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Foodborne pathogens are a major contributor to foodborne illness worldwide. The 
adaptation of a more quantitative risk-based approach, with metrics such as Food safety 
Objectives (FSO) and Performance Objectives (PO) necessitates quantitative inputs from 
all stages of the food value chain. The potential exists for utilization of big data, generated 
through digital transformational technologies, as inputs to a dynamic risk management 
concept for food safety microbiology. The industrial revolution in Internet of Things (IoT) 
will leverage data inputs from precision agriculture, connected factories/logistics, precision 
healthcare, and precision food safety, to improve the dynamism of microbial risk 
management. Furthermore, interconnectivity of public health databases, social media, 
and e-commerce tools as well as technologies such as blockchain will enhance traceability 
for retrospective and real-time management of foodborne cases. Despite the enormous 
potential of data volume and velocity, some challenges remain, including data ownership, 
interoperability, and accessibility. This paper gives insight to the prospective use of big 
data for dynamic risk management from a microbiological safety perspective in the context 
of the International Commission on Microbiological Specifications for Foods (ICMSF) 
conceptual equation, and describes examples of how a dynamic risk management system 
(DRMS) could be used in real-time to identify hazards and control Shiga toxin-producing 
Escherichia coli risks related to leafy greens.

Keywords: data, food, safety, risk, management

INTRODUCTION

An estimated 600 million people fall ill through the consumption of contaminated food and 
420,000 die every year, resulting in the loss of 33 million Disability-Adjusted Life Years (World 
Health Organization, 2015). These estimates can be  used to direct food safety policy and risk 
management options (Scallan et  al., 2011).

The need for a risk-based approach for production of safe food is underpinned by the 
adoption of HACCP with the necessary prerequisite programs. In turn, risk management 
metrics, with tools and concepts such as Food Safety Objectives (FSO) and Performance 
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Objectives (PO), proposed by the International Commission 
on Microbiological Specifications for Foods (ICMSF) and adopted 
by the Codex Alimentarius Commission (International Commission 
on Microbiological Specifications for Foods, 2010; Codex 
Alimentarius Commission, 2016) represent a more quantitative 
risk management approach that can be used by intergovernmental 
agencies, national governments, and food businesses. Food 
safety related data, acquired throughout the food chain is 
required for real-time food safety decision-making by all 
stakeholders, including risk assessors, managers,  and  
communicators.

Global megatrends, described as transformative global forces 
will pose significant challenges to future global food safety, 
food security, and nutrition (High Level Panel of Experts, 2017; 
King et  al., 2017). Key drivers for change include: Global 
economic growth/investment/trade pricing, innovation in food 
production and productivity, structural and socio-economic 
impacts on food supply chains and changing food safety and 
quality management systems.

The rapid expansion of the Internet of Things (IoT) and 
digital transformation (Wellness Recovery Action Plan, 2015; 
Food and Agriculture Organization and World Health 
Organization, 2018) has enabled the collection and transfer 
of “big data,” in real-time. This can impact most parts of the 
food chain. Key characteristics of big data are often referred 
to as: volume of data produced; velocity – speed of data 
streaming; veracity – uncertainty of data; variety – structured 
and unstructured data; and ultimately value – the worth of 
data for actionable insights and information for food safety, 
public health, and trade (Marvin et  al., 2017). The ability to 
collect, analyze, and convey digital data at all stages of the 
food value chain has seen an exponential increase in the 
volume, velocity, variety, and veracity of data available. Data 
sources impacting food safety include food production, food 
consumption, public health, agriculture, environmental conditions 
logistics, social media, etc., containing structured and 
unstructured formats. The ability to extract value from these 
data, while ensuring the interoperability of different sources 
to assure food safety and quality, is the future challenge. While 
data scientists can easily build tools and dashboards to visualize 
data, often the outcomes have highlighted the need to have 
“clean” and reliable (meta)data, in formats that can be accurately 
interpreted by subject matter experts (Ridzuan and Zainm, 2019).

The emergence of precision agriculture, often referred to 
“smart farming,” using digitalization in farming practices (Bhakta 
et  al., 2019; Shafi et  al., 2019) and “omics-based” precision 
food safety (Kovac et  al., 2017; Kovac, 2019) leverages linked 
data for foodborne outbreak traceability, predictive analytics, 
artificial intelligence (AI) and machine-learning in the realm 
of food safety management. Digital transformation in food 
manufacturing and supply chain enables better utilization of 
data for more dynamic risk management, automated adjustment 
for deviations, real-time transparency of food safety and quality 
control parameters, product release, defect rate reduction, and 
trend analysis.

This paper examines the increasing opportunities to collect, 
integrate, analysis, and interpret data throughout the food value 

chain, to predict, assess, and manage microbial food safety 
risks, in the context of a dynamic risk management system 
(DRMS). Simulation scenarios are described whereby Shiga 
toxin-producing Escherichia coli (STEC) contamination of leafy 
greens occurs during production and processing, but it can 
be  controlled in real-time by using big data to investigate and 
manage the risk. The challenges of valuable data availability, 
accessibility, ownership, and interoperability will also 
be  discussed.

PRECISION AGRICULTURE AND DIGITAL 
FOOD SUPPLY CHAIN: INPUTS FOR 
FOOD SAFETY MANAGEMENT

Food production, and concomitantly the safety and quality 
of food, originates on farms. Increased data availability via 
the internet now allows for devices on farms to connect 
to IoT networks to collect and interpret data from the 
beginning of the supply chain through to retail/consumers. 
Precision agriculture enables agricultural production systems 
to deploy robotics, sensors, global navigation satellite systems 
(GPS), and big data analytics to gather unique data on a 
more precise, spatial, and temporal scale (Aqeel-Ur-Rehman 
et  al., 2014; Wolfert et  al., 2017; Weersink et  al., 2018; 
Astilla et  al., 2019). Consequently, the information gathered 
can be  used for the application of more prescriptive inputs 
to support production crop/livestock yields, environmental 
impacts, economic returns, and food security/safety to improve 
food safety management decisions. Kamilaris et  al. (2017) 
provide an example of data that can be  garnered from 
precision agriculture to help guide food safety, albeit not 
specifically microbiological safety.

Using the tools of smart farming and data analytic platforms, 
the needs of individual livestock or crop areas can be  targeted 
and customized with inputs such as rotation feeding, pesticide 
application/withdrawal or irrigation (Ramundo et  al., 2016; 
Grieve et al., 2019). Furthermore, these technologies can provide 
an opportunity for farmers to increase food security with 
decreased environmental impact (Garnett et  al., 2013).

A major benefit of the emerging agricultural precision 
technologies is the opportunity to ensure greater transparency, 
traceability, provenance as well as food safety and quality 
attributes (Danezis et  al., 2016). Investigations of foodborne 
outbreaks linked to plant or animal-based products (Currie 
et  al., 2019; Self et  al., 2019), food fraud (Van Rijswijk and 
Frewer, 2012), and consumer demand for food provenance 
(Badia-Melis et  al., 2015; Danezis et  al., 2016), confirm the 
need for assimilation and integration of “agricultural” data.

The future prospect is that big data can be  used to predict 
the presence of pathogens or contaminants, by linking 
environmental information with pathogen growth and/or hazard 
occurrence. For example, by monitoring the conditions of crops 
in the field including weather data, the areas with an increased 
potential of aflatoxins can be  identified before the crop enters 
the food chain (Armbruster and MacDonell, 2014). 
Environmental informatics can help identify high-risk periods, 
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which may trigger effective control for the downstream food 
supply chain. Data gathered from digital information systems 
on farm, including field scanning drones, can precisely identify 
areas within a field, which are subject to aflatoxin contamination 
because of particular crop conditions. In turn, this real-time 
data, facilitated by smart technologies including AI, directs 
mitigation measures, in the form of dynamic harvesting, to 
prevent food quality issues downstream (Grieve et  al., 2019). 
Drones, which are now regularly used in large-scale agriculture, 
will be  increasingly used to harness data related to food safety 
and quality, e.g., animal intrusion in crop fields or localized 
field flooding conditions (Cancela et  al., 2019).

Potential also exists for large farm owners to use wireless 
IoT applications to collect data regarding the location, well-
being, and health of their cattle (Busse et al., 2015; Köksal 
and Tekinerdogan, 2019). Biosensors and wearable technologies 
may be  used to identify unhealthy animals (Neethirajan, 2017; 
Vidic et  al., 2017). Availability of such real-time data enables 
livestock managers to separate unhealthy animals from the 
herd. In some circumstances, such herd/flock management 
could mitigate potential food safety issues in the human 
population e.g., if the carrier/shedder status of both healthy 
and unhealthy animals, was available for foodborne pathogens. 
Strawn et  al. (2013) have described the predictive potential 
of combining environmental and meteorological data for the 
presence of Listeria monocytogenes.

It is foreseeable that further data collecting devices and 
databases will be interconnected to provide voluminous structured 
and unstructured data at the farm level. This will be  used to 
enhance source attribution analysis in foodborne outbreak 
scenarios and enable more precise farming for food safety and 
quality attributes. The data sources that may be  used include: 
crop worker health status, water quality and usage, meteorological 
information, real-time livestock health status, animal health 
records, veterinary medicine prescription records, animal 
movement records, animal feed quality and usage, and farm 
audit certification records. However, it must be  acknowledged 
that some data, e.g., related to personnel (health/medical status) 
will be inaccessible and therefore data indicative of GAP/hygienic 
practices may be more readily available.

There are still many processes that are done manually in 
the food industry, but this can change with the increasing use 
of IoT driven food processing equipment (Bayano-Tejero et al., 
2019), and the use of IoT in water dispensing, cleaning and 
disinfectant dosing, pest monitoring, etc. Automation can reduce 
repetitive processes, making them more efficient and the digital 
contents and data generated, can provide better insights about 
the day-to-day operations (Hasnan and Yusoff, 2018).

Blockchain technology (BCT) is a distributed, decentralized, 
public ledger (or database) for permanent and verifiable 
record-keeping that can transform food systems by increasing 
efficiency, transparency, and collaboration throughout the 
chain (Antonucci et  al., 2019). BCT provides the opportunity 
to access and use data, shared by connected partners (public 
and private) in the food supply chain (Sander et  al., 2018; 
Tripoli and Schmidhuber, 2018). It is foreseeable that upstream 
food safety parameters, collated and logged in BC ledgers 

could be analyzed and used as part of a risk-based inspection 
system downstream in the supply chain.

PRECISION PUBLIC HEALTH/
CONSUMER FEEDBACK: INPUTS FOR 
FOOD SAFETY MANAGEMENT

Precision public health uses surveillance data and sophisticated 
analytics to accurately measure the global prevalence and 
consequences of foodborne diseases (Dowell et  al., 2016), 
pathogens in food, and environmental exposure, as well as 
consumer behavior, in a way that allows better assessment of 
population health risk factors, and the development of policies 
and targeted programs (Khoury et al., 2016) to prevent foodborne 
diseases. Data gathering has helped in public health interventions 
including use of:

 • Publically available data sets and data obtained from social 
media to predict the occurrence of critical food safety 
violations in food businesses (Goldsmith, 2015).

 • Mobile Call Detail Records (CDR) to track human population 
movement, while managing outbreaks (Wesolowski et  al., 
2014; Jones et al., 2018).

 • Use of supermarket courtesy cards and e-commerce sales 
records in outbreak investigations and increasing the 
effectiveness of product recalls (Møller et al., 2018).

A wide range of structured datasets are currently available 
or could be  accessed for developing improved public health 
interventions. These include:

 • The WHO food safety platform FOSCOLLAB and other 
National/Regional food safety databases such as TESSY, 
RASSF (Marvin et al., 2017).

 • Electronic healthcare and medical records (Goldstein et al., 
2016), medical claims data and OECD pharmaceutical demand 
data, where accessible without breaches of personnel privacy.

 • Certification data (product, management system, personal 
certification, etc.) available with third-party certification bodies

There are also large sets of high volume, unstructured data 
that could be  used to trace food incidents or exposure to a 
particular food by analyzing:

 • Food consumption patterns and trends that could be obtained 
from digital food related platforms used for food ordering or 
diet management

 • Social media interactions (e.g., increased requests for 
information on how to treat diarrhea) that could indicate the 
prevalence or spread of an illness (Broniatowski et al., 2014).

PRECISION FOOD SAFETY: INPUTS 
FOR FOOD SAFETY MANAGEMENT

The rapid growth of “big data” in the food industry has 
revolutionized the field of microbial food safety and has led 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Donaghy et al. Data Impacting Food Safety Management

Frontiers in Microbiology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 668196

to the term, “precision food safety,” to describe all the various 
new data sources that can be  used to improve food safety 
risk management (Kovac et  al., 2017; Kovac, 2019). For 
example, genomics-based approaches based on whole genome 
sequencing (WGS) are greatly advancing our ability to 
retrospectively detect food safety outbreaks, and WGS is now 
being routinely used to characterize human, food, and 
environmental isolates of all key foodborne pathogens, bringing 
a high level of precision to interpretation of foodborne disease 
outbreaks (Ronholm et  al., 2016; Brown et  al., 2019).

An example of this accumulation of big data is the creation 
of the United States FDA’s GenomeTrakr WGS Network, which 
is the first integrated network of state and federal labs to use 
WGS to track foodborne pathogens to improve outbreak response 
activities (Allard et al., 2016). The network consists of a publicly 
available global database containing the genetic makeup of 
thousands of foodborne disease-causing bacteria from food 
and environmental sources housed at the National Center for 
Biotechnology Information (NCBI) at the National Institutes 
of Health (NIH; Tolar et al., 2019). Participants in GenomeTrakr 
include not only United  States federal and state laboratories, 
but also international and reference laboratories.

A big advantage of using WGS in an integrated manner 
is that outbreaks can be  identified at an earlier stage and 
therefore resolved faster (Besser et  al., 2019). In fact, WGS 
can provide information beyond the identity and relationship 
of strains and can help to improve the safety, quality, and 
shelf life of foods. This can be extremely valuable for regulators 
and the food industry to help design, prioritize, and implement 
effective risk management interventions (Food and Agriculture 
Organization, 2016). For food manufacturers, an advantage 
of using WGS would be differentiation of transient and resident 
pathogens, as part of a food company’s environmental 
monitoring program. Furthermore, WGS can be  used for 
source attribution related to country of origin (Franz et al., 2016;  
Koutsoumanis et  al., 2019).

In addition to source tracking/attribution, WGS can also 
(i) enable an assessment of the AMR status of strains; (ii) 
provide insights into bacterial adaptation and survival; and 
(iii) as well as provide information on pathogenicity. The latter 
information can be  used, for example, to better inform risk 
assessments, e.g., assessment of the presence of less pathogenic 
L. monocytogenes strains containing a truncated internalin A 
protein (Chen et  al., 2011; Nielsen et  al., 2017).

Omic approaches such as metagenomics are also very valuable 
to help us to understand the microbial communities (i.e., the 
microbiomes) and the genes of interest directly from a food 
sample, without the need for isolation of the specific bacteria 
that provide those genes (Doyle et  al., 2017; Forbes et  al., 
2017). An ideal approach would be  to develop metagenomics 
methods that are independent of culture and combine both 
the detection and subtyping of the infecting organisms (including 
the “natural” microbiome) directly from a food or clinical 
specimen (Ottesen et  al., 2020). In the area of food spoilage, 
one can use omics technology to develop microbiome-based 
pathogen control strategies that can be  implemented in the 
food industry. One example is the development of advanced 

sanitation approaches based on an understanding of the different 
microbial ecologies found in individual food processing 
environments (Gu et  al., 2019).

The next step toward advancing food safety risk management 
is using a systems-based and machine learning approach to 
omics that would integrate all of the genomic, metagenomic, 
phenotypic, and epidemiological data, with risk assessments 
informed by these data (Deneke et  al., 2017).

OUTBREAKS: POTENTIAL USES OF BIG 
DATA FOR DYNAMIC RISK MANAGEMENT

In 2018, two outbreaks of E. coli O157:H7 were linked to the 
consumption of romaine lettuce in Canada and the United States 
(Centers for Disease Control, 2018, 2019; Public Health Agency 
of Canada, 2018, 2019). In the first outbreak, clusters of  
E. coli O157:H7 were linked by WGS sequences, and leafy 
greens from Yuma growing region identified as the likely source 
(Food and Drug Administration, 2018a). The traceback 
investigations (Gerrity, 2018) identified a total of 36 growing 
fields on 23 farms in Arizona and California as potential 
sources of contaminated lettuce, feeding into seven intermediate 
shippers. Only one of these shippers did not comingle romaine 
lettuce from multiple farms and shipped the romaine as whole-
head product. Follow-up environmental assessment weeks after 
the outbreak identified three water samples from an irrigation 
canal that delivered water to farms in the local area, including 
several identified, containing E. coli O157:H7 with the same 
WGS genetic fingerprint as the outbreak cases (Food and Drug 
Administration, 2018b). A concentrated animal feeding operation 
(CAFO) was located adjacent to the irrigation canal, but no 
obvious route for E. coli O157:H7 contamination was determined, 
and none of the samples collected contained the outbreak 
strain. Growers suggested that leaf freeze damage and dew on 
romaine leaves created conditions favorable for windborne 
contamination, with dust carrying the outbreak strain. Dust 
has previously been identified as a potential route for STEC 
contamination (Berry et al., 2015). The commingling of romaine 
lettuce from various farm growing fields at fresh-cut produce 
manufacturing/processing facilities complicated FDA traceback 
efforts. In the following, 2018–2019 season, FDA sampled 118 
romaine lettuces for E. coli O157:H7 and Salmonella at 26 
commercial coolers and cold storage facilities (Food and Drug 
Administration, 2019a). Salmonella was not found, and one 
sample was positive for a non-pathogenic E. coli O157:H7.

In the second outbreak (Centers for Disease Control, 2019; 
Public Health Agency of Canada, 2019), clusters of E. coli 
O157:H7 were first linked by WGS (Food and Drug 
Administration, 2019b). WGS also revealed that the E. coli 
O157:H7 strain was closely related to an E. coli strain from 
ill people in a 2017 outbreak linked to leafy greens, but not 
related to the first, 2018 outbreak discussed above. Traceback 
investigations initiated from six points of service identified 14 
distributors, 17 farms, and 15 specific fields in multiple California 
counties. This was eventually narrowed to one farm, which 
was also identified as one of the potential suppliers of leafy 
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greens or romaine lettuce in the 2017 outbreak investigations. 
A sediment sample from an on-farm water reservoir tested 
positive for the outbreak strain. While the precise route of 
contamination is uncertain, plausible ways in which this water 
may have contaminated the romaine lettuce included direct 
harvest/postharvest application to the crop and/or to harvest 
equipment food contact surfaces. While the farm did have a 
procedure in place to collect and test the reservoir water for 
generic E. coli and treat the water tank with a sanitizer before 
use, verification procedure records did not document that the 
water sanitizer was present at levels that would assure that 
the water was not contaminated with pathogenic bacteria. 
Inspection of water tank sanitizer treatment systems used 
revealed that some units had undissolved sanitizer cakes and 
that some tank systems were constructed in a manner that 
likely did not allow for optimal sanitizer treatment of the 
agricultural water before use.

Potential sources of big data that can be  generated and 
collected during leafy green production, such as harvesting, 

cutting, packing, distribution, retail sale and from consumers 
are identified in Figure  1. Many of these sources and types 
of data have been discussed above. Data generated through 
WGS was able to identify both outbreaks detailed above, and 
even linked the second outbreak to an outbreak from 2017. 
It is easy to see how traceability technology (e.g., BCT) information 
can be  linked between production fields, farms, harvesters, 
distributers, and points of services, and that lengthy and 
complicated traceback efforts could have been greatly accelerated.

MICROBIOLOGICAL QUANTITATIVE RISK 
MANAGEMENT IN A DIGITAL/BIG DATA 
ERA

The conceptual ICMSF equation proposes that the change in 
food safety (microbiological) risk from a food can 
be  understood in terms of the potential for growth and/or 
recontamination (“ΣI”), or inactivation (“ΣR”) of relevant 

FIGURE 1 | A number of examples of the types of big data currently or potentially available across the leafy green food chain that can be integrated for use in 
traceback to determine implicated product source during outbreak situations, and can be used to inform dynamic risk management systems (DRMS).
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pathogens in the food as they move through the supply chain 
and final processing of the food prior to serving and 
consumption. It is usually expressed as:

 H R I FSOo− + ≤Σ Σ

and is based on the final level of contamination at the 
point of consumption.

The equation proposes that the sum of the processes during 
the farm-to-fork continuum that allow pathogen growth, minus 
those processes in the same pathway that involve pathogen 
inactivation, determine the risk of illness to consumers, because 
they estimate the average levels and prevalence of pathogens 
in the product at the time of consumption.

Accordingly, if we  can estimate the overall potential for 
pathogen growth, compared to pathogen inactivation in a food/
food process, we  can begin to estimate the risk of illness to 
a consumer. The ICMSF equation encapsulates these 
considerations by evaluating the initial level of contamination 
(«Ho»), the potential for increase (growth and recontamination) 
or cross contamination («ΣI»), and the potential for inactivation 
(«ΣR»), all measured in log CFU. The potential for dynamic 
risk management to identify hazards and control STEC risks 
related to leafy greens using big data inputs to elements of 
the ICMSF conceptual equation is represented in Figure  2.

The potential for sensors and communications technologies, 
integrated with predictive microbiology models to assess the 
microbiological quality and safety of foods in domestic and 
international supply chains has already been demonstrated 
(Goldstein et  al., 2016; Vidic et  al., 2017). This is an example 
of big data being used to improve the microbiological quality 
and safety of foods.

CHALLENGES BEYOND OPPORTUNITIES

An integrated system incorporating digitally-derived “big data” 
as inputs for a dynamic food safety risk management, remains 
a distinct possibility. The opportunity to use unused data 
sources, beyond classical food safety management data (e.g., 
critical limits in HACCP, process data, chill chain parameters, 
etc.) can impact not only transparency and traceability, but 
also can be used to predict and anticipate higher risk scenarios 
as well as plan and implement mitigation measures for 
microbiological food safety issues.

However, the digitally disruptive era is not without its 
challenges in the food safety realm. Foremost is the availability 
and accessibility to internet connectivity across increasingly 
global food value chains. Furthermore, there is the technical 
infrastructure and perceived benefit discrepancy between 
developing and developed countries, large food manufacturers 
and Small Medium Enterprises (SME) to consider.

While the volume and velocity of data from precision 
agriculture, precision public health, and precision food safety 
increases exponentially, the variety and veracity, viz a viz, 
mismatch between provider and end user, increasing extent 
of unstructured, unverified and biased user population data 
sources e.g., social media, blogging, will require a form of 

validation, cleansing or normalization of the data to avoid 
distortion or misrepresentation. Furthermore, transparency, 
confidentiality, accuracy, and fairness are important aspects of 
responsible data science (Responsible Data Science, 2016).

Data scientists will play an increasingly important role in 
collation, combination and visualization of different data sources, 
while subject matter experts such as microbiologists, will still 
have a vital role to assess, challenge, and interpret this collated 
data for proper risk management and communication.

While technical issues remain on the interoperability and 
interconnectivity of the IT sources (Manyika et  al., 2015), 
greater hurdles exist around the ownership, governance, 
sharing, accessibility, and security of the derived data. For 
example, concern has been raised on the contractual issues 
relating to precision agriculture, where larger companies 
invest in digital collection systems, which may exclude many 
stakeholders with valuable input to food safety management 
(Carbonell, 2016).

A key tool in precision food safety is WGS, however, 
inaccessibility to private and some public sequenced pathogen 
databases, while understandable from some stakeholder 
perspectives (Jagadeesan et  al., 2019), may limit dynamic 
risk management assessment/options. Similarly, uptake of 
BCT requires minimum data standards with practical and 
user-friendly interphases between all parties, if it is to 
be  widely adopted in both the private and public sector. 
The perceived bureaucracy and value to smaller stakeholders 
in the foodchain are deterrants to contribute to BCT and 
therefore garbage in garbage out (GIGO) can 
be  the consequence.

Near real-time interventions, for the management of food 
safety risks, based on the diversity of data throughout the 
value chain, will require validation using numerous iterations 
of relevant data, related to case studies for foodborne outbreak/
cases. Validation is particularly important, as these types of 
data are increasingly being used as the basis for regulatory 
actions, civil suits and even criminal cases. A court challenge 
that indicates that the science could not be  totally relied upon 
would set a legal precedent that greatly reduces its potential 
role as a driver.

An avalanche of data – so-called infodemic, as illustrated 
by the Covid 19 pandemic, from verified scientific sources 
and unverified data, can disrupt the role of the risk manager. 
Therefore, risk assessors, dealing with such data, must use 
it cautiously to inform risk assessment, while ultimately, 
the decision making regarding food safety, rests with 
risk managers.

Furthermore, the cost and technical expertise needed to 
achieve precision food safety systems is likely to increase. 
It is unlikely that developing countries are going to be  able 
to achieve the degree of infrastructure needed, at least in 
the short term. This will further aggravate the inability of 
developing countries to gain entry to the markets of developed 
countries, an issue already of concern internationally. This 
is particularly important when one considers that export 
of agricultural commodities and specialty crops is one of 
the primary ways that developing countries gain access to 
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FIGURE 2 | Stylized DRMS. Dynamic risk management involves the use of big data for quick identification of changing conditions resulting in potential changes to 
the hazard analysis and facilitates decision-making to manage those risks in real-time. (A) through (D) represent examples of how a DRMS could have been used to 
identify hazards and control Shiga toxin-producing Escherichia coli (STEC) risks related to leafy greens. (A) represents the baseline conceptual risk management in a 
fresh-cut leafy greens operation, where the initial hazard level, controlled by preventive measures during production is below the Food Safety Objectives (FSO), and (i) 
no introduction or cross-contamination occurs during harvest; (ii) there is a small reduction during washing, and (iii) potential increases in STEC populations are 
controlled by the cold chain. (B) represents STEC contamination of leafy greens during processing. The initial hazard level is controlled by preventive measures during 
production, and (i) no introduction or cross-contamination occurs during harvest, (ii) untreated water used during the wash step introduces a high level of STEC, and 

(Continued)
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“hard currencies,” which is critical to developing country 
economic health.
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