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Deep learning significantly accelerates the drug discovery process, and contributes
to global efforts to stop the spread of infectious diseases. Besides enhancing the
efficiency of screening of antimicrobial compounds against a broad spectrum of
pathogens, deep learning has also the potential to efficiently and reliably identify drug
candidates against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). Consequently, deep learning has been successfully used for the identification of
a number of potential drugs against SARS-CoV-2, including Atazanavir, Remdesivir,
Kaletra, Enalaprilat, Venetoclax, Posaconazole, Daclatasvir, Ombitasvir, Toremifene,
Niclosamide, Dexamethasone, Indomethacin, Pralatrexate, Azithromycin, Palmatine,
and Sauchinone. This mini-review discusses recent advances and future perspectives
of deep learning-based SARS-CoV-2 drug discovery.
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INTRODUCTION

Deep learning is a branch of machine learning. It is an algorithm that abstracts data by using
multiple processing layers composed of complex structures or multiple non-linear transformations.
Compared with the shallow machine learning methods, deep learning algorithm is a process of
automatic feature engineering. Deep learning frameworks, such as convolutional neural network
and recursive neural network, have been applied in the fields of bioinformatics and biomedicine
and achieved excellent results (Lipinski et al., 2019). Deep learning methods have good applications
in microbiology including metagenomic data analysis, microbial-related drug discovery, disease
microbial association and so on (Duch et al., 2007). When analyzing microbial related data, it shows
high prediction accuracy in practice. Because deep learning algorithms are good at obtaining very
complex underlying patterns in data, they are especially suitable for large and high-dimensional
data sets. Moreover, it is easy to update the model with the new data. The hidden layer of the
network obviously reduces the demand for Feature Engineering and is conducive to the completion
of prediction tasks. The schematic diagram of the deep learning in drug discovery is shown in
Figure 1.

Deep learning has revolutionized most areas of science and technology, including drug
discovery. Traditional drug discovery methods are not time and cost efficient and therefore often
unable to keep pace with the rapidly emerging and re-emerging pathogenic microorganisms.
More recent drug discovery methods include Naive Bayesian, Support Vector Machines and
Neural Networks (Bender et al., 2007; Stephenson et al., 2019). These alternative drug discovery
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FIGURE 1 | The schematic diagram of deep learning in drug discovery. Biochemical data from drug candidates and protein targets can be used for drug discovery.
Chemical sequences (simplified molecular-input line-entry system (SMILES) strings) and amino acid (AA) sequences, structure of chemical compounds and protein
targets can be used as the features to fed into the deep learning models. Different deep learning models can be employed to analyze the data by integrating Drug
Target Interaction (DTI) prediction, knowledge graph or structure based computational methods. Figure is made in part with BioRender.

methods usually use bigger data sets generated from high
throughput screenings and allow more accurate prediction of
bioactivities and molecular properties of the targets (Stephenson
et al., 2019). Compared to these alternative machine learning
methods used for drug discovery, deep learning is characterized
by the flexibility of the architecture of Neural Networks (Chen
et al., 2018). Given the cost and time required for traditional
drug discovery, deep learning has the potential to significantly
accelerate the drug discovery process. By using information
on the biological, chemical, and topological properties of
compounds and their putative targets from the large-scale
libraries, deep learning can be employed to identify the most
promising drugs against specific diseases (Neves et al., 2020;
Stokes et al., 2020). Various deep learning methods have been
developed over the last few years, but their application in drug
discovery has still not reached its full potential. One of the
main hurdles for researchers planning to build their own deep
learning model for drug identification is the amount of resources
and time required to collect large amounts of data. A number
of computational screen open databases have been made to
prioritize drug candidates, recently. A representative set of open
access datasets which can be used to train deep learning models
for specific research projects is shown in Table 1.

The outbreak of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causing coronavirus disease
(COVID-19) has been declared a global pandemic. By September
2021, more than 220 million people have been infected with

SARS-CoV-2 and more than 4.5 million of those infected have
died. In addition, several SARS-CoV-2 variants with mutations
that increase their potential to contribute to the severity of the
pandemic have emerged and are spreading around the globe
(Zhang Y. et al., 2020).

Besides non-structural proteins, SARS-CoV-2 genome
encodes four structural proteins: envelope (E), membrane (M),
nucleocapsid (N), and spike (S) (Zhang Y. et al., 2020). S protein
mediates entry of SARS-CoV-2 into the host cells by binding
and fusing with the host’s cellular receptor, the angiotensin-
converting enzyme 2 (ACE2). Mutations in S protein, particularly
in its receptor binding domain (RBD) were shown to play a role
in the increased transmissibility and infectivity of the emerging
SARS-CoV-2 variants (Zahradnik et al., 2021).

Although several SARS-CoV-2 vaccines have been developed
over the last few months, there are not many efficient
and reliable drugs available for the treatment of SARS-CoV-
2 infections. This is caused partially by the fact that the
traditional drug discovery process may be time-consuming
and costly to keep pace with the rapid spread of SARS-CoV-
2 and its variants with increased transmissibility and other
enhanced features.

Deep learning has been previously applied for the
identification of a number of antiviral compounds, including
antiviral peptides (Timmons and Hewage, 2021) and small
drug-like compounds with the potential to inhibit HIV-1
(Andrianov et al., 2021).
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The computational approaches employing deep
learning will aid also faster discovery of novel and active
potential inhibition agents against SARS-CoV-2 and its
emerging variants.

High-throughput technologies have generated an increasing
amount of data in chemoinformatics. As a result, it is believed
that the application of the recent deep learning advances into
the drug discovery process will lead to novel, more reliable and
efficient therapeutics against SARS-CoV-2.

ANTIMICROBIAL DRUGS IDENTIFIED BY
DEEP LEARNING

Deep learning can reduce time and costs of the drug discovery
process, particularly in its early stages. Consequently, deep
learning-based approaches have been successfully used to
identify novel antimicrobial compounds against a wide variety
of pathogenic microorganisms, including bacteria, protozoan
parasites and viruses.

Training of the deep learning model to identify molecules
active against antibiotic-resistant bacteria led to the discovery
of Halicin and eight additional potential antibiotics from the
ZINC database (Table 1; Stokes et al., 2020). Interestingly,
these compounds identified by deep learning are all structurally
divergent from conventional antibiotics (Stokes et al., 2020).
Subsequent tests revealed strong antibacterial activity of Halicin
against a number of antibiotic-resistant bacteria, including
Carbapenemase-producing Enterobacterales, Mycobacterium
tuberculosis, Acinetobacter baumannii, and Clostridioides difficile
(Stokes et al., 2020).

In parasite research, deep learning has been applied
to predict new antimalarial drug candidates. Neves et al.
(2020) employed deep learning to obtain binary, continuous
Quantitative Structure-Activity Relationships (QSAR) models
using datasets extracted from ChEMBL database (Table 1).
QSAR mathematical models can predict the relationship
between the structure of a molecule and biological activity or
physicochemical property. This study led to the discovery of
two new families of the potential next generation antimalarial
drugs with activity against Plasmodium causing malaria at
nanomolar concentrations and low cytotoxicity in mammalian
cells (Neves et al., 2020).

Deep learning has been also applied for the identification
of a number of antiviral compounds. Timmons and Hewage
developed a novel method called ENNAVIA, which employs deep
learning and chemoinformatics, to identify peptides with low
toxicity and excellent biological activity. The peptides identified
in this study represent promising candidates for antiviral drugs
(Timmons and Hewage, 2021). Furthermore, deep learning in
combination with molecular modeling has been applied for
the identification of three small drug-like compounds from
millions of molecules in the ZINC15 database (Andrianov et al.,
2021). Based on machine learning, molecular docking, molecular
dynamics and quantum chemical calculations, the compounds
identified in this study are promising HIV-1 drugs with the
potential to block CD4-binding site of the viral envelope protein,

TABLE 1 | Representative biochemical datasets used in deep learning studies.

Dataset Description URL References

ZINC ZINC database
contains over 230

million compounds.

http://zinc.docking.org/ Bai et al.,
2020; Choi
et al., 2020;
Stokes et al.,

2020; Ton
et al., 2020

ChEMBL ChEMBL (version 27)
chemical database
contains over 1.9

million specific
compounds.

https://www.ebi.ac.uk/
chembl/

Stokes et al.,
2020

Drug target
commons
(DTC)

DTC crowdsourcing
database contains
204,901 annotated

bioactivity data points
among 4,276

compounds and 1,007
specific protein targets.

https:
//drugtargetcommons.

fimm.fi/

Beck et al.,
2020

BindingDB BindingDB database of
measured binding
affinities contains

2,061,017 binding data
for 8,160 protein

targets and 907,259
small molecules.

http://www.bindingdb.
org/bind/index.jsp

Beck et al.,
2020

DrugBank DrugBank
pharmaceutical

database contains
detailed molecular
information about

drugs, their
mechanisms,

interactions and
targets.

https://go.drugbank.
com/releases/latest

Choi et al.,
2020; Zeng
et al., 2020

PDBbind PDBbind database
provides binding data

of 21,382 biomolecular
complexes, including

protein-ligand (17,679),
nucleic acid-ligand

(136), protein-nucleic
acid (973), and
protein-protein

complexes (2,594).

http:
//www.pdbbind.org.cn

Bai et al.,
2020

thus inhibiting HIV-1 entry (Andrianov et al., 2021). Li et al. have
developed a dual-channel deep neural network for identifying
variable-length antiviral peptides (DeepAVP) which could block
entry of the virus into the host cell (Li et al., 2020). Deep learning
has been also used for the prediction of plant-exclusive virus-
derived small interfering RNAs (PVsiRNAPred) (He et al., 2019).

DEEP LEARNING IN TACKLING SEVERE
ACUTE RESPIRATORY SYNDROME
CORONAVIRUS 2

Reliable and efficient computing methods employing deep
learning are urgently needed for the discovery of drugs against
SARS-CoV-2 and its emerging variants.
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Drug repurposing is considered to be among the fastest and
most promising methods for identification of effective SARS-
CoV-2 treatments. A good example of the drug repurposing
involving deep learning is a recent work by Zhang Y. et al.
(2020). This study employed a deep learning-based drug-target
interaction model called Molecule Transformer-Drug Target
Interaction (MT-DTI) utilizing chemical sequences [simplified
molecular-input line-entry system (SMILES) strings] and amino
acid (AA) sequences as the input (Figure 1). MT-DTI model
was trained with a combined and curated chemical-protein pairs
from BindingDB and Drug Target Commons (DTC) databases
(Table 1). This study led to identification of several commercially
available antiviral drugs with the potential to interact also
with the SARS-CoV-2 proteins (Beck et al., 2020). Subsequent
experiments showed that several of the antiviral agents identified
by MT-DTI model could be potentially used to treat SARS-CoV-
2 (Beck et al., 2020). These include Atazanavir (Kd 94.94 nM),
Remdesivir (Kd 113.13 nM), and Kaletra (Lopinavir/Ritonavir)
(Table 2). Atazanavir, showing an inhibitory potency against
SARS-CoV-2 3-C like proteinase is an antiviral drug used for
the treatment of the human immunodeficiency virus (HIV)
infections. Remdesivir has been previously predicted to act
against SARS-CoV-2. Furthermore, Lopinavir and Ritonavir
were shown to target viral proteinases (Beck et al., 2020). The
BindingDB is a public database containing measured binding
affinities for three types of coronaviruses, SARS-CoV-2, SARS-
CoV and MERS-CoV.1

MT-DTI model was also used to select compounds from 1,400
approved drugs in DrugBank and ZINC databases (Table 1) with
strong affinity to the host cell targets crucial for viral infection
(Zahradnik et al., 2021). This approach led to identification of
drugs candidates with a strong binding affinity (Kd < 100 nM)
against ACE2 receptor and transmembrane protease serine 2
(TMPRSS2) (Zahradnik et al., 2021). Drug candidates identified
in this study include an ACE2 inhibitor Enalaprilat (Kd 1.46 nM)
and several drugs with predicted strong affinity for TMPRSS2,
namely Venetoclax (Kd 6.12 nM), Posaconazole (Kd 17.11
nM), Daclatasvir (Kd 6.65 nM), and Ombitasvir (Kd 5.91 nM)
(Table 2). Strong affinity of Enalaprilat for ACE2 suggests that it
might prevent the entry of SARS-CoV-2 to human cells. Notably,
two of the drug candidates identified, namely Daclatasvir and
Ombitasvir, are known Hepatitis C virus (HCV) inhibitors, thus
suggesting that they may act against both HCV and SARS-CoV-
2 (Zahradnik et al., 2021). The DrugBank has collected data for
65 drugs against 385 drug targets, which is web accessible at
https://go.drugbank.com/covid-19.

Zeng et al. used deep learning-based knowledge graph to select
promising SARS−CoV−2 drug candidates (Zeng et al., 2020).
Knowledge graph in this study encompasses 15 million edges
across 39 types of relationships connecting expression patterns,
genes, pathways, drugs and diseases and incorporates data from
over 20 million PubMed articles and the DrugBank database
(Table 1). Deep learning employed to learn the representation
of nodes and relationships in this knowledge graph led
to identification of 41 promising drug candidates, including

1https://www.bindingdb.org/bind/Covid19.jsp

Toremifene, Niclosamide, Dexamethasone and Indomethacin
(Table 2; Beck et al., 2020). Toremifene is a selective estrogen
receptor modulator, which has shown antiviral activity against
a number of viruses, including SARS-CoV-2. Dexamethasone is
an anti-inflammatory agent with the potential to treat SARS-
CoV-2 infections (Beck et al., 2020). Niclosamide, a drug used
to treat tapeworm and an anti-inflammatory drug Indomethacin
were also shown to have antiviral activity in vitro. The 41
promising drug candidates identified in this study (including
Toremifene, Niclosamide, Dexamethasone and Indomethacin)
were also validated by gene expression and proteomics of cells
infected with SARS-CoV-2 (Beck et al., 2020).

A hybrid deep learning and molecular simulation-based
screening procedure was used to select drug candidates targeting
RNA-dependent RNA polymerase (RdRp) from 1906 approved
drugs, recently (Choi et al., 2020). Commercially available drug
candidates, Pralatrexate and Azithromycin, (Table 2) identified
in this study were confirmed to inhibit SARS-CoV-2 replication
in vitro (Choi et al., 2020). While Pralatrexate was shown to act
after entry of the virus into the cells, Azithromycin was active at
both the entry and post-entry of SARS-CoV-2 into the host cells
(Choi et al., 2020).

Bai et al. developed MolAICal software tool combining deep
learning model and classical algorithm for identification of drugs
interacting with 3D pocket of protein targets (Bai et al., 2020).
Deep learning model of MolAICal software was trained using
approved drug fragments in PDBbind database and drug-like
molecules in the ZINC database (Table 1). Drug design functions
of MolAICal software were demonstrated using the membrane
protein glucagon receptor (GCGR) and SARS−CoV−2 main
protease (Mpro) (Zeng et al., 2020).

Ton et al. (2020) developed a Deep Docking (DD) deep
learning platform which uses QSAR models for screening of
potential drug candidates in the ZINC database (Table 1). This
approach led to the identification of 1,000 potential ligands for
SARS−CoV−2 Mpro (Ton et al., 2020).

Deep learning and molecular docking methods were
developed for screening of natural compounds against SARS-
CoV-2 Mpro in the ChEMBL database (Table 1; Bai et al., 2020).
ChEMBL database is an open large-scale chemical database
of bioactive molecules, containing 8,200 potential anti-SARS-
CoV-2 drug candidates. This study led to the identification of
two natural compounds with potential as therapeutics against
SARS-CoV-2, namely Palmatine (Kd 1096.4 nM) and Sauchinone
(Table 2) (Kd 389.05 nM). Palmatine and Sauchinone are an
alkaloid and a lignan, respectively, with previously shown
pharmacological properties. Furthermore, both Palmatine and
Sauchinone form a stable complex with SARS-CoV-2 Mpro and
have been predicted to inhibit SARS-CoV-2 (Bai et al., 2020).

Deep learning combined with multiple sequence alignment
drug-likeness screening, molecular docking, chemical space
mapping and molecular dynamics simulation was also used
to identify drug candidates by screening 1528 anti-HIV-
1 compounds against 3-chymotrypsin-like cysteine protease
(3CLpro) of SARS-CoV-2 (Nand et al., 2020).

Given the lack of therapeutics against SARS-CoV-2, deep
learning approaches combined with other computational
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TABLE 2 | Drug candidates against SARS-CoV-2.

Drug Molecular
formula

Structural
formula

SMILES Target References

Atazanavir C38H52N6O7 COC(N[C@@H](C(C)(C)C)C(NN
(C[C@H](O)[C@H](CC1 = CC =

CC = C1)NC([C@H](C(C)(C)C)NC
(OC) = O) = O)CC(C = C2) = CC =
C2C3 = NC = CC = C3) = O) = O

3C-like
proteinase

Beck et al.,
2020

Remdesivir C27H35N6O8P CP = O.COC1 = CC = CC = C1.O
= C(OCC(CC)CC)[C@H](C)NC.NC2
= NC = NN3C2 = CC = C3[C@@]4

(C#N)[C@H](C)[C@H](C)[C@@H]
(C[O])O4.[OH].[OH]

3C-like
proteinase

Beck et al.,
2020

Kaletra
(Lopinavir/Ritonavir)

C74H96N10O10S2

(C37H48N4O5/C37

H48N6O5S2)

CC1 = CC = CC(C) = C1OCC(N
[C@@H](CC2 = CC = CC = C2)
[C@@H](O)C[C@H](CC3 = CC
= CC = C3)NC([C@H](C(C)C)
N4C(NCCC4) = O) = O) = O

Helicase Beck et al.,
2020

CC(C)C1 = NC(CN(C)C(N[C@@H]
(C(C)C)C(N[C@@H](CC2 = CC

= CC = C2)C[C@H](O)[C@H](CC3
= CC = CC = C3)NC(OCC4 = CN

= CS4) = O) = O) = O) = CS1

Enalaprilat C18H24N2O5 OC([C@H]1N(C([C@H](C)N
[C@H](C(O) = O)CCC2 = CC
= CC = C2) = O)CCC1) = O

ACE2 Choi et al.,
2020

Venetoclax C45H50ClN7O7S ClC1 = CC = C(C2 = C(CN3CC
N(C4 = CC = C(C(NS(C5 = CC =
C(NCC6CCOCC6)C([N + ]([O-

]) = O) = C5)(= O) = O) = O)C(OC
7 = CC(C = CN8) = C8N = C7) =

C4)CC3)CCC(C)(C)C2)C = C1

TMPRSS2
ACE2

Choi et al.,
2020

Posaconazole C37H42F2N8O4 FC1 = CC(F) = CC = C1[C@@]2
(CN3N = CN = C3)C[C@H](COC

4 = CC = C(N5CCN(C6 = CC = C(N
7C = NN([C@@H](CC)[C@@H](O)

C)C7 = O)C = C6)CC5)C = C4)CO2

TMPRSS2
ACE2

Choi et al.,
2020

Daclatasvir C40H50N8O6 COC(N[C@@H](C(C)C)C(N1[C@H]
(C2 = NC = C(C3 = CC = C(C4 = C
C = C(C5 = CN = C([C@H]6N(C([C@
@H](NC(OC) = O)C(C)C) = O)CCC6)N
5)C = C4)C = C3)N2)CCC1) = O) = O

TMPRSS2
ACE2

Choi et al.,
2020

Ombitasvir C50H67N7O8 CC(C)(C)C(C = C1) = CC = C1N([C@
H](C2 = CC = C(NC([C@@H]3CCCN
3C([C@H](C(C)C)NC(OC) = O) = O)
= O)C = C2)CC4)[C@@H]4C5 = CC
= C(NC([C@H]6N(C([C@@H](NC(O

C) = O)C(C)C) = O)CCC6) = O)C = C5

TMPRSS2
ACE2

Choi et al.,
2020

Toremifene C26H28ClNO CN(C)CCOC1 = CC = C(/C(C2
= CC = CC = C2) = C(C3 = C
C = CC = C3)/CCCl)C = C1

– Zeng et al.,
2020

(Continued)
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TABLE 2 | (Continued)

Drug Molecular formula Structural
formula

SMILES Target References

Niclosamide C13H8Cl2N2O4 ClC1 = CC = C(O)C(C(NC2
= CC = C([N + ]([O-]) = O)C

= C2Cl) = O) = C1

– Zeng et al.,
2020

Dexamethasone C22H29FO5 O = C1C = C[C@@]2(C)C(CC[C@]
([C@@](C[C@@H](C)[C@]3(O)C(C
O) = O)([H])[C@]3(C)C[C@@H]4O)

([H])[C@@]24F) = C1

– Zeng et al.,
2020

Indomethacin C19H16ClNO4 COC1 = CC = C(N(C(C2 = CC
= C(Cl)C = C2) = O)C(C) = C3

CC(O) = O)C3 = C1

– Zeng et al.,
2020

Pralatrexate C23H23N7O5 NC1 = C2C(N = CC(CC(C3 =
CC = C(C(N[C@H](C(O) = O)

CCC(O) = O) = O)C = C3)
CC#C) = N2) = NC(N) = N1

RdRp Zhang H. et al.,
2020

Azithromycin C38H72N2O12 CN([C@H](C)[C@@H](O)C(C)(O)[C
@@H](CC)O1)C[C@H](C)C[C@@]

(O[C@H]2[C@H](O)[C@@H](N(C)C)
C[C@@H](C)O2)(O)C[C@@H](C)[C

@H](O[C@H]3O[C@@H](C)[C@H](O
)[C@](C)(OC)C3)[C@@H](C)C1 = O

RdRp Zhang H. et al.,
2020

Palmatine C21H22NO4
+ COC1 = C(OC)C(C = [N + ]

(CCC2 = C3C = C(OC)C(OC)
= C2)C3 = C4) = C4C = C1

Mpro enzyme
of SARS-CoV-2

Joshi et al.,
2020

Sauchinone C20H20O6 O = C1C = C2[C@]3(OCO2)[C@
@]4([H])[C@@]1([H])C[C@@H](C)
[C@H](C)[C@@]4([H])C5 = CC

(OCO6) = C6C = C5O3

Mpro enzyme
of SARS-CoV-2

Joshi et al.,
2020

Table shows molecular and structural formulas, simplified molecular-input line-entry system (SMILES) strings and corresponding targets of the potential drugs against
SARS−CoV−2.

methods will play an important role in the identification
of potential drugs targeting SARS-CoV-2. Compounds
selected by deep learning will subsequently undergo standard
clinical evaluation.

DISCUSSION

Deep learning has a number of advantages compared to more
conventional methods, including its ability to learn complex
features independently. Although deep learning has played an
important role in the identification of novel drugs against

a wide range of pathogens, including SARS-CoV-2, many
challenges still remain.

The connection between the data fed into the deep learning
model and the delivered output is inscrutable, which hidden
inside is a so-called black box. Deep neural network due to its
black-box nature therefore often lacks interpretability. Therefore,
the interpretability of the future neural networks on the output
results will be a key factor in understanding the logic of machine.
This will aid analysis of the chemical compounds identified by
deep learning and better design of the drug discovery studies.

Furthermore, the input data affects the prediction
performance of the deep learning model. Consequently, a large,
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standardized and reliable biochemical dataset is necessary to
achieve better learning of the deep learning model. Development
of a large open dataset in the future will enable potential
standardization of the deep learning-based drug discovery.

Antibody-based therapy represents an interesting SARS-CoV-
2 treatment option. Deep learning models have been developed
for the discovery and design of therapeutic antibodies (Mason
et al., 2021; Saka et al., 2021). Thus, drug repositioning and
screening from computational libraries containing a massively
diverse antibody sequences could be used to engineer anti-viral
SARS-CoV-2 treatment.

Furthermore, most recent studies describe methodologies
separately and test them individually. Application of deep
learning to combine chemoinformatics with other types of
data, such as imaging, cellular and molecular biology data for
integrative analysis would be an important direction for future
research. To this end, it might be necessary to identify the best
neural network architecture for handling those vast troves of data.

We believe that integrative and systematic analysis will be
important for future deep learning-based drug discovery that

involves complicated large biological, chemical and clinical
datasets. Using such large datasets to streamline and accelerate
drug discovery, deep learning will be crucial not only for
the identification of drug candidates against SARS-CoV-2
but also against a broad spectrum of other emerging and
reemerging pathogens.
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