BART miRNAs depend on the infected
cell lineage, and their expression levels vary widely among tumor
types, with a 13-fold-increase in nasopharyngeal carcinoma and
eightfold increase in gastric cancer relative to LCL and Burkitt
lymphoma (Qiu et al., 2011).

Although intragenic deletions involving BART miRNAs have
been detected in one-third of CAEBV patients, high expression
levels of BART miRNAs are also seen in other patients with
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CAEBV (Kawano et al., 2013). Furthermore, Higuchi et al. (2018)
reported that patients with EBV-positive DLBCL can be stratified
according to the miR-BART13 expression level. Moreover, high
expression of miR-BART13 was linked to shorter survival time
(Higuchi et al., 2018). It is possible that BART miRNAs can
contribute to disease progression by suppressing lytic EBV
replication and host immune responses. They could also play
a role in resistance to DLBCL therapies. On the other hand,
loss of BART miRNA expression may also play a pivotal role
in lymphoma formation during the early stages (Murata et al.,
2020). In other words, cells harboring EBV miRNA deletions
may have some advantages during lymphomagenesis as they
induce an abortive infection leading to the immortalization of
infected cells (Munz, 2019; Murata et al., 2020), at least in
certain types of lymphomas. Once lymphoma develops, the loss
of BART miRNA expression might not affect its progression
and prognoses. Indeed, the overall survival time did not differ
between CAEBV patients with and those without intragenic EBV
deletions (Okuno et al., 2019).

CONCLUSION

Epstein–Barr virus is a large DNA virus that encodes >80
genes and nearly 50 non-coding RNAs. Each non-coding RNA

performs multiple and different functions, and their expression
is regulated differentially according to cell type and micro-
environment. EBV miRNAs have various functions and play
pivotal roles in oncogenesis. It is clear that some viral miRNAs
suppress lymphomagenesis, and that deletion of these miRNAs
promotes lymphoma formation. Further research is necessary to
elucidate the full roles of EBV miRNAs in tumorigenesis.
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