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Controlling harmful microorganisms, such as Listeria monocytogenes, can require
reliable inactivation steps, including those providing conditions (e.g., using high salt
content) in which the pathogen could be progressively inactivated. Exposure to osmotic
stress could result, however, in variation in the number of survivors, which needs to
be carefully considered through appropriate dispersion measures for its impact on
intervention practices. Variation in the experimental observations is due to uncertainty
and biological variability in the microbial response. The Poisson distribution is suitable
for modeling the variation of equi-dispersed count data when the naturally occurring
randomness in bacterial numbers it is assumed. However, violation of equi-dispersion
is quite often evident, leading to over-dispersion, i.e., non-randomness. This article
proposes a statistical modeling approach for describing variation in osmotic inactivation
of L. monocytogenes Scott A at different initial cell levels. The change of survivors over
inactivation time was described as an exponential function in both the Poisson and in the
Conway-Maxwell Poisson (COM-Poisson) processes, with the latter dealing with over-
dispersion through a dispersion parameter. This parameter was modeled to describe the
occurrence of non-randomness in the population distribution, even the one emerging
with the osmotic treatment. The results revealed that the contribution of randomness
to the total variance was dominant only on the lower-count survivors, while at higher
counts the non-randomness contribution to the variance was shown to increase the total
variance above the Poisson distribution. When the inactivation model was compared
with random numbers generated in computer simulation, a good concordance between
the experimental and the modeled data was obtained in the COM-Poisson process.

Keywords: Listeria monocytogenes, osmotic inactivation, modeling, variation, Poisson, Conway-Maxwell-
Poisson, population levels, Monte Carlo

Abbreviations: AIC, Akaike information criterion; aw , water activity; CFU, colony forming units; COM-Poisson, Conway-
Maxwell Poisson; DF, degrees of freedom; H, high inoculum; L, low inoculum; LL, log- likelihood; LR, likelihood ratio; M,
medium inoculum; MC, Monte Carlo; NTI, non-thermal inactivation; OD, optical density; P-LR, p-values of the likelihood
ratio; QMRA, quantitative microbial risk assessment.
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INTRODUCTION

Providing an easy way to access prediction, the deterministic
approach to the description of microbial populations has
long been successful in managing food safety. Process and
formulation of foods have long benefited from non-thermal
inactivation (NTI) models, which represent valuable tools
for controlling pathogens (Lindqvist and Lindblad, 2009).
However, the point estimates provided by the deterministic
models, which do not take into account variability and
uncertainty, may be insufficient for a more realistic estimation
of microbial behavior (Membré et al., 2006; Koutsoumanis and
Angelidis, 2007; Couvert et al., 2010; Augustin et al., 2011).
The European Food Safety Authority defines uncertainty as
variation associated with the lack of knowledge or the use of
imprecise data, and variability as variation in the response of
the individual cells within the population, which cannot be
reduced based on knowledge [European Food Safety Authority
(EFSA) Scientific Committee, Benford et al., 2018; Schendel
et al., 2018]. Numerical estimation of microorganisms can
be affected by different sources of uncertainty introduced
by the experimental procedures, which can include serial
dilution and viable cell enumeration (Garre et al., 2019).
Likewise, there are numerous sources of variability, which are
associated to both the microorganism and the environment,
affecting microbial behavior (Koutsoumanis et al., 2016;
Koyama et al., 2016; Koutsoumanis and Aspridou, 2017;
Aspridou et al., 2019).

The importance of the separation of variability and
uncertainty has long been recognized for quantitative microbial
risk assessment (QMRA) purposes (Nauta, 2000; den Besten
et al., 2018), but the combined description of variability
and uncertainty can also play an important role in the valid
prediction of bacterial behavior, which is crucial for management
interventions (Aguirre et al., 2009; Membré and van Zuijlen,
2011; Aspridou and Koutsoumanis, 2015; Zwietering, 2015;
Koyama et al., 2019).

Poisson distribution or the Poisson stochastic process, which
refers to the Poisson distribution, have been applied to describe
variation in the number of survivors in thermal and non-thermal
processes (Aguirre et al., 2009; Koyama et al., 2017). A major
assumption of the Poisson model is that the variance is equal to
the mean. This assumption is violated if the variance is greater or
lower than the mean and, therefore, there is evidence of over or
under-dispersion, respectively (Jarvis, 2016).

Over-dispersion is defined as the extra variation occurring
in count data modeling which is not explained by the Poisson
distribution alone (Rigby et al., 2008). As summarized by Payne
et al. (2017) over-dispersion is a common feature in real count
data and may occur due to population heterogeneity, correlation,
omission of important covariates in the model, the presence
of outliers, zero inflation, or other reasons. Under-dispersion
may also be encountered in real applications and can be caused
by model-overfitting or seen in datasets with small sample
values (Sellers and Morris, 2017). Under-dispersion can also be
associated with the presence of zero counts in a data set (Sellers
and Raim, 2016; Tin, 2008).

Naturally occurring bacteria often exist as social communities
and live in spatially structured habitats where spatial
heterogeneity is generated (Eriksen et al., 2020). The under-
dispersion pattern is characterized by a regular spatial
distribution, indicating repulsion, while over-dispersion
reflects clustering, indicating aggregation, and both can result
from microbial growth or inactivation (Lynch et al., 2014;
Jongenburger et al., 2012b; Jarvis, 2016).

Over and under-dispersion, unless properly handled, can lead
to biased inferences (Payne et al., 2017; Sellers and Morris,
2017).

The context of this study is a planktonic culture and
not a solid or a gelled system where the immobilization
of bacteria has an effect on their distribution (Baka et al.,
2016, 2017; Jeanson et al., 2011, 2015). However, even the
planktonic-cell spatial distribution can show heterogeneity,
as happens in the case of aggregate formation. In fact, the
assumption that planktonic bacterial cells are by definition
not aggregated has been challenged and evidence has been
provided of mechanical connections between bacterial cells
in diluted planktonic suspensions (Sretenovic et al., 2017).
Thus, when randomly distributed cells form aggregates a
clustered distribution (over-dispersion) can be generated
(Gao et al., 2016).

In this study, the random component of the total variation,
which can be represented by the Poisson distribution was
referred to as randomness (Lynch et al., 2014; Koyama
et al., 2017), whereas the unexplained part of variation
(over or under-dispersion), which represents the departure
from randomness was referred to as non-randomness
(Hui et al., 2010).

When the dispersion pattern of cells deviated from the
homogeneous Poisson process other models could be applied to
capture count dispersion. For example, the Poisson-Lognormal
distribution was found appropriate for the representation of
high microbial counts, while the Poisson-gamma (or negative
binomial) distribution was better for the characterisation of
low microbial counts and for highly clustered microbial data,
but both can cope only with over-dispersion (Gonzales-
Barron et al., 2010, 2014; Gonzales-Barron and Butler, 2011;
Jongenburger et al., 2012b).

When dealing with pathogenic bacteria, variability in
concentration of the raw material can be high (European Food
Safety Authority (EFSA), 2012). By applying an inactivation
process it is likely to result in low and zero counts (European
Food Safety Authority (EFSA), 2018). It follows that distributions
flexible enough to deal with low, medium or higher counts
and suitable for over and under-dispersed data could be more
appropriate. The Conway–Maxwell-Poisson (COM-Poisson)
(Conway and Maxwell, 1962) distribution, which is a two-
parameter generalization of the Poisson distribution, proved
to be a useful and elegant model for fitting count data
ranging from high to low, including zero, with an unlimited
range of dispersion (Sellers and Shmueli, 2010; Francis et al.,
2012; Gupta et al., 2014). A more detailed overview of the
history, features and applications of COM-Poisson distribution
is in Shmueli et al. (2005).
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Therefore, in consideration of the variation of the numbers of
pathogens usually occurring in food during processing, it would
be of importance to derive a statistical model from different
population size experiments, to capture the variation in the
response of a pathogen, such as Listeria monocytogenes, in an
osmotic inactivation process, such as that used for processed meat
products. For these products, the micro-organisms of concern
are both Salmonella spp. and L. monocytogenes. However, L.
monocytogenes proved to be less susceptible to manufacturing
processes than Salmonella, with water activity (aw) being a key
factor in the survival of the pathogen (Mataragas et al., 2015;
Nightingale et al., 2006). Indeed, the severity of Listeria illness
and the possibility of infection from low doses underlines the
necessity to control not only its frequency but also its different
levels of contamination (Buchanan et al., 2017; Polese et al., 2017;
Radoshevich and Cossart, 2018).

The main objective of the present study was to propose a
regression model able to deal with a wide range of dispersion
levels, in order to describe the variation in osmotic inactivation
of L. monocytogenes Scott A at different initial cell levels. To
achieve this goal, we investigated whether the variation in
survival of Listeria numbers followed the theoretical COM-
Poisson distribution, which extends the Poisson distribution by
adding a parameter to model over- and under-dispersion. This
fitting procedure provided a framework able to incorporate
the randomness and non-randomness contributors to
variation allowing for a more accurate quantification of the
survivor dispersion.

MATERIALS AND METHODS

Preparation of L. monocytogenes Cells
Listeria monocytogenes strain Scott A, serotype 4b, a virulent
clinical isolate from a food-borne listeriosis outbreak in 1983
(Briers et al., 2011) was used in this study. This strain was
selected for its tolerance to stress conditions encountered in
food, which included exposure to conditions of high osmolarity
(Becker et al., 1998; Bucur et al., 2018; Durack et al.,
2013). The L. monocytogenes strain was taken from porous
cryobeads (MicrobankTM, Pro-Lab Diagnostic, Richmond Hill,
ON, Canada) that had been stored at −30◦C. The strain was
cultured in 10 mL Brain Heart Infusion (BHI, Oxoid Ltd.,
Hampshire, United Kingdom) broth incubated overnight at
30◦C. No osmotic adaptation was adopted that could have
increased phenotypic heterogeneity (Kapetanakou et al., 2019).
This first inoculum of approximately 4.3 × 109 CFU/mL
was thoroughly vortexed (Vortex mixer, Velp Scientifica,
Usmate, Italy) and then diluted in saline/peptone water
[8.5 g L−1 NaCl (J.T. BakerTM, Baker analyzed R© A.C.S,
Thermo Fisher Scientific, Waltham, MA, United States) and
1 g L−1 Bacteriological Peptone (Oxoid Ltd)] to attain
different sub-inoculum levels of approximately 2.2 × 105

CFU/mL, 2.2 × 104 CFU/mL and 2.2 × 103 CFU/mL.
Aliquots of 0.07 or 0.14 mL of the latter inoculum solutions
were further diluted in the osmotic challenge medium (see
section “Osmotic Inactivation Trials”) to obtain final Listeria

concentrations of approximately 2× 10 CFU/mL (low inoculum:
L), 102 CFU/mL (medium inoculum: M) and 103 CFU/mL
(high inoculum: H).

Osmotic Inactivation Trials
The osmotic challenge medium used was BHI broth
supplemented with 134 g L−1 NaCl to produce a reduction
of the aw that mimicked a representative condition of processed
meat products subjected to salt treatment. The aw was assessed
using an Aqua Lab CX2 instrument (Decagon Devices, Inc.,
Pullman, Washington, United States) and the measured aw
value was 0.913 ± 0.001. The pH was adjusted to 6.6 with
HCl 1M (Carlo Erba Reagents, Val-de-Reuil, France) using an
HI1131B (Hanna instruments, Verona, Italy) electrode and
an HI5221 pH-meter (Hanna Instruments, Verona, Italy),
equipped with a temperature probe. BHI broth supplemented
with NaCl was sterilized by filtration (Nalgene Rapid-Flow
0.2 µm aPES membrane, Thermo Fisher Scientific, Waltham,
MA, United States), poured in 15 mL aliquots in sterile
tubes and stored at 4◦C until use. Prior to inoculation, the
osmotic challenge medium was pre-warmed at 30◦C, with
this temperature being maintained throughout the trials.
Samples from bacterial suspensions were thoroughly vortexed
(Vortex mixer, Velp Scientifica, Usmate, Italy) before taking
samples at time intervals (0, 3, 6, 10, 13, and 18 days). The
cell density in each solution was determined by surface plating
0.2 mL solution onto BHI (BHI, Oxoid Ltd., Hampshire,
United Kingdom) agar plates (five plates for each sample).
The colonies were counted after 48 h incubation at 30◦C. The
enumeration process was conducted omitting serial dilutions
for reducing the impact of uncertainty (Garre et al., 2019).
The data were expressed as the mean value (CFU in 0.2 mL
or Ln CFU in 0.2 mL) for the five replicates of plate counts.
Three independent trials were conducted for each Listeria
concentration tested.

Autoaggregation Assay
The ability of L. monocytogenes to autoaggregate was measured
in phosphate buffered saline (PBS) after 20 h culture in BHI,
according to the method described by Collado et al. (2008),
with some modifications. Listeria cultures were harvested by
centrifugation, washed twice in PBS, pH 7.1 (10 mM Na2HPO4,
1 mM KH2PO4, 140 mM NaCl, 3 mM KCl) and suspended
in the same buffer or in the same buffer supplemented with
further NaCl to produce aw of 0.913 ± 0.001. The optical
density (OD600 nm) of the homogenized bacterial suspensions
were adjusted to 0.3 ± 0.05 with the same buffers listed
above. In addition, the dependence on the concentration
was tested adjusting the initial OD of the osmotic medium
from 0.2 ± 0.05 up to 0.6 ± 0.05. To determine percentage
autoaggregation, suspensions were incubated in aliquots at
30◦C without vortexing and monitored (OD600 nm) at 24
and 72 h. Autoaggregation was assessed by a decrease in the
OD600 indicating an increase in bacterial sediments that settle
at the bottom of culture tubes. The aggregation percentage
was expressed as [(1 – (ODTime/OD0)) × 100] where ODTime
represents the optical density of the mixture at the different
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incubation times, i.e., at 24 h and at 72 h, while OD0 is the optical
density at time 0 h.

The NTI Models
The change of survivors over inactivation time was described as
an exponential function (1):

µt = exp(a + b · t) (1)

where µt is the centering parameter of the Poisson (i.e., the
mean number of survivors at time t) or the COM-Poisson
distribution (Shmueli et al., 2005; Guikema and Goffelt, 2008;
Sellers and Shmueli, 2010; Supplementary Box 1); a is a
regression parameter, which corresponds to LnN0; b represents
the inactivation rate (day−1); t (day) is the time of the
osmotic treatment.

Equations (2, 3) were used for the Poisson and COM-Poisson
processes, respectively:

Nt ∼ POISS(µt) (2)

Nt ∼ CMP(µt, v) (3)

where Nt (the observed value) is the realization of µt ; ∼ is the
tilde symbol which means: has the distribution of; ν denotes the
COM–Poisson dispersion parameter.

In the COM-Poisson distribution model the mean E[Nt] and
the variance VAR[Nt] of Nt can be approximated by eqs. (4a,b) as
follows:

E[Nt] ≈ µt +
1
2v
−

1
2
, VAR[Nt] ≈

1
v
µt (4a,b)

where E[Nt] is the mean of survivors at time t; µt is the centering
parameter of the COM-Poisson distribution (Supplementary
Box 1); VAR[Nt] is the variance of Nt ; ν is the COM–Poisson
dispersion parameter.

Equation (4b) becomes eq. (5):

µt ≈ vVAR[Nt] (5)

Thus, eq. (4a) can be rewritten as (6):

E[Nt] ≈ vVAR[Nt] +
1
2v
−

1
2

(6)

To produce a framework for the variance of Nt , it is assumed,
as in the negative binomial distribution, that the total population
variance is represented by the combination of the randomness
and the non-randomness components. The first component
corresponds to complete homogeneity and can be represented
by the mean, whereas the second component represents the
non-random variation and is given by a quadratic function
of the mean (El-Shaarawi et al., 1981). Therefore, let the
randomness component having a Poisson distribution be equal
to the mean E[Nt] and assume the non-randomness component
(corresponding to c0E[Nt]2) to be a quadratic function of the
mean (El-Shaarawi et al., 1981; Gonzales-Barron et al., 2010;
Gonzales-Barron and Butler, 2011), it follows that (Eq. 7):

VAR[Nt] = E[Nt] + c0E[Nt]
2 (7)

where VAR[Nt] is the variance of Nt ; E[Nt] is the mean
number of survivors at time t; c0 is the non-randomness
variance parameter.

Equation (6) becomes (8) as follows:

E[Nt] ≈ v(E[Nt] + c0E[Nt]
2)+

1
2v
−

1
2

(8)

For low values of E[Nt], ν is close to 1, giving the Poisson;
while for high values of E[Nt] (Supplementary Box 2) Eq. (8)
is reduced to Eq. (9):

E[Nt] ≈ v(E[Nt] + c0E[Nt]
2) (9)

Thus, the COM-Poisson dispersion parameter ν, was expressed
by Eq. (10) which describes the effect of E[Nt] on this parameter:

v ≈
E[Nt]

(E[Nt] + c0E[Nt]2)
(10)

The COM-Poisson dispersion parameter ν represents, therefore,
the inverse of the variance over mean ratio. From eq. (10), as
Nt→∞, ν converges to 0.

For a population subjected to osmotic stress, which can
facilitate aggregation (Jensen et al., 2007; Schmid et al., 2009;
Eshwar et al., 2017) and hence the production of clustered count
data that result in over-dispersion (Jongenburger et al., 2012b), an
additional non-randomness term occurring over time in response
to the osmotic treatment contributed to the total variance (see
section “Results”). Since no extensive literature exists on the
non-randomness variance, this additional contribution, which
was obtained balancing the number of survivors with the initial
number of cells, can be regarded as an empirical term. To
describe this additional contribution, a number of empirical
equations were developed (Supplementary Box 3) and the
Akaike information criterion (AIC) (Vrieze, 2012) was used to
select the best-fit model under parsimony, which resulted in (11):

εtt E[Nt]
2/E[N0]

1
2 (11)

where εt is the additional non-randomness variance parameter;
E[Nt] is the mean number of survivors at time t.

Including the non-randomness contribution, we can
write (12):

VAR[Nt] ≈ E[Nt] + c0E[Nt]
2
+ εtt E[Nt]

2/E[N0]
1
2 (12)

where VAR[Nt] is the variance of Nt ; c0E[Nt]2 is the non-
randomness contribution to the variance; εtt E[Nt]2/E[N0]1/2

is the additional non-randomness contribution to the variance
occurring over the treatment time, and εt is the additional non-
randomness variance parameter.

For a population subjected to osmotic inactivation, ν can
therefore be expressed as (13):

v ≈
E[Nt]

(E[Nt] + c0E[Nt]2 + εtt E[Nt]2/E[N0]
1
2 )

(13)

where E[Nt], c0E[Nt]2 and εtt E[Nt]2/E[N0]1/2 are as above.

Frontiers in Microbiology | www.frontiersin.org 4 July 2021 | Volume 12 | Article 681468

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-681468 July 9, 2021 Time: 13:17 # 5

Polese et al. COM-Poisson Process for Stochastic Modeling

The final NTI model in the Poisson process was obtained using
Eqs. (1, 2), whereas the model in the COM-Poisson process was
obtained using Eqs (1, 3, and 13).

For providing an estimation of c0 and εt within the COM-
Poisson process, a maximum- likelihood regression on all the
survival data was conducted (for details, see section “Stochastic
Processes and Statistical Tests”). For practical reasons (too time-
consuming calculations), the estimation was limited to the
shape function (ν), holding the centering function (µ) fixed
to the previously estimated regression values (LnN0 and b
values of each trial).

Stochastic Processes and Statistical
Tests
The Poisson and the COM-Poisson (Shmueli et al., 2005;
Guikema and Goffelt, 2008; Sellers and Shmueli, 2010)
distributions (Supplementary Box 1) were fitted to the
Listeria initial counts (178 data, Supplementary Table 1)

and to the survival data over time (993 data, Supplementary
Table 1), and the parameters of the cell counts distributions
were estimated using the maximum-likelihood method
(Nelder and Wedderburn, 1972).

The maximum-likelihood coefficient estimates of the
Poisson and the COM-Poisson frameworks were obtained
from regression by maximizing equation (S6) (Supplementary
Box 1) under the constraint ν ≥ 0, using Excel Solver add-in
(Microsoft Office Excel 2007, v12.0.6611.1000) as a nonlinear
optimization tool. The COM-Poisson equations were coded
adapting the algorithm proposed by Huntley (2005), in Visual
Basic for Application (VBA) and used in Excel workbooks
(Supplementary Table 2). Regression parameters, standard
errors and related goodness of fit tests were obtained through
SolverStat add-in (Comuzzi et al., 2003) by using Fisher
Information Matrix and bootstrap (Sellers and Shmueli, 2010).
All other used statistical analyses [Log-likelihood (LL) value,
likelihood ratio (LR) test (Santner and Duffy, 1989), AIC (Vrieze,
2012), variance-to-mean ratio, ANOVA, mean, variances,

FIGURE 1 | Flowcharts of the computer modeling in the Poisson (A) and in the COM-Poisson process (down) (B). Prediction was by Monte Carlo simulation. n:
number of simulations; tj , time; nt, number of experimental times; N0i : realization of initial count characterized by a normal distribution with mean N0 and standard
deviation sdN0; bi , realization of survival rate characterized by a normal distribution with mean b and standard deviation sdb; µij , centering parameter of the Poisson
or COM-Poisson distribution; Ntj , realization of µij , i.e., the number of survivors; POISS(): Poisson distributed random numbers; νij , COM-Poisson dispersion
parameter; CMP(): COM-Poisson distributed random numbers; c0i , realization of the non-randomness variance parameter characterized by a normal distribution with
mean c0 and standard deviation sdc0; εtij , realization of the additional non-randomness variance parameter characterized by a normal distribution with mean εt and
standard deviation sdεt.
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standard deviations] were conducted in Excel. The LR test
was computed by taking twice the difference in negative log-
likelihoods between the full model (COM-Poisson) and the
reduced model (Poisson). The parsimony principle, which is
not considered by the LR and LL tests, is included by using the
AIC method.

Analysis of deviance for generalized linear regression models
(Hardin and Hilbe, 2018) was carried out by using Excel
from the deviance values obtained with SolverStat add-in
(Comuzzi et al., 2003).

Comparison between the observed variances in the number
of surviving Listeria cells and the predicted variances in the
Poisson and the COM-Poisson distributions was also carried out
using Excel. The standard error of the experimental variance
was calculated as sqrt[2/(n–1)] VAR[Nt] (Harding et al., 2014).
The variance estimated under the Poisson assumption was
the mean, while the COM-Poisson variance was the mean
divided by ν.

Simulation via Random Number
Generation
To predict the Listeria inactivation over time a basic Monte
Carlo (MC) random sampling with random seed to simulate

random numbers from user-provided functions was used
(Thomopoulos, 2013). Normal deviates (used to introduce
variability in the parameters N0, b, c0, and εt) are generated
using the Box-Muller Algorithm (Press et al., 1997). Poisson
random numbers were generated using the algorithm proposed
by Knuth (1997). The COM-Poisson random numbers were
generated by the inversion method (Minka et al., 2003). For
the expected values ≥200 a normal approximation was used
and bounded to integers between 0 and ∞ (Supplementary
Table 3). As above reported, the COM-Poisson equations used in
random numbers generation were coded, adapting the algorithm
proposed by Huntley (2005), in Excel Visual Basic for Application
(VBA) (Supplementary Table 3). Inactivation was simulated
(Figures 1A,B and Supplementary Table 3) using dispersion of
survivors described as randomness in the Poisson process, while
randomness, non-randomness and additional non-randomness
over time in the COM-Poisson process. For each MC simulation
cycle i, a randomly selected inoculum level (N0i) and a normal
random parameter bi was assigned, and at each selected j-th time
tj the centering parameter µij was estimated using Eq. (1) used
for inactivation. In the COM-Poisson model νij was calculated as
a random parameter by applying Eq. (13). Finally, the generation
of Ntij as random numbers was achieved using Eqs (2) or (3), for
the Poisson or COM-Poisson process, respectively.

TABLE 1 | The Poisson and the COM-Poisson distribution parameters (aP, Poisson; aCOM, COM-Poisson, ν COM-Poisson) of the observed initial bacterial cell counts
(LnN0: Ln CFU/0.2 mL) in the three trials.

N0 = L N0 = M N0 = H

Trial I Trial II Trial III Trial I Trial II Trial III Trial I Trial II Trial III

Poisson ap 1.37 ± 0.10b 1.99 ± 0.08 1.49 ± 0.10 2.71 ± 0.08 3.34 ± 0.05 2.83 ± 0.06 4.96 ± 0.03 5.51 ± 0.03 5.11 ± 0.04

COM-Poisson aCOM 1.39 ± 0.10 1.99 ± 0.07 1.51 ± 0.10 2.69 ± 0.07 3.34 ± 0.05 2.82 ± 0.06 4.96 ± 0.03 5.51 ± 0.03 5.10 ± 0.03

v 1.19 ± 0.53 1.00 ± 0.63 1.12 ± 0.41 0.57 ± 0.19 0.93 ± 0.32 0.85 ± 0.30 0.60 ± 0.19 0.25 ± 0.21 0.28 ± 0.09

Mean values and standard deviationsa of Listeria initial counts in the three trials were: L = 5.2 ± 1.8 CFU/0.2 mL; M = 20.1 ± 7.2 CFU/0.2 mL;
H = 185.1 ± 55.6 CFU/0.2 mL.
aN0 standard deviations due to measurement uncertainty were lower than the limit of 0.5 log10 CFU/mL (data not shown).
bStandard error.

TABLE 2 | Log-likelihood (LL) value, P of likelihood ratio test (P-LR), Akaike information criterion (AIC) and variance-to-mean ratio to determine the better-fitted
distribution for the initial observed L. monocytogenes counts (LnN0: Ln CFU/0.2 mL) in each of the three trials, starting with different initial cells (L, low inoculum; M,
medium inoculum; H, high inoculum).

N0 = L N0 = M N0 = H

Trial I Trial II Trial III Trial I Trial II Trial III Trial I Trial II Trial III

LLa Poisson −40.34 −48.05 −41.97 −62.77 −59.45 −55.50 −84.61 −112.70 −105.31

LL COM-Poisson −40.23 −48.05 −41.91 −60.91 −59.43 −55.37 −83.05 −97.15 −92.19

AICb Poisson 82.68 98.10 85.93 127.54 120.91 113.00 171.23 227.39 212.62

AIC COM-Poisson 84.45 100.10 87.82 125.81 122.85 114.73 170.11 198.29 188.38

P-LRc 0.64 0.99 0.74 0.05 0.82 0.61 0.08 0.00 0.00

Variance/Meand 0.95 1.15 1.03 1.76 1.15 1.18 1.75 4.38 3.72

a If the value of LL is lower, the null hypothesis that the Poisson distribution model is the better model was rejected (in bold).
bA lower AIC value indicates a better fit of the COM-Poisson distribution model (in bold). Differences greater than 10 indicates that there is essentially no support for the
alternative model.
c If the P-value of the likelihood ratio test was smaller than 0.05, the hypothesis that counts followed the Poisson distribution model was rejected (in bold).
dEqui-dispersion, i.e., the equality between mean and variance of the counts, is a property of the Poisson model distribution. If the ratio is different than 1, the null
hypothesis that the Poisson distribution model is the better model was rejected (in bold).
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The number of iterations required to achieve a percentage
error of the mean equal to 5% with a 95% level of confidence,
was determined by applying MC guidelines (Hahn, 1972; Oberle,
2015). To fulfill these requirements at least 2,300 iterations were
required. Monte Carlo simulations, which were recorded by using
the mcmon utility in SolverStat (Comuzzi et al., 2003) in Excel,

were repeated 5,000 times for each experimental time, assigning
30,000 survival values for each inoculum level assayed. The
convergence was assessed by computing confidence intervals on
variables of interest (Ballio and Guadagnini, 2004), running in
triplicate the MC simulations for different values of the seed of
the pseudorandom number generator.

FIGURE 2 | Listeria monocytogenes survivors during the osmotic treatment, starting with different initial cells (N0: CFU/0.2 mL) (L, low inoculum; M, medium
inoculum; H, high inoculum). Trial I, blue circles; trial II, red circles; trial III, yellow circles.
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RESULTS

Variation in the Initial Cell Number
The initial Listeria cell data (N0), in consonance with event
data, were modelled by both the Poisson and the COM-Poisson
distributions (see Supplementary Box 1 for the COM-Poisson
regression) and their estimated parameters a (aP and aCOM)

and ν are shown, for each trial, in Table 1. As expected, a
values were almost identical, at the different initial cell levels
in the Poisson and in the COM-Poisson distributions. At the
higher counts when N0 was around 185/0.2 mL (H samples), the
COM dispersion parameter ν was < 1, revealing over-dispersion.
Accordingly, at these high counts the AIC, which is designed
to pick the model that minimizes the information loss, was

FIGURE 3 | Mean of the variances over time of the observed survival Listeria data compared to the Poisson and the COM-Poisson (Supplementary Box 1)
distributions fitted to the experimental data points at the different N0 (L, low inoculum; M, medium inoculum; H, high inoculum). Observed variances: dark orange
columns; Poisson distribution variances: orange columns; COM-Poisson distribution variances: light orange columns; bars are standard errors.
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TABLE 3 | Log-likelihood value (LL), P of likelihood ratio test (P-LR) and Akaike information criterion (AIC) to determine the better-fitted distribution for L. monocytogenes
observed survivors in each of the three osmotic non-thermal inactivation trials, starting with different initial cells (L, low inoculum; M, medium inoculum; H, high inoculum).

N0 = L N0 = M N0 = H

Trial I Trial II Trial III Trial I Trial II Trial III Trial I Trial II Trial III

LLa Poisson −207.81 −212.01 −162.29 −296.58 −322.22 −297.45 −483.45 −701.08 −567.28

LL COM-Poisson −207.16 −211.59 −162.16 −295.76 −310.47 −288.75 −467.78 −423.07 −435.10

AICb Poisson 419.61 428.02 328.58 597.15 648.44 598.89 970.90 1406.16 1138.55

AIC COM-Poisson 420.33 429.19 330.33 597.51 626.94 583.50 941.56 852.15 876.19

P-LRc 0.26 0.36 0.62 0.20 0.00 0.00 0.00 0.00 0.00

At the initial steps of the modeling, the COM-Poisson (Supplementary Box 1) dispersion parameter ν was assumed as independent of the bacterial counts.
a If the value of LL is lower, the null hypothesis that the Poisson distribution model is the better model was rejected (in bold).
bA lower AIC value indicates a better fit of the COM-Poisson distribution model (in bold). Differences greater than 10 indicates that there is essentially no support for the
alternative model.
c If the P-value of the likelihood ratio test was smaller than 0.05, the hypothesis that counts followed the Poisson distribution model was rejected (in bold).

substantially lower at the higher counts in two trials out of three,
while the variance over mean ratios were largely >1 (Table 2).
In addition, the p-values of the likelihood ratio test (P-LR) were
<0.05 in two trials out of three. Likewise, the log-likelihood value
(LL), which expresses how many times more likely the data are
under one model than the other, was higher at the higher counts
in two trials out of three. All these statistics indicated a better fit
for the COM-Poisson at the higher counts in two trials out of
three assayed. When N0 was around 5–20 CFU/0.2 mL (L and
M samples), the p-values of the likelihood ratio test were larger
than 0.05, and LL and AIC were similar in the Poisson and in the
COM-Poisson processes (Table 2). In addition, the mean values
and variances were similar (the ratios were around 1), showing
that for these populations the experimentally obtained counts
followed the Poisson distribution.

Variation in Survivors Over Time
In our study, osmotic inactivation was through an osmotic stress
and the resulting L. monocytogenes survival data at the different
N0 in BHI broth at aw of 0.913 are shown in Figure 2 and
Supplementary Table 1. To describe the variation in the number
of surviving cells, both the Poisson and the COM-Poisson
regressions (see Supplementary Box 1 for the COM-Poisson
regression) were applied to the survival Listeria data over time
keeping, at this step, ν constant for each regression. The trends
of the experimental and predicted data variances were then
visualized using the mean variance over time at the different N0
(Figure 3) to provide visual evidence of the scattering of the mean
experimental points and how the COM-Poisson distribution
could improve the interpretation of the observed data, at least at
the medium and higher counts. This was confirmed by goodness
of fit statistics used to determine the better-fitted distribution
for L. monocytogenes observed survivors in each of the three
osmotic inactivation trials, starting with different initial cell levels
(Table 3). Starting from the higher count (H) and according to
the AIC method the hypothesis that bacterial survivors follow the
Poisson distribution was rejected in all the three trials. The LL
values and the p-values of the LR test (Table 3) confirmed that the
COM-Poisson better fit the data in the H samples. The better fit
of the COM-Poisson was also observed in two trials out of three
of the M samples (II and III). The Poisson model, in which the

complexity of computation is reduced, could be appropriate for
fitting regression data from the lower count samples (L samples).
However, it is not a good choice for data sets where the Poisson
assumptions are not met.

The Poisson and the COM-Poisson inactivation rate
parameters (b) and their associated statistics were calculated and
reported in Table 4, along with the COM-Poisson dispersion
parameter ν which is assumed, at this step, as independent of the
microbial counts. The inactivation parameters (mean values from
the 9 trials: −0.120 ± 0.035 day−1 and −0.125 ± 0.035 day−1

for the Poisson and COM-Poisson, respectively) were not
affected (p > 0.05) by the initial cell numbers, but by the trials
(p < 0.05), indicating the relevance of variability in population
dynamics in the case of microbial inactivation. For this reason,
in the stochastic inactivation model (see section “Stochastic
Inactivation Modeling and Comparison With Random Numbers
Generated in a Computer Simulation”) normal distributions
with their parameters (mean and standard deviations as reported
above) were used to describe the variation of the inactivation
rates. For each trial the degree of dispersion of the inactivation
parameters, expressed as standard error, decreased as the initial
population increased. It therefore appeared that the smaller the
population, the more spread out the linear rate of inactivation
was, due to stochastic variation. On the other hand, the cells
that survived the osmotic treatment starting from the highest
values and the medium initial counts (H and M samples) showed
most of the values of the COM-Poisson dispersion parameter
ν < 1, revealing over-dispersion. The ν decline was similar (data
not shown) when testing much higher initial cell levels, which,
however, required serial dilutions to perform the experiments
(Supplementary Table 1, HH data).

The aggregation assay, which is based on bacterial
sedimentation, was performed by measuring the optical
absorbance of culture supernatant. With this assay, the
aggregative ability of L. monocytogenes (Travier et al., 2013;
Eshwar et al., 2017) was substantiated in the presence of salt
and over time and enhanced (p < 0.05) in the osmotic medium
(Supplementary Figure 1A). In the latter, the aggregative ability
increased proportionally to the cell density (Supplementary
Figure 1B). Although cell densities required for measuring
auto-aggregation through the culture absorbance shift were
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higher than those used in our modeling experiments, these
results supported the idea that aggregation during osmotic
stress occurred in a concentration-dependent manner. Since
aggregation can result in a clustered distribution with variance
greater than its mean (over-dispersion), it is conceivable
to hypothesize a role of cell-density mediated aggregation
in over-dispersion, which was more relevant at the highest
counts (H samples).

Stochastic Modeling of Dispersion
To quantify the variance contributors producing over-dispersion,
we developed a model for ν [see section “Materials and Methods”:
Eq. (13)] that through the c0 and εt parameters (Table 5)
estimated the total variance and distinguished its contributors in
terms of randomness, non-randomness, and an additional non-
randomness arising during the osmotic treatment. This modeling
approach allowed us to integrate and distinguish these different
components of variation into simulations that are shown in
Figure 4. The contribution of randomness to the total variance
was confirmed to be dominant in the lower count (L samples)
survivors of the osmotic inactivation procedure, where the non-
randomness contribution to the variance, even that due to the
osmotic treatment, was almost irrelevant. In the medium count
survivors (M samples) the randomness contribution to variance
was always dominant, but non-randomness, even that due to the
osmotic treatment, was larger than in the L survivors. For both
L and M samples the variance-to-mean ratios were around one.
At the higher counts (H samples) the non-randomness increased
the total variance above the Poisson distribution, making the
osmotic non-randomness contribution more relevant. On the
other hand, during the osmotic treatment, along with the
decreasing number of survivors, the randomness tended to
overtake the non-randomness contribution with the duration of
the treatment. In these H samples the variance-to-mean ratio,
initially predicted about four times larger than the mean, tended
to be closer to the mean.

From the goodness of fit results (Table 6), it was evident that
the Poisson and the COM-Poisson processes were quite distinct
in terms of their ability to capture variance. The COM-Poisson
overall performance, which was better than the Poisson, could be
attributable to its ability to deal with over-dispersion exhibited by
the higher counts.

Further diagnostic analysis of the COM-Poisson and Poisson
processes was done applying the regression residual deviance.
The null deviance, referred to the null model, which shows how
well the response variable is predicted by a model including only
the intercept, amounted to 69020.53 on 992 degrees of freedom
(DF). Adding the variance components that are comprised in
the Poisson and COM-Poisson frameworks the residual deviance,
which represents the quantity of variation unexplained by the
model, significantly decreased to 2604.10 (on 975 DF) and
1813.39 (on 973 DF), respectively. Hence, taking into account
variation in the number of survivors, which were assigned
to a combination of biological variability and uncertainty, the
explanatory power of the processes increased, with the COM-
Poisson providing a better description of the variance. It is
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TABLE 5 | Estimation and related regression statistics of ν model (Eq. 13) parameters.

Parameter Value Std. Err. Goodness of fit tests Log-likelihood

ca
0 (CFU−1) 0.0181b 0.0039 Pseudo R2 0.9737 Maximum log-likelihood −1948.11

εt (CFU−1/2day−1) 0.0128b 0.0024 Adjusted Pseudo R2 0.9737 Intercept-Only Model −36462.88

RMSE (Root Mean Squared Error) 13.73 Fitted Model −2854.80

SEE (Standard Error of Estimates) 13.74

aC0 < 2e for e ≥ 0.01 (Supplementary Box 2).
bStatistically significant (p < 0.05).

FIGURE 4 | Simulated contributors to variance of Listeria monocytogenes survivors during the osmotic treatment, starting with different initial cells (L, low cell
density; M, medium cell density; H, high cell density). Total variance (Var[Nt]): black solid line; Poisson variance E[Nt ]: dashed gray line; non-randomness c0E[Nt ]2:
dashed black line; additional contribution (due to the osmotic treatment) to non-randomness εtt E[Nt ]2/E[N0]1/2: gray solid line; variance over mean (secondary axis):
dashed red line.
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TABLE 6 | Log-likelihood value (LL) and Akaike information criterion (AIC) values to
determine the better-fitted distribution between the Poisson and the COM-Poisson
(eq. 13) processes for L. monocytogenes observed survivors starting with different
initial cells (L, low inoculum; M, medium inoculum; H, high inoculum).

Poisson COM-Poisson (Eq. 13)

LLa pb AICc LL p AIC

N0 = Ld
−582.11 6 1176.22 577.96 8 1171.93

N0 = Md
−916.24 6 1844.49 887.24 8 1790.48

N0 = Hd 1751.81 6 3515.61 1389.60 8 2795.20

ALLe 3250.16 18 6536.32 2854.80 20 5749.61

a If the value of LL is lower, the null hypothesis that the Poisson distribution model
is the better model was rejected (in bold).
bParameter numbers.
cA lower AIC value indicates a better fit of the COM-Poisson distribution model (in
bold). Differences greater than 10 indicates that there is essentially no support for
the alternative model.
dValue from the three trials.
eValue from the nine trials.

worth noticing that the quantity of variation explained by the
COM-Poisson process also encompassed over-dispersion.

Stochastic Inactivation Modeling and
Comparison With Random Numbers
Generated in a Computer Simulation
Monte Carlo, which is a common method to approximate
the distribution of a model output, has been successfully used
to describe variability and uncertainty in survival numbers
(Akkermans et al., 2018; Abe et al., 2019; Garre et al., 2019). MC
simulations were then used to model the variation in survivors
at various initial cell counts in both the Poisson and the COM-
Poisson frameworks (MC-Poisson and MC-COM), with the latter
including the dispersion parameter ν (Table 7). Most of the
observed values were within the MC estimated-ranges of the
counts predicted in both processes. It is worth noticing that in
the MC-COM the variations estimated at the higher counts were
larger than those estimated in the MC-Poisson framework, which
assumes only randomness. Since the dispersion parameter was
successfully predicted by MC simulations, it could be inferred
that other contributors to variance, i.e., non-randomness and
an additional non-randomness emerging during the osmotic
treatment, could have contributed to the observed differences
in variations (Table 7). Therefore, the additional variance
components in the observed values could be substantiated by
the Monte Carlo within the COM-Poisson framework, which
was able to describe the randomness and non-randomness
bacterial behavior.

DISCUSSION

Dispersion of pathogenic microorganisms in food has a strong
impact on public health (Jongenburger et al., 2012a). It is
therefore of importance to provide a framework that can be
used to represent and distinguish the randomness and the
non-randomness components of variation. The COM-Poisson

TABLE 7 | Observed and Monte Carlo simulation results for osmotic inactivation
of L. monocytogenes starting with different initial cells (L: low inoculum, M:
medium inoculum, H: high inoculum).

Time
(Days)

Observed
survivorsa

COM-
Poisson

simulationb

Poisson
simulationc

Observed
vd

Simulated
ve

N0 = L

0 5.0±2.2f 5.0±2.4 5.0±2.3 0.97±0.09 0.92±0.03

3 3.0±2.4 3.0±2.1 3.0±2.1 0.74±0.11 0.89±0.03

6 3.0±1.9 2.0±2.0 2.0±1.9 1.06±0.50 0.89±0.04

10 1.0±2.0 1.0±1.9 1.0±1.9 1.02±0.37 0.90±0.04

13 1.0±1.8 1.0±1.9 1.0±1.9 1.18±0.42 0.92±0.05

18 0.0±1.8 0.0±1.9 0.0±1.9 1.34±0.77 0.94±0.05

N0 = M

0 19.0±4.8 20.0±5.3 20.0±4.5 0.76±0.17 0.74±0.08

3 15.0±5.5 14.0±5.2 14.0±4.7 0.70±0.26 0.73±0.07

6 11.0±5.1 9.0±5.6 9.0±5.3 1.62±1.91 0.75±0.07

10 6.0±5.6 5.0±6.3 5.0±6.1 0.78±0.29 0.79±0.08

13 4.0±5.5 4.0±6.5 4.0±6.4 1.11±0.32 0.83±0.08

18 1.0±6.2 2.0±6.8 2.0±6.8 0.93±0.17 0.88±0.09

N0 = H

0 171.5±22.9 182.0±30.0 184.5±13.6 0.36±0.19 0.23±0.08

3 133.0±32.9 124.0±32.2 127.0±24.9 0.34±0.21 0.28±0.08

6 97.0±23.0 85.0±39.5 86.0±36.7 0.40±0.16 0.33±0.09

10 54.0±23.7 51.0±46.3 52.0±45.5 0.42±0.27 0.41±0.11

13 46.5±46.2 35.0±49.4 35.0±48.8 0.43±0.17 0.48±0.13

18 17.5±53.1 19.0±52.4 19.0±52.1 0.73±0.50 0.60±0.15

aMedian values.
bThe COM-Poisson framework was used to predict the Listeria inactivation using
Monte Carlo simulation.
cThe Poisson framework was used to predict the Listeria inactivation using Monte
Carlo simulation.
dObserved COM-Poisson dispersion parameter.
eSimulated COM-Poisson parameter.

process, which refers to COM-Poisson distribution, can be a good
candidate. In fact, the two-parameter COM-Poisson distribution,
which has the Poisson distribution as a special case, can deal
with both the over-dispersed (ν < 1) and under-dispersed
(ν > 1) count data (Sellers and Shmueli, 2010; Francis et al.,
2012), whereas the Poisson distribution has only one parameter,
which represents both the expectations and variance of the
count random variable. In addition, unlike the Poisson model
where the conditional mean is central to interpretation, the
COM-Poisson distribution, taking into account the complete
conditional fitted distribution, uses a more general function of
the response distribution (Sellers and Shmueli, 2010).

According to our results, and as reported by others (Koyama
et al., 2016, 2019), initial small cell numbers followed the
Poisson distribution, indicating that they exhibited naturally
occurring randomness. On the other hand, larger amounts of cells
mostly followed the COM-Poisson distribution, revealing over-
dispersion. It is well known that only for low-density populations
the cells can be randomly spread, whereas the frequent presence
of clumps and aggregates in larger populations could result in
the detection of over-dispersed data. However, in this context,
it can be more accurate to model the over-dispersed microbial
data under the theoretical interpretation of independent events
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and not to follow a true contagious process of non-independent
events (Gonzales-Barron and Butler, 2011). Dispersion was
then confirmed to be dependent on the initial number
of cells, i.e., as the number of initial cells increased, the
randomness contribution to the variance decreased, while over-
dispersion increased.

Similarly to what was observed by others (Aspridou and
Koutsoumanis, 2015), in the experiments conducted to generate
the osmotic inactivation rates, number of cells, had no significant
effect on the inactivation rates, possibly due to the lack of a
cooperative behavior (García and Cabo, 2018). On the other
hand, a trial effect was observed, suggesting that such effect could
depend on each baseline population history, which determines
both regulatory and mutational responses to new environments
(Ryall et al., 2012). The biological individuality, which refers also
to cell to cell variations from a given species, is therefore of great
importance in the case of microbial inactivation (Aspridou and
Koutsoumanis, 2015, 2020). Unlike what was observed for the
rate of inactivation, the dispersion parameter ν did not respond
to determinants other than the cell levels, reinforcing the view
of the importance of the number of cells as effectors of over-
dispersion.

Following inactivation, the stochastic variation dominated
in the smaller populations. However, even randomly dispersed
populations may allow for the survival of over-dispersed cell
populations. Thus, the results on the survival Listeria cells
ultimately justified the use of the COM-Poisson over the Poisson
distribution in its ability to fit differently dispersed count data and
sustained the idea that when an osmotic treatment is applied it
allows for the survival of over-dispersed cell populations. This
additional contribution to the total variance in terms of non-
randomness, noticed in the populations following the osmotic
stress, is consistent with the hypothesis that over-dispersion could
be due to aggregation. L. monocytogenes aggregation is mediated
by key virulence determinants and can represent a strategy
for surviving in inimical environments as those at high NaCl
concentration (Jensen et al., 2007; Travier et al., 2013; Eshwar
et al., 2017). Hence, the non-randomness, attributable to bacterial
abundance, could also arise following an osmotic stress that can
contribute to cell aggregation (Schmid et al., 2009).

Quantification of the variance contributors of over-dispersion
through the ν (dispersion) model allowed us to integrate
the different components of variation into the COM-Poisson
inactivation process. This latter process enabled the description
of the survival of different-sized populations by introducing the
COM-Poisson distribution for survivors along with the modelled
COM-Poisson dispersion parameter (ν). Although a number of
stochastic models describing the population randomness under
inactivation have been developed (Aguirre et al., 2009; Koyama
et al., 2017; Abe et al., 2019; Hiura et al., 2020), less attention has
been paid to modeling other variance components, such as the
non-randomness (Reinders et al., 2003, 2004; Gonzales-Barron
and Butler, 2011). Thus, we proposed a statistical modeling
approach, suitable for count data, for accurately estimating the
variation in microbial response to an osmotic inactivation and

to capture the randomness and non-randomness contributions
to the total variance that can have practical implications
when dealing with intervention strategies capable of controlling
pathogens. The suitability of the approach was demonstrated by
its flexibility in handling different dispersion types addressing
the variance contributors in different-sized populations. The
variation in bacterial numbers, as defined in this study in
the context of osmotic stress, and the notions of the random
and non-random occurrence of surviving bacteria, could be
applied to other hurdles or processes, i.e., thermal processing,
used to inactivate bacteria for managing food safety in more
realistic conditions.
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