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The soil environment determines plants’ health and performance during their life
cycle. Therefore, ecological understanding on variations in soil environments, including
physical, chemical, and biological properties, is crucial for managing agricultural fields.
Here, we present a comprehensive and extensive blueprint of the bacterial, archaeal,
and fungal communities in rice paddy soils with differing soil types and chemical
properties. We discovered that natural variations of soil nutrients are important factors
shaping microbial diversity. The responses of microbial diversity to soil nutrients were
related to the distribution of microbial trophic lifestyles (oligotrophy and copiotrophy) in
each community. The compositional changes of bacterial and archaeal communities in
response to soil nutrients were mainly governed by oligotrophs, whereas copiotrophs
were mainly involved in fungal compositional changes. Compositional shift of microbial
communities by fertilization is linked to switching of microbial trophic lifestyles. Random
forest models demonstrated that depletion of prokaryotic oligotrophs and enrichment of
fungal copiotrophs are the dominant responses to fertilization in low-nutrient conditions,
whereas enrichment of putative copiotrophs was important in high-nutrient conditions.
Network inference also revealed that trophic lifestyle switching appertains to decreases
in intra- and inter-kingdom microbial associations, diminished network connectivity, and
switching of hub nodes from oligotrophs to copiotrophs. Our work provides ecological
insight into how soil nutrient-driven variations in microbial communities affect soil health
in modern agricultural systems.

Keywords: soil microbiota, soil nutrients, microbial trophic lifestyle, random forest model, microbial association

INTRODUCTION

The ongoing rapid increase in the world’s population necessitates improvements in crop
productivity. Crop productivity is determined by the climate, water content, available nutrients, and
biological factors. Soil fertility can be modulated anthropogenically to enhance crop productivity.
The Green Revolution helped to improve crop productivity by affecting controllable factors
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related to crop plants. The use of chemical fertilizers and
pesticides improves crop productivity by providing sufficient
nutrients and protection against insect pests and microbial
pathogens. However, agrochemicals promote soil degradation
by increasing the salinity and acidity of soils and decrease
the biodiversity of agricultural environments (Matson, 1997),
hampering sustainability. To improve both crop performance
and environmental quality, precision agriculture (site-specific
crop management) has been proposed (McBratney et al,
2005). In precision agriculture, edaphic variables (such as
topography, organic matter content, moisture levels, nitrogen
levels, and other factors) are measured for intra- and inter-
field comparisons. However, soil microbial communities, key
component of soil properties, are infrequently considered among
measurable edaphic factors.

Soil microbial communities are key to the cycling of carbon,
nitrogen, and other inorganic nutrients (Jansson and Hofmockel,
2018). These roles of the soil microbial communities are
crucial for maintaining soil health and ecological functions. Soil
microbial communities govern the turnover time of nutrient
reservoir such as organic matter (Rousk and Bengtson, 2014). Soil
fungal communities regulate the balance of carbon and nutrients
(Zifedkovd et al., 2016), and mediate phosphorus (P) and nitrogen
(N) cycles by converting organic P and N compounds to mineral
forms (Treseder and Lennon, 2015). Soil bacterial communities
affect ecological functions as well. Soil bacterial communities
can produce greenhouse gases, such as methane (CHy), carbon
dioxide (CO3), and nitrous oxide (N,O), while decomposing
organic matter, consequently affecting land atmosphere carbon
exchange (Bardgett et al., 2008; Oertel et al., 2016). Soil microbial
communities also provide the initial source material for plant
microbiomes. Specifically, the bulk soil microbiome is the
origin of the rhizosphere microbiome contributing to the initial
colonization of plants (Edwards et al., 2015). Small variations
in the composition and function of the initial soil microbiome
can predetermine plant survival during threat of plant disease
(Wei et al., 2019).

Microbial communities are sensitive to alteration in soil
physical and chemical properties (Karhu et al, 2014). To
understand the prevalence, distribution, and responses of
microbial communities to changes in environmental conditions,
life strategy concepts, such as r- and k-strategist (Andrews and
Harris, 1986) and competitive- stress tolerator-ruderals (C-S-R)
framework (Grime and Pierce, 2012), have been proposed. One of
the proposed ecological life strategies is microbial trophic lifestyle
also known as copiotrophy-oligotrophy continuum. Microbial
trophic lifestyles are categorized as oligotrophy and copiotrophy
according to their nutrient adaptation mode. Oligotrophs prefer
low-nutrient conditions, whereas copiotrophs thrive under high-
nutrient conditions (Ho et al., 2017). Previous studies reported
that changes in soil bacterial communities in response to presence

Abbreviations: aOTU, archaeal OTU; bOTU, bacterial OTU; CC, Chuncheon;
CE, conventional farming; CJ, Cheongju; CL, clay loam; daOTU, differentially
abundant OTU; DG, Daegu; Fer, fertilized fields; fOTU, fungal OTU; IS, Iksan;
JJ, Jinju; L, loam; MY, Miryang; NE, no fertilizers; NJ, Naju; Non-fer, non-fertilized
fields; NP, no pesticides; RA, relative abundance; SC, silty clay; SCL, silt clay loam;
Silt L, silt loam; SL, sandy loam; UE, University Farm (Suwon); YS, Yesan.

of recalcitrant or labile carbon substrates (Goldfarb et al., 2011)
and temperature sensitivity of CO; flux (Bai et al., 2017) can be
explained by the copiotrophy-oligotrophy continuum. Another
study also showed that ecological attributes of specific bacterial
taxa can be predicted by microbial trophic lifestyle (Fierer et al.,
2007). Thus, investigation of microbial trophic lifestyles will give
ecological insights on the influence of soil nutrient status on the
diversity and stability of the initial soil microbiome.

Rice paddy soils provide a unique environment compared to
other agricultural fields. During rice cultivation, alternating dry
and submerged conditions results in alternately oxidized and
reduced environments (Liesack et al., 2000). This fluctuation
enables the coexistence of aerobic and anaerobic microbes that
play crucial roles in nutrient cycling by mediating methane
production and consumption (Liesack et al., 2000), nitrification
(Jiang et al., 2015), and denitrification (Arth et al., 1998). These
microbial activities impact both the agricultural environment
and productivity (Gao et al., 2016). The factors that influence
microbial functions and communities in flooded paddy soils are
of great interest. Soil properties play a role in shaping microbial
community composition in paddy soils. For example, soil pH
is associated with the diversity and composition of bacterial
and fungal communities (Jiang et al., 2016). In addition, soil
ions, such as iron and sulfate, influence the composition of
bacterial and archaeal communities (Sun et al., 2018). Changes
in soil moisture and redox potential significantly affect bacterial
community composition (Li et al., 2021). Management activities
also affect microbial community composition, diversity, and
enzymatic activities during the cropping season (Jiang et al., 2016;
Liu et al,, 2020; Carlos et al., 2021). Although the investigation
of pre-season soil conditions is important for determining how
agricultural fields are managed during the cropping season,
abiotic and biotic conditions in pre-season soils are less well
understood than conditions during the cropping season in
rice paddy soils.

In the present study, we aimed to (1) examine effects of
abiotic environments on soil bacterial and fungal composition
and diversity in pre-season soils, (2) find effects of soil nutrients
and fertilization regimes on the distribution of microbial taxa
or operational taxonomic units (OTUs), and (3) investigate
their effects on microbial networks. We examine the abiotic
and biotic properties of pre-season soil samples collected from
18 geographically separated rice paddies over 2 years. We
demonstrate the soil nutrient-driven distribution of microbial
trophic lifestyles (oligotrophs and copiotrophs) in the bacterial,
archaeal, and fungal communities. Our findings help to fill a
major knowledge deficiency in the ecology of soil microbial
communities before cropping season.

MATERIALS AND METHODS

Soil Collection

To compare the effects of edaphic factors and cultural practices
on soil microbial communities, fields located in 9 sites were
differentially managed. In total, 9 kg nitrogen, 4.5 kg phosphate,
and 5.7 kg potassium per 1,000 m?> were applied 3 times per
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cultivation period in fields managed by conventional farming
(CF) and without pesticides (NP). In unfertilized (non-fertilized)
fields (NF), no fertilizer was applied during rice cultivation. The
size of fields varied in sites (300-900 m?). Sampling area was
restricted to 100 m? (10 m x 10 m) to reduce spatial variation
among fields, and further divided into 9 square-shaped sections.
Soil samples were collected from the center of each section.
A total of 162 soil samples were collected from the 18 fields in
April 2017. In April 2018, a total of 90 soil samples were collected
from 10 fields, which were identical to those of the previous year
(Supplementary Figure 1 and Supplementary Table 1). In both
years, fields were not plowed before sampling. To avoid the effects
of plant debris, soil below a depth of 5 cm was removed. Two
kg of soil below a depth of 15 cm (unplanted bulk soil) was
collected from each field. Then, 500 g of each soil was used to
analyze soil texture (contents of sand, silt, and clay) and chemical
properties [pH, soil organic matters (SOM), total nitrogen (TN),
cation exchange capacity (CEC), exchangeable Ca?*, Mg? ™, Na*,
K*, and phosphate (P,0s)]. To measure soil pH, 5 g of air-
dried and sieved soils were added into 25 ml of deionized
water and mixed for 30 min. Soil suspension was incubated
for 1 h at room temperature. pH was measured using a pH
meter (HM-30R, DKK-TOA, Japan). SOM and TN contents were
measured following Walkley-Black methods (Walkley and Black,
1934) and Kjeldahl method (Bremner, 1960), respectively. CEC
were quantified using ammonium acetate (NH4OAc) method
(Schollenberger and Simon, 1945). To quantify contents of
exchangeable cations, 5 g of air-dried soils were added into 50
ml of IN NH4OAc (pH 7.0). After incubation for 30 min, the
contents of cations were measured using inductively coupled
plasma (ICP) emission spectroscopy (ICP-730-ES, Varian,
United States; ICP-7510, Shimadzu, Japan; ICP-7400, Thermo
Fisher Scientific, United States). The contents of P,Os5 were
measured following Bray No.1 method (Bray and Kurtz, 1945).
Edaphic factors were analyzed in the National Instrumentation
Center for Environmental Management (NICEM) at Seoul
National University, Korea. 500 g out of 1.5 kg of collected soil
was sieved through a 2 mm mesh to remove plant debris and
particles larger than sand grains.

Sample Preparation and DNA Extraction
Sieved soils (0.5 g) were transferred to Lysing Matrix E tubes from
FastDNA SPIN Kit for Soil (MP Biomedicals, United States).
A total of 252 samples were prepared and pulverized with a
bead beater (Biospec, United States) at 4,000 rpm for 2 min.
Bead beating was repeated after samples cooled in ice for
1 min. Soil DNA was extracted following the instructions of
the manufacturer. The concentration of DNA in each sample
was quantified with a NanoDrop™ spectrophotometer (Thermo
Fisher Scientific, United States). Extracted DNA was stored at —
20°C until amplicons were generated.

PCR Amplification and Sequencing

16S ribosomal RNA (16S rRNA) and internal transcribed spacer
(ITS) gene sequencing were performed in a two-step PCR
amplification protocol. The V4 regions of bacterial and archaeal
16S rRNA genes and the fungal ITS2 regions of nuclear

rRNA genes were amplified using universal 515F/806R primers
(Caporaso et al., 2011) and ITS3/ITS4 primers (White et al.,
1990), respectively. Each sample was amplified in triplicate in a
25 pl reaction tube containing 12.5 pl of 2x PCR i—StarTaqTM
Master mix Solution (Intron Biotechnology, Korea), 0.4 uM for
each forward and reverse primers, and 0.8 uM of diluted DNA
template. For the ITS libraries, the conditions were the same as
for the preparation of the 16S libraries. PCR was performed in the
program set at initial denaturing at 98°C for 3 min, followed by 32
cycles of denaturing at 98°C for 10 s, primer annealing at 55°C for
30 s and extension at 72°C for 60 s. For ITS PCR amplification,
the program was the same. Each library was accompanied by
negative PCR controls to ensure that the reagents were free
of contaminant DNAs. Amplicon replicates were pooled, then
purified using MEGAquick-spin™ Plus DNA Purification Kit
(Intron Biotechnology, Korea) with additional ethanol clean-
up step to remove PCR reagents and resulting primer dimers
completely. The second PCR was done with the Nextera XT
Index Kit (Illumina, United States). DNA templates were diluted
to equal concentrations after being measured by the Infinite
200 pro (TECAN, Switzerland). The libraries were then pooled
into equal concentrations into a single library and concentrated
using AMPure beads (Beckman Coulter, United States). The
pooled library then went through a final gel purification stage
to remove any remaining unwanted PCR products. Pooled
libraries were sequenced using the Illumina MiSeq platform
with 2 x 300 base pair read length. The sequencing was
done in the National Instrumentation Center for Environmental
Management (NICEM) at Seoul National University, Korea.

Processing and Filtering of 16S rRNA

and ITS Sequences

The sequenced reads were processed with QIIME2 (version
2018.6) (Bolyen et al., 2019). After demultiplexing, the resulting
sequences were merged with PEAR (Zhang et al., 2014) and then
quality filtered using the command denoise-single implemented
in the DADA2 plugin (Callahan et al, 2016) in the QIIME2
(version 2018.6) pipeline. The high-quality sequences were
clustered into OTUs based on 97% sequence similarity using
the open reference vsearch algorithm (vsearch cluster-features-
open-reference) (Rognes et al., 2016) against the Silva 99%
OTU representative sequence database (v132, April 2018) (Quast
et al., 2012) and then assembled into an OTU table. Bacterial
OTUs were chimera filtered using the vsearch uchime-de novo
algorithm (Edgar et al, 2011). Fungal OTUs were checked
for chimeric sequences using Uchime-ref algorithm against the
dedicated chimera detection ITS2 database (June 2017 version)
(Nilsson et al., 2015). The taxonomy of the non-chimeric OTUs
was assigned using Naive Bayes algorithm implemented in the
q2-feature-classifier prefitted to the Silva database for V4 region
of 16S rRNA regions (Bokulich et al., 2018). For the ITS2
region, taxonomy assignment was done with q2-feature-classifier
prefitted to UNITE database (UNITE_ver7_dynamic of Jan 2017)
(Nilsson et al., 2019). Bacterial sequences ranging from 200
to 300 bp long and fungal sequences ranging from 100 to
490 bp long were used for further analyses. The OTU table was
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imported to R by the phyloseq package (McMurdie and Holmes,
2013) for further analysis. Sequences from host DNA and OTUs
unassigned at the kingdom-level were removed (bacterial OTU:
orders “Chloroplast” and “Rickettsiales”; fungal OTU: Kingdoms
“Unassigned,” “Chromista,” and “Plantae”). OTUs detected from
negative controls were removed from the samples.

Statistical Analysis and Visualization

Unless otherwise stated, all statistical analyses were performed
with R version 3.4.4 (R Core Team, 2013). Statistical significance
was determined at a = 0.05, and where appropriate, the
statistical significance was corrected for multiple hypothesis
testing using the false discovery rate (FDR) method. The OTU
table was normalized by cumulative-sum scaling (CSS) and log-
transformed by cumNorm() from the R package metagenomeSeq
(v1.24.0) (Paulson et al., 2013). Rarefaction was done when
calculating alpha diversity (McMurdie and Holmes, 2014).
Shannon and Simpson indices were calculated using the function
alpha() in the R package microbiome (v1.9.13) (Lahti and Shetty,
2019). Two-sided Mann-Whitney U test, Kruskal-Wallis test,
and Dunn’s test were all performed in R. Taxa above relative
abundance of 0.5% of each sample were visualized with the
R package ggplot2 (v3.2.1) (Wickham, 2016) for taxonomic
composition analysis. The Bray-Curtis dissimilarity matrix
was calculated to build both unconstrained and constrained
Principal Coordinate Analyses (PCoA). The constrained PCoA
was constrained by soil site (location), soil texture, and
cultural practice, respectively, using the function capscale()
implemented in the Vegan package (v2.5-5) (Oksanen et al.,
2018) with the R script made available by Zgadzaj et al. (2016).
Permutational multivariate analysis of variance (PERMANOVA)
was conducted using the function adonis() from the Vegan
package. Putative oligotrophs and copiotrophs were identified
with the correlation between relative abundances of OTUs
and SOM or TN levels based on Spearman’s rank correlation
since SOM and TN showed significant correlations with other
soil physicochemical properties (Supplementary Figure 19).
OTUs showing significant positive correlation with SOM or
TN (P < 0.05) were classified as putative copiotrophs, whereas
OTUs showing significant negative correlations with SOM or TN
were classified as putative oligotrophs. Linear regression between
relative abundance of putative oligotrophs or copiotrophs and
microbial diversity was calculated using Im() command.

Identification of OTUs Sensitive to

Fertilization Regimes

To identify OTUs associated with fertilization regimes depending
on nutrient status, differentially abundant OTUs (daOTUs) were
investigated. Soil samples were divided into nutrient-poor and
nutrient-rich soils based on sand, clay, and SOM contents among
soils in geographically identical but differently fertilized sites.
Nutrient-poor soils consisted of 54 samples in CJ (non-fertilized
condition (‘17, samples collected in 2017), n = 9; fertilized
condition (‘17), n = 9; non-fertilized condition (‘18, samples
collected in 2018), n = 9, fertilized condition (‘18), n = 9) and
YS (non-fertilized condition, n = 9; fertilized condition, n = 9)

fields, whereas nutrient-rich soils consisted of 36 samples of MY
(non-fertilized condition, n = 9; fertilized condition, n =9) and NJ
(non-fertilized condition, n = 9; fertilized condition, n = 9) fields.
A zero-inflated Gaussian distribution mixture model was used by
applying the function fitZig() from metagenomeSeq. Moderated
t-tests using the makeContrasts and eBayes commands from
the R package Limma (v3.34.9) (Ritchie et al., 2015) were used
to define daOTUs. Differences in abundance were considered
significant at a false discovery rate (FDR)-adjusted P < 0.05.
Differentially abundant bacterial, archaeal, and fungal OTUs
were defined as daOTUs and visualized in MA plots using R
package ggplot2.

Generation of a Random Forest

Classification Model

To find the most important community responses to
fertilization in different soil conditions (nutrient-poor and
-rich environments), random forest models were constructed.
The classification model was built by setting non-fertilized
and fertilized field (0 and 1, respectively) as a function of
CSS-normalized abundances of OTUs using Random Forest (RF)
algorithm (randomForest package, v4.6-14) (Liaw and Wiener,
2002) in the nutrient-poor (n = 54) and -rich environments
(n = 36). Two-thirds of the total samples were randomly sampled
as the training set. Ten-fold cross validation (caret package,
v6.0-81) (Kuhn et al., 2018) were analyzed with the remaining
test set in order to check the accuracy of the RF classifiers
of each kingdom. The RF classifiers of the nutrient-poor
environment gave cross-validation accuracy of 0.883 (bacteria),
0.95 (archaea), and 0.944 (fungi). The RF classifiers of the
nutrient-rich environment gave cross-validation accuracy of
0.85 (bacteria), 0.908 (archaea), and 0.866 (fungi). OTUs were
ranked by their importance in contributing to the accuracy
of non-fertilized/fertilized field prediction in the RF model
by calculating the mean decrease in Gini impurity. This step
was done using the function importance() command in the
randomForest R package. Ten-fold cross validations were
performed while excluding less important OTUs to evaluate
model performance as a function of inclusion of the top
fertilization regime-discriminating OTUs using the rfcv() in the
randomForest R package (Edwards et al,, 2018). The minimum
number of OTUs with the prediction error rate which is as low as
the error rate of the full RF model 8,045 (bacteria), 342 (archaea),
and 2,282 (fungi) in the nutrient-poor environment and 7,969
(bacteria), 259 (archaea), and 2,636 (fungi) in the nutrient-rich
environment was determined. In the samples of nutrient-poor
environments, there was a rapid increase in the prediction
error rate when the model included approximately less than 35
(bacteria), 25 (archaea), and 35 (fungi) of the most important
OTUs, which prompted the setting of the threshold to 35, 25, and
35, respectively. On the other hand, in the samples of nutrient-
rich environments, there was a rapid increase in the prediction
error rate when the model included approximately less than 30
of the most important OTUs, which prompted the setting of
the threshold to 30. The top OTUs from the RF models of each
kingdom were further categorized as non-fertilized-enriched,

Frontiers in Microbiology | www.frontiersin.org

September 2021 | Volume 12 | Article 719486


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Kim et al.

Trophic Lifestyles in Paddy Soil

fertilized-enriched, or non-differential OTUs depending on the
result of differential abundance test above.

Construction and Analyses of Microbial

Co-occurrence Networks

Multi-kingdom co-occurrence networks were constructed to
infer variation in microbial associations according to fields
and cultural practices using the method described in the
previous work (Kim et al., 2020). To construct the co-occurrence
networks of each field (n = 9), an average of 3,808 OTUs
(all OTUs consisting of microbial communities in each field)
were used (Supplementary Table 11). Bacterial, archaeal, and
fungal OTU counts were CSS-normalized, respectively, and
then merged into a single table to estimate the correlations
among OTUs. The CSS-normalized multi-kingdom OTU
tables were used as inputs for network construction. The
SparCC algorithm was used to infer co-occurrence patterns
(Watts et al, 2019). Significant correlations were defined at
correlation coefficient (r) > 0.6 or < -0.6, and FDR-adjusted
P < 0.05. Visualization was performed with Gephi (v0.9.2)
(Bastian et al., 2009) using the Force Atlas 2 layout. The node,
edge, and network properties (degree, betweenness centrality,
closeness centrality, and clustering coefficients) were investigated
with igraph. Hub OTUs were defined based on within-
module connectivity (Zi) and among-module connectivity (Pi)
relationship (Guimera and Nunes Amaral, 2005). Based on Zi
and Pi, network hubs (Zi > 2.5 and Pi > 0.62), module hubs
(Zi > 2.5 and Pi < 0.62), connectors (Zi < 2.5 and Pi > 0.62),
and peripherals (Zi < 2.5 and Pi < 0.62) were defined. To
find microbial associations in which functional groups are
involved, the distribution of taxa involved in degradation
of organic compounds (Anaerolinea, Phenylobacterium,
Dechloromonas, and Cellulomonas) (Lynd et al., 2002; Salinero
et al, 2009; Eberspdcher, 2015; Liechty et al, 2020), iron
reduction (Geobacter and Anaeromxyobacter) (Wilmoth et al.,
2018), syntroph (Syntrophus and Syntrophobacter) (Mclnerney
et al, 2009), methanotroph (Methylosarcina, Methylomonas,
and Methylobacter) (DeJournett et al., 2007), fungal saprotroph
(Guehomyces and Papiliotrema) (Duarte et al., 2018), and archaeal
methanogen (Methanosarcina, Methanosaeta, Methanocella,
Methanobacterium) (Wen et al., 2017) were investigated.

RESULTS

Soil Properties Reveal Environmental
Variations Among Rice Paddy Fields

The physicochemical properties were heterogeneous among
fields in both years (Figure 1 and Supplementary Table 1). Soil
pH ranged from 5.1 to 7.1, which is weakly acidic to neutral.
Indicators of soil fertility [ion contents, total nitrogen (TN), soil
organic matter (SOM), and cation exchange capacity (CEC)]
also varied among sites. Iksan (IS) soil had the highest overall
fertility. Phosphate (P,O5) levels were high in Chuncheon (CC)
soil in both years (201.4-271.08 mg kg~ !). The distribution of soil
particles also differed among sites (Figure 1 and Supplementary

Chemical property
Max pH

Physical property

Sand

CEC Silt

K Clay
Min

FIGURE 1 | Geographic distribution of soil sampling sites and
physicochemical properties of the fields. The latitudes and longitudes of the
sites were visualized with Tableau Desktop (2019.4). Heat maps were
constructed with Morpheus software
(https://software.broadinstitute.org/morpheus/). Each square in the heat map
indicates chemical properties quantified in this study. Colors indicate the
relative values of the chemical properties across all fields. Pie charts show the
proportions of sand, silt, and clay particles. Numbers indicate the paddy fields
examined at each site. The fields investigated in 2018 are indicated by
apostrophes next to the field numbers. Values of the soil physical and
chemical properties are listed in Supplementary Table 1. CC, Chuncheon;
CJ, Cheongju; DG, Daegu; IS, lksan; JJ, Jinju; MY, Miryang; NJ, Naju; UF,
University Farm (Suwon); YS, Yesan; SOM, soil organic matter; TN, total
nitrogen; CEC, cation-exchange capacity (number of exchangeable cations
per unit dry weight); P»Os, phosphate; K, potassium; Mg, magnesium; Na,

sodium; Ca, calcium.

Table 1). Cheongju (CJ) had the highest sand content, whereas
IS and NJ had the highest clay contents. These findings indicate
that the soil environments were highly heterogeneous despite the
similar ecological characteristics of the sampled rice paddies.

Taxonomic Composition of Microbial

Communities Varied Among Paddy Fields

To investigate the relationships between edaphic factors and
microbial community composition, the bacterial, archaeal, and
fungal communities were analyzed. In total, 13,373,658 bacterial
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reads, 1,124,321 archaeal reads, and 12,191,641 fungal reads
were obtained. After the removal of unwanted reads (chimeras,
undesirable taxa, and singletons), 33,199 operational taxonomic
units (OTUs) [22,623 bacterial OTUs (bOTUs), 1,139 archaeal
OTUs (aOTUs), and 9,437 fungal OTUs (fOTUs)] were identified
at 97% sequence similarity. Bacterial communities were generally
dominated by Proteobacteria, Chloroflexi, Acidobacteria,
Actinobacteria, and Bacteroidetes (Supplementary Figure 2A).
The bacterial community composition differed among locations.
In the archaeal community, the phyla Euryarchaeota and
Crenarchaeota dominated all samples, although archaeal
diversity may be underestimated due to the use of the
515f/806r primer set (Supplementary Figure 2B). Fungal
communities were dominated by Ascomycota and Basidiomycota
but exhibited high variability among fields at the class level
(Supplementary Figure 2C).

Soil Physicochemical Properties
Contribute to Variations in Community
Composition

A constrained principal coordinate analysis (PCoA) was
conducted to investigate the effects of sampling site and soil
texture on microbial community composition, because soil
chemical properties varied with geographic location and were
significantly correlated with soil particle type (Supplementary
Tables 1, 2). When constrained by site and soil texture, all
factors contributed to the clustering of all samples (Figure 2).
Site and soil texture impacted the fungal community more
strongly than they did the bacterial and archaeal communities.
This result is consistent with variations in fungal composition
(Supplementary Figure 2). Soil texture could significantly
explain 6.8, 8.2, and 11% of the compositional variance in the
bacterial, archaeal, and fungal communities, respectively, under
constrained conditions. Unconstrained PCoA also corroborated
this finding (Supplementary Figure 3). In unconstrained PCoA,
the contribution of soil texture to compositional variance
accounted for 9% (bacteria), 12.6% (archaea), and 9.7% (fungi)
of the total variance. These results indicate that the bacterial
community is less strongly impacted by soil texture than the
archaeal and fungal communities. Permutational multivariate
analysis of variance (PERMANOVA) was conducted to quantify
the contributions of edaphic factors to community variation.
The result of PERMANOVA showed significant contributions of
each factor to variations in microbial community composition
(all, P = 0.0001) (Supplementary Table 3). This conclusion was
also supported by the relationships between principal coordinates
(PCos) and soil properties (Supplementary Table 4). Canonical
correspondence analysis (CCA) was conducted to identify
the links between soil properties and microbial community
composition. All factors contributed to the clustering of each
community (Supplementary Figure 4). In the CCA plot, arrow
lengths indicate the contributions of variables to community
variation. The pH and cations (Mg?*, Ca?>*, Na*, and K*) were
notably linked to compositional variation in bacteria. However,
pH contributed little to archaeal composition. Sand content had
a stronger impact on the fungal community than bacterial or

archaeal composition (Supplementary Figure 4A). This result
was corroborated by PERMANOVA (Supplementary Table 3;
bacteria, R? = 0.013; archaea, R? = 0.01; fungi, R*> = 0.022; all,
P =0.0001). These results suggest that even the same physical and
chemical properties may have differing influences depending on
the microbial community.

Cultural Practices Shape Pre-season Soil
Microbial Community Composition and
Diversity

Cultural practices related to fertilizers and pesticides have varying
effects on different microbial communities. Sampling sites were
classified into 3 groups based on such practices: conventional
farming (CF; managed with both pesticides and fertilizers), no
fertilizers (NF; only pesticides), and no pesticides (NP; only
fertilizers). PERMANOVA showed that cultural practices could
explain 1.6, 1.4, and 2.1% of the variance in the bacterial,
archaeal, and fungal communities, respectively (all, P = 0.0001)
(Supplementary Table 3). A permutational test for homogeneity
of multivariate dispersions was used to assess whether the effects
of cultural practices were driven by biological differences or
were artifacts of heterogeneous dispersion (Anderson, 2001).
Most sites yielded non-significant P-values (Supplementary
Table 3), suggesting that the variance by cultural practices
was primarily derived from biological differences. The results
of constrained PCoA also showed that fields managed with
the same practices clustered together, irrespective of sites
(Figure 2 and Supplementary Figure 5), suggesting that the
effects of cultural practices may be consistent across sites.
Richness and Shannon index values of the bacterial communities
were significantly different among the three cultural practices
assessed. On the other hand, the alpha diversity indices of the
archaeal and fungal communities did not differ significantly
(Supplementary Figure 6). Meanwhile, the distributions of
bacterial diversity and soil nutrients exhibited the opposite
tendency (Supplementary Figure 7). Among the 28 fields
examined, 5 pairs of subsamples from non-fertilized and fertilized
conditions were selected. Pairwise comparison of alpha diversity
indices between non-fertilized and fertilized fields in this group
showed that bacterial and fungal Shannon indices and archaeal
richness scores were significantly higher under non-fertilized
conditions than under fertilized conditions (Supplementary
Figure 8). The PERMANOVA results showed that fertilization
affects soil microbial community composition and diversity more
strongly than did pesticides (Supplementary Table 3).

Soil Physicochemical Properties
Influence Microbial Abundance

As microbial community composition was affected by variations
in edaphic factors, we next investigated which taxa are
significantly correlated with each variable. Certain phyla were
significantly correlated with each physicochemical edaphic factor
(Supplementary Table 5). For example, the relative abundance
of Acidobacteria, an oligotrophic phylum, was significantly
negatively correlated with SOM (r = -0.2647, P < 0.001) and
TN (r = -0.2066, P < 0.001). The relative abundances of
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FIGURE 2 | Constrained principal coordinate analysis of bacterial, archaeal, and fungal communities in rice paddy fields. Variations in (A) bacterial, (B) archaeal, and
(C) fungal communities constrained by sampling site (upper panel), soil texture (middle panel), and cultural practice (bottom panel). Cumulative sum scaling
(CSS)/log-transformed reads were used to calculate Bray-Curtis distances. Colors and shapes indicate sampling sites, soil textures, and cultural practices,
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Cyanobacteria (autotroph) (SOM, r = -0.3754; TN, r = -0.444;
both, P < 0.001) and Glomeromycota (SOM, r = -0.3377; TN,
r = —=0.204; both, P < 0.001), which includes mycorrhizae, were
also significantly negatively correlated with SOM and TN levels.
On the other hand, the archaeal phylum Crenarchaeota was
positively correlated with the same variables (SOM, r = 0.5468;
TN, r 0.5469; both, P < 0.001). The abundant fungal
phyla, Ascomycota (r = 0.2201, P < 0.001) and Basidiomycota
(r = 0.4416, P < 0.001) were both significantly positively
correlated with sand content. This result may support the
stronger impact of sand content on fungal composition than on

bacterial and archaeal communities, as shown in the CCA results
(Supplementary Figure 4A). Significant correlations between
microbial abundance and edaphic factors were also obtained at
the genus level (Supplementary Table 5). Among 2,669 bacterial
genera detected, 1,574 genera exhibited significant correlations
with at least one soil physicochemical factor. Similar to bacteria,
the relative abundances of 288 of 580 fungal genera and 73 of 116
archaeal genera were significantly correlated with edaphic factors.
For example, Anaerolinea, a bacterial genus, was significantly
positively correlated with SOM (r = 0.285, P < 0.001), TN
(r 0.2798, P < 0.001), clay (r=0.4269, P <0.001), CEC
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(r = 03424, P < 0.001), Na™ (r = 0.2667, P < 0.001), K*
(r = 0.1692, P < 0.01), Ca®* (r = 0.2222, P < 0.001), and
Mg** (r = 0.3709, P < 0.001). Conversely, Mesorhizobium, a
nitrogen-fixing bacterial genus, was negatively correlated with
soil nutrients (SOM: r = -0.3156; TN: r = -0.2967; Mg>™*:
r = -0.2643; all, P < 0.001), silt (r = -0.1876, P < 0.01), and
clay (r = -0.2901, P < 0.001). Among fungal saprotrophs, the
abundance of Trichoderma was positively correlated with SOM
(r = 0.3146, P < 0.001) and TN (r = 0.4136, P < 0.001) and
negatively correlated with levels of Mg?* (r =-0.3779, P < 0.001)
and Na™ (r = -0.2846, P < 0.001), whereas that of Guehomyces, a
basidiomycotal saprotroph, was significantly positively correlated
with pH (r = 0.3429, P < 0.001) and sand (r = 4447, P < 0.001)
levels. Of the genera that exhibited significant correlations with
edaphic factors, the relative abundances of 592 bacterial, 116
fungal, and 36 archaeal genera were significantly affected by soil
nutrients, as represented by SOM and TN. The alpha diversities
of the bacterial, archaeal, and fungal communities were also
significantly correlated with soil properties. The Shannon and
Simpson indices of the bacterial community were significantly
negatively correlated with soil nutrients (SOM: Shannon, r = -
0.332, P = 6.682E-08; Simpson, r = -0.25, P = 5.883E-05; TN:
Shannon, r = -0.305, P = 7.332E-07) and clay (Shannon, r = -
0.165, P = 0.008; Simpson, r = -0.243, P = 9.508E-05). Archaeal
diversity was also significantly negatively correlated with soil
nutrients (SOM: Shannon, r = -0.165, P = 0.008; Simpson, r = -
0.364, P = 2.354E-09; TN: Simpson, r = -0.2803, P = 6.206E-06)
and clay (Shannon, r = -0.365, P = 2.115E-09; Simpson, r = -
0.506, P = 0) similar to bacterial diversity. However, the fungal
Shannon index was positively correlated with soil nutrients
(SOM: r = 0.199, P = 0.0014; TN: r = 0.1908, P = 0.002) and
clay (r = 0.267, P = 1.73E-05) (Supplementary Figure 9 and
Supplementary Table 6). Meanwhile, pH was not significantly
correlated with bacterial, archaeal, or fungal diversity indices.
These results suggest that the levels of carbon and nitrogen
sources may be crucial factors for the abundances and diversity
of soil microbial communities.

Trophic Lifestyles Show Differing
Responses of Microbial Communities to

Soil Nutrients

Since we found that soil nutrients (SOM and TN) and fertilization
significantly influence the diversity of microbial communities,
we hypothesized that microbial trophic lifestyles (oligotrophy
and copiotrophy) could be related to variations in communities.
Oligotrophs can grow in low-nutrient conditions, whereas
copiotrophs require high levels of nutrients. Based on this
definition, we classified oligotrophs and copiotrophs based on
the correlations between the relative abundance of taxa or OTUs
and SOM or TN content as carbon or nitrogen resource (Ho
et al, 2017) (Supplementary Table 5). Putative oligotrophs
were defined as OTUs that had significant negative correlations
with SOM or TN, whereas putative copiotrophs were defined
as OTUs that had significant positive correlations with soil
nutrients. We found 1,830 putative oligotrophs (1,120 bOTUs,
53 aOTUs, and 657 fOTUs) and 1,733 putative copiotrophs

(954 bOTUs, 81 aOTUs, and 698 fOTUs) among a total of 33,199
OTUs (Supplementary Table 7). The relative abundances of
OTUs with the two trophic lifestyles varied among sampling
sites (Figure 3A and Supplementary Table 7). In bacterial
and archaeal communities, the proportion of oligotrophs
overwhelmed copiotrophs in low-nutrient soil conditions. Linear
regression showed that the numbers of putative oligotrophs in
bacterial and archaeal communities contributed substantially to
the Shannon and Simpson index values, respectively (Figure 3B).
On the other hand, fungal diversity was governed by the numbers
of putative copiotrophs (Figure 3B). These results may partially
explain the significant negative correlations of prokaryotic
diversity with soil nutrients and significant positive correlation
of fungal diversities with soil nutrients (Supplementary Figure 9
and Supplementary Table 6). When considering all samples,
the numbers and relative abundances were significantly higher
for oligotrophs under non-fertilized conditions than under
fertilized conditions in bacterial communities (Supplementary
Figure 10). However, for the archaeal community, there were no
significant differences in the number and relative abundances of
oligotrophs and copiotrophs among different cultural practices
(Supplementary Figure 10). For the fungal community, the
only significant difference among the three cultural practices
was in the number of oligotrophs (Supplementary Figure 10).
Significant differences in the number of oligotrophs and
copiotrophs were also found between fertilized and non-fertilized
fields (Supplementary Figures 11, 12). The numbers of bacterial
and fungal oligotrophs were significantly higher in non-fertilized
fields showing low soil nutrient levels (CJ and YS). Meanwhile,
significant differences were found in the number of bacterial
copiotrophs between fertilized and non-fertilized conditions in
fields with relatively high soil nutrient levels (MY and NJ).
These results suggest that the same fertilization regime may have
differing ecological effects on the distributions of oligotrophs and
copiotrophs according to endemic soil conditions.

Random Forest Models Reveal the
Effects of Fertilization on OTU

Abundance Patterns

To identify OTUs related to the soil condition-dependent
effects of fertilization on microbial communities, differentially
abundant OTUs (hereafter, daOTUs) associated with fertilization
were investigated from nutrient-poor (CJ and YS) and nutrient-
rich environments (MY and NJ). In total, 3,474 and 3,656
daOTUs were identified in nutrient-poor and nutrient-rich soils,
respectively (Supplementary Figure 13 and Supplementary
Table 8). Putative oligotrophs and copiotrophs sensitive to
fertilization accounted for 2.5-5.3% of the total daOTUs. Putative
oligotrophs in prokaryotic communities were significantly
affected by fertilization under nutrient-poor conditions,
whereas putative copiotrophs in all communities were sensitive
under nutrient-rich conditions (Supplementary Table 8).
Beneficial microbes and pathogens were found in varying
frequencies among phylogenetic groups. Among putative
beneficial microbes, Glomeromycota (5 OTUs in nutrient-rich
environments, 3 OTUs in nutrient-poor environments) was
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FIGURE 3 | Distributions of putative oligotrophs and copiotrophs in bacterial, archaeal, and fungal communities and their relationships with microbial diversity.

(A) Cumulative relative abundances of putative oligotrophs and copiotrophs in rice paddy fields. Putative oligotrophs and copiotrophs were classified based on the
correlations between OTU abundances and SOM or TN content. Putative oligotrophic OTUs were defined as OTUs that had a significant negative correlation with
SOM or TN. By contrast, putative copiotrophs were identified as OTUs with a significant positive correlation to SOM or TN. Colors indicate trophic lifestyles (light
green, oligotrophy; dark green, copiotrophy). (B) Relationship between the Shannon index and the number of putative oligotrophs or copiotrophs in bacterial (upper
panel), archaeal (middle panel), and fungal (bottom panel) communities. The relationships were estimated using linear regression. Dashed lines indicate trend lines for

enriched under non-fertilized conditions. OTUs of Rhizobium,
Mesorhizobium, and Bradyrhizobium were enriched under
both non-fertilized and fertilized conditions of nutrient-poor
environments. However, OTUs of those three genera were
also enriched under non-fertilized conditions in nutrient-
rich environments, but not under fertilized conditions in
nutrient-rich environments. For putative pathogens, OTUs
belonging to Fusarium were significantly abundant under
both non-fertilized and fertilized conditions in nutrient-poor
and nutrient-rich environments. On the other hand, OTUs
of Nigrospora and Cladosporium were significantly abundant
in non-fertilized nutrient-poor environments and fertilized
nutrient-rich environments.

To find the most important OTUs associated with fertilization
under different soil conditions, we constructed random forest
(RF) models in nutrient-poor and nutrient-rich environments.
Using RF models, the top 25-35 OTUs were selected as they
reflected the same cross-validation error rate for RF models

of bOTUs, aOTUs, and fOTUs (Figure 4 and Supplementary
Tables 9, 10). Important OTUs were indexed based on
their enrichment-depletion patterns between non-fertilized and
fertilized fields (Supplementary Figure 13 and Supplementary
Table 8). Most of the important OTUs belonged to the
dominant phyla in their microbial communities. In the bacterial
community, Alphaproteobacteria OTUs were solely found in
nutrient-rich environments. In the fungal community, OTUs
of Basidiomycota were exclusively detected in nutrient-poor
environments (Figure 4). The enrichment patterns revealed
different community responses to the same fertilization regime
in different environments. For example, in nutrient-poor
environments, the depletion of prokaryotic oligotrophs and
enrichment of fungal copiotrophs were the dominant responses
(Figure 4A). In nutrient-rich environments, both putative
oligotrophs and copiotrophs in the archaeal community were
enriched under the fertilized conditions (Figure 4B). In the
bacterial and fungal communities, enrichment of putative
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FIGURE 4 | Relative abundance profiles of fertilization-responsive OTUs in nutrient-poor and nutrient-rich environments from random forest classification. OTUs are
colored based on their categorization as “non-fertilized field-enriched,” “fertilized field-enriched,” and “non-differential” according to the results of the differential
abundance test presented in Supplementary Figure 13. The RF models for each community in (A) nutrient-poor and (B) nutrient-rich environments were
constructed using a 10-fold cross validation method. OTUs were ranked based on their contribution to the accuracy of prediction in the RF model, which was
determined by calculating the mean decrease in Gini impurity. OTUs are ordered along the y-axis based on phylogenetic relationships among OTUs. Each tick on the

x-axis indicates an individual sample of non-fertilized and fertilized fields. Non-fer, non-fertilized fields; Fer, fertilized fields.
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copiotrophs was revealed as important responses to fertilization.
These results suggest that microbial trophic lifestyles tend to shift
from oligotrophy to copiotrophy in nutrient-poor environments,
whereas copiotrophy increases in nutrient-rich environments.

Fertilization Influences Microbial

Associations

Based on the results of RF modeling, we hypothesized that
microbial associations in each environment are also differently
affected by fertilization. To test this hypothesis, we constructed
microbial networks for the non-fertilized and fertilized fields
(Figure 5A and Supplementary Figure 14). The average
microbial network for non-fertilized fields consisted of 2,296
nodes and 31,162 edges, whereas that for fertilized fields had
2,071 nodes and 26,964 edges (Supplementary Table 11).
Greater bacterial node numbers were observed in co-occurrence
networks for non-fertilized fields. The proportion of negative
associations increased for fertilized fields (Supplementary
Figure 15). However, no significant difference in the degree,
which is the number of edges connected with each node,
was observed (Supplementary Figure 16). Despite the lack
of significant differences in degree between non-fertilized and
fertilized fields, non-fertilized fields were associated with more
complex networks than were fertilized fields based on the
numbers of network edges and nodes. Network complexity was
compared quantitatively using complexity index B (B), Bertz
complexity index, and distance degree/code centric indices.
The complexity of networks for non-fertilized fields (CJ1,
B = 8.102197; CJ1 ('18), B = 5.832945; YS1, B = 8.935147;
MY2, B = 8.869343; NJ2, B = 9.174037) was slightly higher than
that for fertilized fields (CJ2, B = 8.061109; CJ2 ('18), B = 0;
YS2, B = 8.520694; MY1, B = 7.648643; NJ1, B = 9.145589).
The Bertz complexity and distance degree/code centric indices
consistently indicated higher complexity in non-fertilized fields
(Supplementary Table 11).

Hub nodes also indicated that fertilization affects microbial
communities. Hub nodes were based on within-module
connectivity (Zi) and among-module connectivity (Pi)
(Figure 5B). No network hubs were found, but module
hubs and connectors were identified (Supplementary Table 12).
Most of the bacterial module hub nodes were Proteobacteria,
Acidobacteria, Actinobacteria, and Chloroflexi. Fungal module
hubs were Ascomycota and Basidiomycota. Archaeal module
hubs consisted of Euryachaeota and Crenarchaeota. Although
the hub node composition differed for each field, the trophic
lifestyle distribution of hub nodes showed that fertilization
affects microbial associations. In both nutrient-poor and
nutrient-rich environments, the number of oligotrophic module
hubs (Student’s t-test, P = 0.0481) and their associated edges
(Student’s t-test, P = 0.0303) decreased significantly under
fertilized conditions. The numbers of copiotrophic hubs and
their associated edges increased in fertilized fields, but this
change was not significant (Student’s t-test, P = 0.3851 for
number of hubs; P = 0.4283 for number of edges). These
results suggest that hub nodes tend to consist of oligotrophs
for non-fertilized fields, whereas copiotrophs are more central

in networks for fertilized fields due to the reduction in
oligotrophic hub nodes (Supplementary Table 12). Trophic
lifestyles contributing to network structures also changed from
oligotrophs to copiotrophs with the shift from non-fertilized to
fertilized fields (Figure 5C and Supplementary Figure 17). These
changes were more obvious in nutrient-poor environments. This
finding suggests that changes in trophic lifestyles might be
involved in the decreased degree centrality of fertilized fields,
despite non-significant differences relative to non-fertilized
fields. Interestingly, archaeal nodes exhibited significantly
higher mean degree and betweenness centrality values than
did bacterial and fungal nodes in spite of low numbers in all
microbial networks (Supplementary Figure 18). Methanogenic
archaea were significantly associated with bacteria involved
in bacterial decomposers (Anaerolinea, Phenylobacterium,
Cellulomonas, and Dechloromonas), iron reduction (Geobacter
and  Anaeromyxobacter),  syntrophy  (Syntrophus  and
Syntrophobacter), and  methanotrophy  (Methylosarcina,
Methylomonas, and Methylobacter) (Supplementary Table 13).
We also found that methanogenic archaea were associated with
fungal saprotrophs belonging to Guehomyces and Papiliotrema
(Supplementary Table 13). These results suggest that archaeal
nodes might contribute to rice paddy soil networks by mediating
diverse associations with moderate connectivity.

DISCUSSION

Soil is a fundamental environment where organic matter, such
as manure and plant debris, is recycled. Variations in soil type,
landscape characteristics, and cultural practices affect biotic
and abiotic factors involved in ecological recycling, resulting
in differing nutrient distributions. We analyzed the bacterial,
archaeal, and fungal communities in 252 soil samples from 18
paddy fields managed under a consistent cultural practice for at
least 5 consecutive years. Our assessment of various geographic
locations and years revealed extensive blueprints of paddy soil
microbial communities. Our approach also allowed us to explore
the ecological effects of natural soil conditions and fertilizers on
community diversity and multi-kingdom associations.

We revealed the various compositions of bacterial, archaeal,
and fungal communities in pre-season soils. Proteobacteria,
Chloroflexi, Acidobacteria, and Actinobacteria were the
dominant bacterial phyla in pre-season soils (Supplementary
Figure 2A). The presence of several aerobic taxa suggests
oxic conditions in pre-season rice paddy soils. For instance,
Sphingomonas, a strictly aerobic bacterial genus, was dominant.
In the fungal community, Guehomyces (a pectinolytic yeast
under oxic conditions) (Cavello et al., 2017) and Mortierella
dominated the examined soils (Supplementary Figure 2C).
Hapholoma, which can produce methane under oxic conditions
(Lenhart et al., 2012), further confirms the aerobic status
of the soils. The soil microbial communities also harbored
putative plant-associated microbes. For example, fungal
communities included putative plant pathogens of rice
(Curvularia, Magnaporthe, and Sarocladium), as well as
growth-promoting fungi such as arbuscular mycorrhizae
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(Glomeromycota) and dark septate endophytic fungi (Periconia)  (Rice Cluster I and Methanosarcina) (Edwards et al., 2015) were
(Li et al, 2018). Methanogenic archaea that can colonize the also detected (Supplementary Figure 2B). These results suggest
rice root endosphere (Methanobacterium) and rhizosphere that pre-season soils harbor soil microbial communities that can
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be detected during cropping season, although it remains unclear
whether these communities are active or dormant.

The distribution of archaeal communities showed the
specificity of the paddy soil environment compared to other
agricultural soils. The archaeal communities of rice paddy
fields were reportedly dominated by Euryarchaeota, whereas
Thaumarchaeota was enriched in dryland soils with history of
maize cultivation (Jiao et al., 2019). This finding suggests that
the archaeal composition of pre-season soils might be more
similar to that of flooded bulk soil than to aerobic dryland soil
(Supplementary Figure 2B). Given that anaerobic methanogenic
archaea and Verrucomicrobia-like strains are tolerant of oxygen
and desiccation (Liesack et al., 2000), this characteristic enables
anaerobic microbes to survive during dry and aerobic periods.
These results suggest that soil domestication (Edwards et al,
2019) and repeated environmental filtering during the growing
season (Jiao et al, 2019) could shape paddy soil-specific
microbial communities.

Another finding presents that soil nutrients influence
the diversity of microbial communities by affecting the
distribution of oligotrophs and copiotrophs. Bacterial and
archaeal diversities were negatively correlated with soil nutrients,
whereas fungal diversity was positively correlated with soil
nutrients (Supplementary Figure 9). Putative oligotrophs and
copiotrophs are involved in these contrasting responses of
the prokaryotic and fungal communities to soil nutrients
(Figure 3), which may be affected by differences in nutrient
accessibility among soil microbial communities. Fungi can
better access labile compounds than bacteria and archaea
due to their mycelial networks (Boddy, 1999). Plant residues
support fungal saprotrophs that efficiently degrade plant-derived
recalcitrant organic matter into labile substrates (Van Der
Wal et al,, 2013). The ubiquitous distribution of pectinolytic
and cellulolytic fungi, such as Guehomyces (Cavello et al,
2017), Solicoccozyma (Masinova et al., 2017), Schizothecium
(Demoor et al, 2019), and Papiliotrema (Kim et al., 2018),
corroborates the predominance of putative fungal saprotrophs in
the examined soils. This might be related to the presence of rice
straw (consisting of cell wall-derived polysaccharides, including
cellulose, hemicellulose, lignin, and pectin (Ni'matuzahroh et al.,
2019)) as a major carbon source.

Our study revealed that fertilization exerted a stronger
effect on microbial communities than pesticides. Bacterial and
fungal community diversities were higher in non-fertilized fields
(treated with only pesticides) than in fertilized fields (treated with
only fertilizers) (Supplementary Figure 6). Given that pesticides
are generally applied to the plant canopy rather than to the
soil, a dilution effect might occur. Microbial diversity could be
restored after pesticide application to soil (Rajbongshi et al,
2014), suggesting that microbial communities might recover over
time after the application of pesticides during the non-cropping
period. We also found that the switching of trophic lifestyles
by fertilization differed depending on endemic soil conditions.
RF modeling revealed that the depletion of putative oligotrophs
and the enrichment of putative copiotrophs are important for
prokaryotic communities in nutrient-poor and nutrient-rich
environments, respectively (Figure 4). Increasing labile soil

nutrients and plant residue quality can modulate microbial
communities in pre-season soils, since SOM and TN levels in
postharvest soils increased during continuous cultivation with
chemical fertilizers (Dong et al., 2012).

The effects of cultural practices on community variations were
significant but weak (Supplementary Table 3). Previous studies
reported that cropping practices show significant moderate to
substantial effects on soil bacterial and fungal communities
during cropping season (Ai et al., 2018; Hartman et al., 2018). The
difference in the magnitude of effects of cultural practices may be
related to sampling sites showing different soil physicochemical
properties and microbial composition. Another possibility is the
loss of soil nutrients during overwintering. A previous study
reported that soil nitrogen can leach by freeze-thaw cycles
(Joseph and Henry, 2008). Considering that paddy soils freeze
and thaw from winter to spring, nitrogen sources may loss
from soil during overwintering, suggesting reduced effect of
fertilization on microbes. Further studies regarding nutrient
loss during overwintering and soil microbial communities may
address this question.

Plants produce and excrete root exudates to recruit microbial
communities. Root exudates consist of labile carbon and
organic nitrogen sources (sugars, sugar alcohols, phenolics,
and amino acids). A previous study showed that copiotrophs
are positively correlated with the amount of carbon in root
exudates and that resource competition between microorganisms
creates a root environment favoring oligotrophic populations
(Maloney et al., 1997). Copiotrophic microbes could become
dormant when carbon sources are depleted during plant
senescence (Kjelleberg et al., 1987), and break dormancy when
sufficient nutrients are restored. Nitrogen fertilizer could
stimulate the exudation of carbon-containing compounds
from plant roots (Mergel et al, 1998). It can be inferred
that soil microbial communities might undergo higher
nutrient availability under fertilized conditions than under
non-fertilized conditions during plant growth. Continuous
application of fertilizer could increase soil organic carbon
level by increasing the quantity of plant residues (Dong et al,
2012), supporting the growth of copiotrophs when plants
are absent. This finding suggests that continuous fertilization
might lead to the dominance of active copiotrophs in both
bulk and rhizosphere soils during plant growth. As we
used an amplicon-based approach to investigate microbial
communities, whether predicted copiotrophs and oligotrophs
are in dormant or active state in examined soils could not be
easily determined. By considering dormant and active states in
microbial communities, the soil ecology of microbial trophic
lifestyles may be further clarified.

Fertilization affected microbial networks in several ways,
leading to the loss of community stability. The numbers
of nodes and edges, as well as complexity of microbial
networks decreased, whereas negative associations increased
under fertilized conditions in both nutrient-poor and nutrient-
rich soil environments (Supplementary Figures 15, 16 and
Supplementary Table 11). Studies of grassland soil (Wagg
et al,, 2019) and wheat roots suggest that network complexity
may be correlated with community functionality and resilience
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(Banerjee et al., 2019). Considering that microbial communities
under non-fertilized conditions showed more associations (more
nodes and edges) and greater complexity with fewer negative
associations than fertilized conditions, community stability
might be greater under natural conditions without soil nutrient
manipulation. High nutrient concentrations led to more negative
interactions between species and exclusion of more species from
the community, resulting in a loss of biodiversity decreasing
the stability of microbial communities under in vitro conditions
(Ratzke et al., 2020). These findings suggest that the increase in
nutrients might lead to an increase in negative associations in soil
microbial communities under the field conditions. Further meta-
omics (metagenome, metatranscriptome, and metaproteome)-
based approaches will help to identify significant relationships
between functional diversity, functional stability, competitive
associations among microbes, and fertilization.

Archaea were important participants in microbial associations
in the soils analyzed in the present study. Archaea significantly
contributed to the degree and betweenness centrality values
of multi-kingdom associations, despite their low numbers
(Supplementary Figure 18). Archaea are abundant in rice paddy
soils (Liesack et al., 2000) and acidic sediments (Korzhenkov
et al, 2019). Archaea in rice paddy soils play central roles
in carbon (methanogenic archaea) (Liesack et al., 2000) and
nitrogen (ammonia-oxidizing archaea) (Wang et al, 2009)
cycling. Our network analysis revealed that methanogenic
archaea were significantly and positively associated with bacteria
in methane cycling, iron reduction, and methanotrophy.
Methanogenic archaea also had positive associations with fungal
saprotrophs (Supplementary Table 13). Adding rice straw
and root residues could enhance the growth of the archaeal
methanogens, Methanosarcinaceae and Methanosaetaceae,
respectively (Peng et al., 2008). The positive associations between
archaeal methanogens and fungal saprotrophs predicted in the
soil network analysis suggest that the decomposition activities
of fungal saprotrophs may affect methanogenic activity. This
finding indicates that archaeal communities potentially mediate
soil functions through interactions with different microbial
kingdoms in rice paddy soils. In addition, we suggest that
methane production in and emission from rice paddy soils might
depend on not only bacteria and archaea but also fungi. However,
archaea-related microbial associations require further analyses,
including assessment of the distribution of functional genes or
proteins involved in microbial metabolism.

To classify oligotrophs and copiotrophs in soil microbial
communities, previous studies conducted an independent
assessment based on culture-independent and culture-
dependent approaches. For example, the copy number of
rRNA operon (rrn) gene has been used to identify microbial
trophic lifestyles of bacteria and archaea (Kearns and Shade,
2018; Bledsoe et al., 2020). Culture-dependent assessment
using media having different levels of carbon sources was
performed to investigate copiotrophs and oligotrophs from
culturable microbes (Senechkin et al., 2010). These independent
assessments may redeem the limitation of correlation-based
classification of oligotroph and copiotroph. In the present study,
we classified microbial trophic lifestyles based on the correlations

between contents of SOM or TN and relative abundances of
OTUs without an independent assessment due to the following
reasons. First, rrn copy number-based classification is not
currently available for fungi. Since we aimed to investigate
trophic lifestyles of bacterial, archaeal, and fungal communities
parallelly, we could not perform this approach. Secondly, a
culture-dependent approach cannot fully cover trophic lifestyle
at the community level because the culturability of soil microbes
is very low (0.3% of total soil microbes) (Amann et al., 1995).
Another difficulty is that short partial sequences of OTUs do
not match one-to-one with full-length marker gene sequences
of culturable isolates. For example, different species that have an
identical sequence in a specific variable region can match with
the same OTU based on sequence similarity. This difficulty is
similar to that in the identification and taxonomic classification
of OTUs with short sequence reads using reference databases
cataloging sequences of full-length marker genes (Yadav et al,,
2019). Due to these difficulties, we did not assess oligotrophs and
copiotrophs based on a culture-dependent approach. However,
we identified that OTUs belonging to Cladosporium, Mucor,
Glomeromycota, Penicillium, Roseobacter, and Rhizobiaceae are
also predicted as the identical class that previously reported taxa
as oligotroph or copiotroph (Ho et al., 2017). Taking together,
our prediction on oligotroph and copiotroph is not perfectly
accurate but tends to reflect the results of previous reports.

CONCLUSION

Our findings contribute to the conceptual advancement of
how soil nutrients shape the composition and multi-kingdom
associations of bacterial, archaeal, and fungal communities. Our
findings also underscore that the increase in nutrient dependency
of microbiotas by continuous fertilization could lead to a
loss of soil sustainability. Continuous fertilization may deplete
oligotrophic functional members and enrich a few copiotrophic
members, leading to high nutrient dependency in the microbial
communities. This dependency of microbial communities is
referred to as “nutrient addiction,” a synonym for “fertilizer
addiction,” which is defined as a negative feedback loop requiring
continuous fertilizer applications to meet the desired yield under
continuous soil nutrient loss (Dolgin, 2018). The nutrient-
addicted state demands a high level of nutrients to maintain
community functions. An insufficient supply of nutrients may
lead to the collapse of microbial community compositions and
functions, resulting in dysbiosis-like soil sickness. Future research
should assess the relationship between functional changes,
nutrient dependency of microbial communities, and loss of
soil sustainability. More broadly, our study will help fill a
major knowledge gap in the microbial ecology of soils before
cropping season.
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