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Morchella importuna, as an edible fungus, has various health benefits. However, the
effects of M. importuna on intestinal health are rarely investigated. Hence, this study
aims to ascertain the influences of flavones from the fruiting bodies of M. importuna
(hereinafter abbreviated as MIF) on dextran sulfate sodium (DSS)-induced damage to
intestinal epithelial barrier in C57BL/6J mice. In this (14-day) study, 144 C57BL/6J
mice were divided into four groups: (1) Control; (2) DSS treatment; (3) DSS treatment
+ 100 mg/kg MIF (LMIF); (4) DSS treatment + 200 mg/kg MIF (HMIF). On days 8-
14, mice in the challenged groups were challenged with 3.5% DSS, while the control
group received an equal volume of normal saline. Then, serum and intestinal samples
were obtained from all mice. The results showed that MIF ingestion enhanced intestinal
integrity in DSS-challenged mice, as evinced by the elevated (p < 0.05) abundances
of occludin, claudin-1, and zonula occludens-1 proteins. Meanwhile, MIF ingestion
reduced (p < 0.05) the colonic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-
α), and interferon-γ (IFN-γ) concentrations and increased the superoxide dismutase
and catalase activities and Shannon and Simpson indices in DSS-challenged mice.
Moreover, MIF ingestion reduced (p < 0.05) the abundance of phospho-nuclear factor
(NF)-κB and increased the abundance of phospho-Nrf2 in DSS-challenged mice. Taken
together, MIF protects against intestinal barrier injury in C57BL/6J mice via a mechanism
that involves inhibiting NF-κB activation and promoting Nrf2 activation, as well as
regulating intestinal microbiota.

Keywords: Morchella importuna, intestinal barrier function, intestinal microbiota, inflammatory responses,
C57BL/6 mice

INTRODUCTION

The intestinal epithelial barrier is a single layer of cells lining the gut that comprises the apical
cell membrane and intercellular tight junctions of intestinal epithelial cells (Ulluwishewa et al.,
2011; Peterson and Artis, 2014). It acts as a selective barrier that allows the absorption of nutrient
substances while inhibiting the translocation of luminal pathogens (Halpern and Denning, 2015;
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Wang et al., 2015). Hence, treatments aimed at decreasing
intestinal permeability contribute to improved health. Nowadays,
dietary bioactive substances have been found to improve
intestinal barrier function by strengthening the intestinal
barrier, attenuating the inflammatory responses and modulating
microbiota composition (Yang et al., 2012; Tian et al., 2019;
Wan et al., 2020).

The Morchella mushroom, a type of edible ascomycetous
mushroom, has a unique flavor, as well as a high nutritional
value (Tietel and Masaphy, 2018). Interestingly, some bioactive
compounds have been found in the Morchella mushroom
fruiting body, such as polysaccharides, ergosterol derivatives,
microthecin, and so on (Wang et al., 2019). Modern medical
research demonstrated that the Morchella mushrooms confer
antimicrobial, antioxidant, anti-inflammatory, and antitumor
activities (Kim et al., 2011; Huang et al., 2012; Heleno
et al., 2013). Therefore, the mature fruiting body of Morchella
mushrooms have been used as a traditional herbal medicine
in Asian countries, such as China, India, and Japan (Mau
et al., 2004; Xiong et al., 2017). However, to the best of our
knowledge, the ameliorative effects of Morchella mushrooms
on intestinal barrier function have not been investigated and
warrant exploration.

In the present work, the flavones from the fruiting
bodies of M. importuna (MIF) were prepared. Then, the
protective effects and possible mechanisms of MIF against
the intestinal barrier injury in vivo were investigated using
a sodium glucose sulfate [dextran sulfate sodium (DSS)]-
challenged mouse model.

MATERIALS AND METHODS

Preparation of the Fruiting Bodies of
Morchella importuna
In this study, the MIF were collected from the experimental
field of Sichuan Academy of Agricultural Sciences (Chengdu,
China). The MIF were dried at 37◦C, and then 200 g of MIF were
immersed in proportions of 1:20 (w/v) in ethanol at 60◦C for 6 h.
After centrifugation at 6,000 × g for 15 min, the sediment was
discarded. Thereafter, the resulting MIF was dried at 60◦C and
stored at−20◦C before use.

Preliminary Characterization of the
Fruiting Bodies of Morchella importuna
The molecular weight distribution of MIF was determined by
high-performance gel permeation chromatography (HP-GPC).
The operating procedures were Waters 515, high-performance
liquid chromatography equipped with laser detector (LS), and
differential refractive index (DRI); Shodex OHpak series SB-
806 gel chromatographic column (300 mm × 7.8 mm); column
temperature 40◦C ± 0.1◦C. The mobile phase was 0.05 M
NaH2PO4-NaH2PO4 buffer (pH 6.7, with 0.02% NaN3). The flow
rate was 0.5 ml/min. The loading amount was 500 µl. Then, 0.05
M NaH2PO4-NaH2PO4 buffer (pH 6.7, with 0.02% NaN3) is used
to dissolve polysaccharide standards with the molecular weights

of 738, 5,800, 1.22 × 104, 2.37 × 104, 4.8 × 104, 1.0 × 105,
1.86 × 105, 3.8 × 105, and 8.53 × 105 g/mol, respectively. After
being filtered with 0.45-µm membrane, the determination was
performed according to the above chromatographic conditions.
According to the molecular weight and retention time of
standards, the standard curve was drawn, and then the molecular
weight was calculated according to the retention time.

Animals, Management, and Diet
A total of 144 C57BL/6J mice (initial mass 18.02 ± 0.36 g),
obtained from Dashuo Experimental Animal Co., Ltd. (Chengdu,
China), were divided into four treatments with six pens per
treatment (six mice per pen): (1) Control (fed a normal diet);
(2) DSS treatment (fed a normal diet); (3) DSS treatment +
100 mg/kg MIF (LMIF; fed a normal diet + 100 mg/kg MIF);
(4) DSS treatment + 200 mg/kg MIF (HMIF; fed a normal diet
+ 200 mg/kg MIF). On days 8–14, mice in the challenged groups
were orally administered 3.5% DSS in drinking water, while other
mice were administered normal saline (Bassaganya-Riera and
Hontecillas, 2006). Moreover, all mice were individually caged
under a controlled environment room.

Slaughter and Sample Collection
At the end of the experiment, after 12-h starvation and ether
anesthesia, blood samples from six mice with the average
body weight in each group were collected, centrifuged at
1,500 × g (15 min) to obtain serum, and then stored at
−20◦C. Subsequently, the same mice were sacrificed, about 2-cm
segments of the colon were isolated, gently flushed with normal
saline, and then fixed in paraformaldehyde solution (4%) for
morphological analysis. Finally, about 5-cm colonic tissues were
collected and stored at−80◦C until analyses.

Serum Biochemical Analysis
The serum diamine oxidase (DAO) activity and D-lactate
concentration were assessed using commercial kits purchased
from Jiancheng Bioengineering Institute (Nanjing, China).
All measurements were performed according to the
manufacturer’s instructions.

Intestinal Morphology Analysis
After a 48-h fixation, the colonic segments were dehydrated using
a graded series of alcohol and cleaned with xylene, embedded
in paraffin, cut into cross sections of 5-µm thickness, and then
stained with H&E (Fang et al., 2017). Then, the villus height and
crypt depth were measured, and the ratio of villus height to crypt
depth (VCR) was calculated from the value obtained above.

Intestinal Cytokine Concentration
Determinations
The colonic mucosa was homogenized with normal saline (1:9),
and the homogenate was centrifuged at 1,500 × g (15 min)
to attain supernatant. Then, the concentrations of interleukin-
1β (IL-1β), IL-6, IL-10, tumor necrosis factor-α (TNF-α), and
interferon-γ (IFN-γ) in the colonic mucosal supernatant were
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assayed by ELISA kits (Zhuo Cai Biotechnology Co., Ltd.,
Shanghai, China).

Intestinal Antioxidant Capacity
Measurements
Superoxide dismutase (SOD) activity, catalase (CAT) activity,
malondialdehyde (MDA) content, and total antioxidant
capacity (T-AOC) in the colonic homogenates were measured.
Measurements were performed by the spectrophotometric
method using commercially available kits (Nanjing Jiancheng
Bioengineering Institute).

Intestinal Microbiota Analysis
Total gDNA from digesta samples was extracted using a Stool
DNA Isolation Kit (Tiangen Biotech Co., Ltd., Beijing, China),
following the manufacturer’s directions. The genes of bacterial
16S rRNA in the region of V4 were amplified by using PCR
with primers (515F/806R). The PCR products were subjected to
electrophoresis on 2% agarose gel, and the mixed PCR products
were purified with AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, United States) for sequencing on an
Illumina MiSeq system. All 16S rRNA gene sequencing data were
saved in the National Center for Biotechnology Information and
can be accessed in the Short Read Archive under the accession
number PRJNA679459.1

Quality filtering on the raw reads was performed under
specific filtering conditions to obtain the high-quality clean
reads according to the Cutadapt quality-controlled process
(Martin, 2011). The reads were compared with the reference
database using UCHIME algorithm (Edgar et al., 2011), to
detect chimera sequences, and then removed to get the clean
reads (Haas et al., 2011). Clustered into operational taxonomic
units (OTUs) utilizing Uparse v7.0.1001 at 97% sequence
similarity (Edgar, 2013). Species annotation was carried out
on the OTU representative sequences. For colonic bacteria,
α-diversity index was assessed using QIIME 1.7.0. Principal
coordinate analysis (PCoA) tools in R language were used
for PCoA.

Western Blot Assay
Protein samples were extracted from colonic tissues using lysis
buffer (Beyotime Institute of Biotechnology, Shanghai, China).
The lysates were centrifuged at 12,000 × g for 10 min at 4◦C,
and the supernatant was collected. A bicinchoninic acid (BCA)
protein assay kit (Beyotime Institute of Biotechnology) was
used to determine the protein concentration in the supernatant.
Thereafter, 30 µg of protein extractions were separated by 10%
sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis
(PAGE) and then transferred to a polyvinyldifluoride (PVDF)
membrane (Merck Millipore Ltd., Tullagreen, Ireland) using
wet Trans-Blot System (Bio-Rad Laboratories, Inc., Hercules,
CA, United States). After blocking with Tris-buffered saline
Tween 20 (TBS/T) containing 5% bovine serum albumin (BSA)
at room temperature for 1 h, the membranes were incubated

1http://www.ncbi.nlm.nih.gov/bioproject/679459

with primary antibodies at 4◦C overnight against phospho-Nrf2
(Sigma-Aldrich, St. Louis, MO, United States), Keap1 (Sigma-
Aldrich), heme oxygenase-1 (HO-1; Sigma-Aldrich), NAD(P)H
dehydrogenase (quinone 1) (NQO-1; Sigma-Aldrich), occludin
(Sigma-Aldrich), claudin-1 (Proteintech Group, Inc., Wuhan,
China), zonula occludens-1 (ZO-1; Sigma-Aldrich), ZO-2
(Sigma-Aldrich), Toll-like receptor 4 (TLR4; Proteintech Group,
Inc.), MyD88 (Proteintech Group, Inc.), IL-1 receptor-associated
kinase 1 (IRAK1; Proteintech Group, Inc.), TNF receptor-
associated factor 6 (TRAF6; Proteintech Group, Inc.), phospho-
NF-κB (Proteintech Group, Inc.), or β-actin (Proteintech
Group, Inc.). The polyvinylidene fluoride (PVDF) membranes
were washed thrice with TBS/T, then incubated with second
antibodies at room temperature for 2 h, and washed thrice
with TBS/T again. BeyoECL Moon (Beyotime Institute of
Biotechnology) was used to visualize signals. The Image Lab
software (Bio-Rad Laboratories, Inc.) was utilized to quantify
protein abundance.

Statistical Analysis
Individual rat was used as the experimental unit, and all
data were analyzed by SPSS 20.0 (SPSS, Inc., Chicago,
IL, United States). Statistical differences between groups
were determined by Student’s t-test, while among groups,
differences were determined by Tukey’s multiple-range
test. Results were presented as means ± standard
deviations. Differences were taken to indicate significance
when p < 0.05.

RESULTS

Molecular Weight and Its Distribution of
Morchella importuna Flavones
From the results of HP-GPC detection, the mass average molar
mass (Mw) of MIF was 6.666 × 105 g/mol, the number average
Molecular Weight (Mn) was 6.118 × 105 g/mol, and the D value
(Mw/Mn) was 1.09. The dispersity ratio was close to 1, and the
molecular weight distribution was narrow, indicating that the
MIF was relatively pure (Table 1).

TABLE 1 | Molecular weight and its distribution of Morchella importuna flavones.

Item MIF

Mw, g/moL 6.666 × 105

Mn, g/moL 6.118 × 105

Mw/Mn 1.09

Molecular weight distribution, %

500000.0-522000.0 g/moL 5.30

522000.0-558000.0 g/moL 44.80

558000.0-805000.0 g/moL 37.20

805000.0-1170000.0 g/moL 7.20

1170000.0-2012949.0 g/moL 5.60

MIF, fruiting bodies of M. importuna.

Frontiers in Microbiology | www.frontiersin.org 3 September 2021 | Volume 12 | Article 742033

http://www.ncbi.nlm.nih.gov/bioproject/679459
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-742033 September 6, 2021 Time: 11:47 # 4

Xu et al. MIF and Intestinal Health

TABLE 2 | Effects of Morchella importuna flavones on the serum DAO activity and
D-lactate concentration in DSS-challenged mice.

Item Treatment†

CON DSS DSS + LMIF DSS + HMIF

DAO, U/L 10.15 ± 3.33 15.86 ± 4.92* 11.15 ± 4.87 11.12 ± 2.98*

D-Lactate,
pg/ml

14.91 ± 3.71 24.49 ± 5.28** 16.29 ± 3.84 11.72 ± 2.47**

*p < 0.05 or **p < 0.01.
†CON, control; DSS, dextran sulfate sodium (DSS) treatment; DSS + LMIF, DSS
treatment + 100 mg/kg fruiting bodies of M. importuna (MIF); DSS + HMIF, DSS
treatment + 200 mg/kg MIF. DAO, diamine oxidase.

Serum Indices
DSS challenge enhanced (p < 0.05) the DAO activity and
increased the concentration of D-lactate in C57BL/6J mice
(Table 2). Dietary 200 mg/kg MIF inclusion reduced (p < 0.05)
the serum D-lactate concentration in DSS-challenged mice.

Intestinal Morphology
Relative to the control mice, DSS challenge was found to reduce
(p < 0.05) the colonic villus height without affecting crypt depth
and VCR (Figure 1). Between the DSS-challenged mice, 100 and
200 mg/kg MIF supplementation increased (p < 0.05) the colonic
villus height, and 200 mg/kg MIF supplementation additionally
increased colonic VCR.

Intestinal Antioxidant Capacity
According to Table 3, it is found that DSS challenge decreased
(p < 0.05) the SOD, CAT, and T-AOC activities and increased the
MDA content in the colon of C57BL/6J mice. Supplementation
with 100 and 200 mg/kg MIF increased (p < 0.05) the colonic
SOD and CAT activities in DSS-challenged mice.

Intestinal Cytokine Concentration
Dietary 200 mg/kg MIF ingestion reduced (p < 0.05) the contents
of the IL-1β, TNF-α, and IFN-γ and increased (p < 0.05) the IL-
10 content in colonic mucosa of DSS-challenged mice (Table 4).
Moreover, 100 mg/kg MIF supplementation increased (p < 0.05)
the colonic mucosal IL-10 concentration in DSS-challenged mice.

Tight Junction Protein Abundances
Figure 2 shows the effects of MIF on tight junction protein
(occludin, claudin-1, ZO-1, and ZO-2) abundances in DSS-
challenged mice. DSS challenge decreased (p < 0.05) the
abundances of occludin, claudin-1, and ZO-1 proteins. Dietary
supplementation with 100 and 200 mg/kg MIF elevated (p < 0.05)
the abundance of claudin-1 protein, and 200 mg/kg MIF also
increased (p < 0.05) the abundances of occludin and ZO-1
proteins in DSS-challenged mice.

Nrf2 Pathway-Related Protein
Abundances
The differences in colonic Nrf2 pathway-related protein
abundances among the four groups are shown in Figure 3.
The colonic protein abundances of p-Nrf2 and HO-1 were

lower in the DSS group (p < 0.05) than that in the control
group. However, supplementation with 100 and 200 mg/kg
MIF increased (p < 0.05) the colonic protein abundances of
p-Nrf2 and HO-1 in DSS-challenged mice. Neither DSS nor MIF
affected (p > 0.05) the Keap1 and NQO-1 protein abundances
in C57BL/6J mice.

NF-κB Pathway-Related Protein
Abundances
Figure 4 shows that the DSS challenge elevated (p < 0.05)
the TLR4, MyD88, IRAK1, TRAF6, and p-NF-κB protein
abundances, whereas supplementation with 200 mg/kg MIF
reduced (p < 0.05) the TLR4, MyD88, IRAK1, TRAF6, and p-NF-
κB p65 protein abundances in DSS-challenged mice. Moreover,
100 mg/kg MIF downregulated (p < 0.05) the TLR4 protein
abundance in DSS-challenged mice.

Intestinal Microbial Diversity
According to Table 5, it is found that DSS treatment decreased
(p < 0.05) the Shannon index and Simpson index of bacteria in
C57BL/6J mice. Supplementation with 200 mg/kg MIF increased
(p < 0.05) the Shannon index and Simpson index of bacteria in
DSS-challenged mice. Neither DSS nor MIF affected (p > 0.05)
the Chao1 index or abundance-based coverage estimators (ACE)
index of bacteria in C57BL/6J mice.

As shown in Figure 5, the PCoA revealed that microbial
community was significantly altered after DSS challenge or MIF
supplementation, with an evident separation (p < 0.05) among
the three groups.

Intestinal Microbiota Composition
The bacterial composition was assessed at different taxonomic
levels (Figure 6 and Supplementary Table 1). At the phylum
level, the dominant bacterial groups were Bacteroidetes,
Firmicutes, and Proteobacteria; these were followed by
the bacteria from phyla Verrucomicrobia, Fusobacteria,
Actinobacteria, Deferribacteres, Tenericutes, and Melainabacteria.
DSS challenge decreased (p < 0.05) the abundances of
Bacteroidetes and Verrucomicrobia, increased (p < 0.05)
the abundances of Firmicutes, Proteobacteria, Deferribacteres,
and Melainabacteria. However, 200 mg/kg MIF supplementation
increased (p < 0.05) the abundances of Proteobacteria,
Deferribacteres, and Melainabacteria.

DISCUSSION

Villus height, crypt depth, and VCR serve as criteria that reflect
gross intestinal morphology (Liu et al., 2008; Qin et al., 2018).
At present, the DSS challenge decreased colonic villus height,
which suggests that DSS caused acute damage to intestinal
mucosa. MIF supplementation increased colonic villus height
and VCR, which implies that MIF improved intestinal structure.
The maintenance of intestinal integrity primarily depends on
the tight junctions between the enterocytes. Tight junctions are
composed of several tight junction proteins, such as occludin
and claudins, as well as cytoplasmic ZOs (Anderson et al., 1993).
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FIGURE 1 | Effects of Morchella importuna flavones on colonic morphologies in dextran sulfate sodium (DSS)-challenged mice. (A) Colonic morphological image; (B)
villus height; (C) crypt depth; (D) ratio of villus height to crypt depth (VCR). CON, control; DSS, DSS treatment; LMIF, DSS treatment + 100 mg/kg fruiting bodies of
Morchella importuna (MIF); HMIF, DSS treatment + 200 mg/kg MIF. **p < 0.01.

TABLE 3 | Effects of Morchella importuna flavones on the colonic antioxidant capacity in DSS-challenged mice.

Item Treatment†

CON DSS DSS + LMIF DSS + HMIF

SOD, U/ml 145.20 ± 2.30 93.43 ± 4.69** 118.46 ± 5.54** 117.49 ± 2.37**

CAT, U/ml 89.34 ± 0.88 65.10 ± 4.16** 84.70 ± 3.26** 88.01 ± 1.53**

T-AOC, U/ml 10.49 ± 0.51 4.80 ± 0.60** 5.70 ± 0.35 4.67 ± 0.61

MDA, nmol/ml 3.59 ± 0.24 4.54 ± 0.32* 4.14 ± 0.27 4.08 ± 0.15

*p < 0.05 or **p < 0.01.
†CON, control; DSS, dextran sulfate sodium (DSS) treatment; DSS + LMIF, DSS treatment + 100 mg/kg fruiting bodies of M. importuna (MIF); DSS + HMIF, DSS
treatment + 200 mg/kg MIF. CAT, catalase; MDA, malondialdehyde; SOD, superoxide dismutase; T-AOC, total antioxidant capacity.

TABLE 4 | Effects of Morchella importuna flavones on the colonic cytokine concentrations in DSS-challenged mice.

Item Treatment†

1. CON DSS DSS + LMIF DSS + HMIF

IL-1β, pg/ml 8.77 ± 1.09 15.02 ± 2.50** 12.51 ± 1.43 10.01 ± 1.34**

IL-6, pg/ml 11.30 ± 1.77 19.53 ± 4.64** 14.95 ± 3.26 13.45 ± 2.41*

IL-10, pg/ml 55.74 ± 5.24 38.70 ± 3.74** 50.49 ± 2.88** 53.79 ± 4.72**

TNF-α, pg/ml 83.07 ± 5.20 117.79 ± 7.30** 108.86 ± 7.36 107.51 ± 6.86*

IFN-γ, pg/ml 49.61 ± 5.33 77.37 ± 9.97** 68.91 ± 8.16 65.15 ± 7.65*

*p < 0.05 or **p < 0.01.
†CON, control; DSS, dextran sulfate sodium (DSS) treatment; DSS + LMIF, DSS treatment + 100 mg/kg fruiting bodies of M. importuna (MIF); DSS + HMIF, DSS
treatment + 200 mg/kg MIF. IFN, interferon; IL, interleukin; TNF, tumor necrosis factor.

Of them, occludin and claudins are considered to be the
major integral membrane proteins forming continuous tight
junction strands (Furuse et al., 1993; Furuse et al., 1998).
Here, we found that MIF supplementation increased the

abundances of occludin, claudin-1, and ZO-1 proteins in the
colon of DSS-challenged mice, indicating that MIF improved the
intestinal barrier integrity. Furthermore, intestinal integrity can
be assessed by many markers, such as DAO activity and D-lactate
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FIGURE 2 | Effects of Morchella importuna flavones on the abundances of the colonic tight junction proteins in dextran sulfate sodium (DSS)-challenged mice.
(A) Representative Western blot picture; (B) occludin; (C) claudin-1; (D) zonula occludens-1 (ZO-1); (E) ZO-2. CON, control; DSS, DSS treatment; LMIF, DSS
treatment + 100 mg/kg fruiting bodies of Morchella importuna (MIF); HMIF, DSS treatment + 200 mg/kg MIF. *p < 0.05.

FIGURE 3 | Effects of Morchella importuna flavones on the abundances of the colonic Nrf2 signaling pathway-related proteins in dextran sulfate sodium
(DSS)-challenged mice. (A) Representative Western blot picture; (B) NAD(P)H dehydrogenase (quinone 1) (NQO-1); (C) heme oxygenase-1 (HO-1); (D) Keap1; (E)
p-Nrf2. CON, control; DSS, DSS treatment; LMIF, DSS treatment + 100 mg/kg fruiting bodies of Morchella importuna (MIF); HMIF, DSS treatment + 200 mg/kg MIF.
*p < 0.05 or **p < 0.01.
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FIGURE 4 | Effects of Morchella importuna flavones on the abundances of the colonic Toll-like receptor 4 (TLR4) signaling pathway-related proteins in dextran sulfate
sodium (DSS)-challenged mice. (A) Representative Western blot picture; (B) TLR4; (C) MyD88; (D) IL-1 receptor-associated kinase 1 (IRAK1); (E) TNF
receptor-associated factor 6 (TRAF6); (F) p-NF-κB p65. CON, control; DSS, DSS treatment; LMIF, DSS treatment + 100 mg/kg fruiting bodies of Morchella
importuna (MIF); HMIF, DSS treatment + 200 mg/kg MIF. *p < 0.05 or **p < 0.01.

TABLE 5 | Effects of ethanol extracts from Morchella importuna on the α-diversity
indexes in the colon of DSS-challenged mice.

Item Treatment†

CON DSS DSS + HMIF

Chao1 index 393.09 ± 30.64 371.89 ± 24.59 364.72 ± 12.33

ACE index 390.55 ± 23.95 374.08 ± 24.29 369.79 ± 13.76

Shannon index 6.27 ± 0.07 5.71 ± 0.20** 6.04 ± 0.04**

Simpson index 0.97 ± 0.00 0.94 ± 0.01** 0.96 ± 0.00**

**p < 0.01.
†CON, control; DSS, dextran sulfate sodium (DSS) treatment; DSS + HMIF, DSS
treatment + 200 mg/kg fruiting bodies of M. importuna (MIF).

concentration (Nielsen et al., 2011; Liu et al., 2012). Consistent
with improved intestinal barrier function, MIF improved colonic
barrier integrity in DSS-challenged mice, as evinced by decreased
serum DAO activity and D-lactate concentration.

Intestinal antioxidant activity is closely related to intestinal
health, which in turn is considered to be associated with
intestinal structure (Jia et al., 2019). SOD and CAT are important
antioxidant enzymes that can scavenge free radicals to defend
against oxidative injury (Slavić et al., 2006; Lestaevel et al., 2009).
We found lower SOD and CAT activities in DSS-challenged
mice than in control mice, indicating that DSS challenge causes
severe oxidative damage to the colon in mice. However, MIF
attenuated the DSS-induced reduction of SOD and CAT activities
in the colon, implying that MIF exerts a protective effect

against intestinal oxidative damage caused by DSS challenge.
The elevated antioxidant capacity was also supported by the
expression of several critical antioxidant genes. Nrf2, one of
the key transcription factors, plays a vital role in maintaining
the activities of antioxidant enzymes (Cheng et al., 2015). The
HO-1 is located downstream of the Nrf2 and acts as one of
the key antioxidant enzymes (Han et al., 2017). In this study,
MIF significantly elevated the protein levels of p-Nrf2 and HO-
1 in the DSS-challenged mice, further indicating the antioxidant
capacity of MIF in DSS-challenged mice. These results could
determine that dietary MIF supplementation maintained the
intestinal barrier function of mice under DSS challenge, to some
extent, by enhancing intestinal antioxidant ability.

The unsettled balance between anti- and pro-inflammatory
cytokines has been found to induce intestinal inflammatory
injury in the DSS-challenged mice (Choi et al., 2017;
Yin et al., 2020). In this study, MIF treatment inhibited
inflammatory responses as evinced by decreasing pro-
inflammatory cytokine (IL-1β, TNF-α, and IFN-γ)
concentrations in the colon following DSS treatment. Contrary
to the aforementioned cytokines, IL-10, as an anti-inflammatory
cytokine, has been demonstrated to protect colonic inflammatory
injury (Hasnain et al., 2013). Interestingly, MIF treatment also
elevated the IL-10 concentration in the colon after DSS challenge.
These results suggest that the beneficial effects of MIF against
DSS-induced intestinal inflammatory injury were related to
the regulation of the production of pro-inflammatory and
anti-inflammatory cytokines. To elucidate the molecular

Frontiers in Microbiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 742033

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-742033 September 6, 2021 Time: 11:47 # 8

Xu et al. MIF and Intestinal Health

FIGURE 5 | Comparison of the colonic microbiota composition among the three groups. A principal coordinate analysis (PCoA) was used to visualize the weighted
UniFrac distances of the fecal samples from the C57BL/6J mice. CON, control; DSS, dextran sulfate sodium (DSS) treatment; HMIF, DSS treatment + 200 mg/kg
fruiting bodies of Morchella importuna (MIF).

FIGURE 6 | Relative abundances of the dominant bacteria at phylum level in the colon of C57BL/6J mice among the three groups. CON, control; DSS, dextran
sulfate sodium (DSS) treatment; HMIF, DSS treatment + 200 mg/kg fruiting bodies of Morchella importuna (MIF).

mechanisms by which MIF attenuates intestinal inflammatory
responses, we investigated the TLR4 signaling pathway-related
protein expression.

Activation of TLR4 signaling pathway plays an important
role in defensive responses against invading pathogens via
triggering the secretion of pro-inflammatory cytokines (Wang
et al., 2017). However, the aberrant activation of TLR4 signaling
pathway elicits collateral host intestinal injury (Coll and O’Neill,

2010). In the present study, we observed that colonic protein
abundances of TLR4 and its downstream signals, such as
MyD88, IRAK1, and TRAF6, were reduced in MIF-treated DSS-
challenged mice. NF-κB is a critical nuclear transcription factor
downstream of the TLR4 signaling pathway that regulates the
production of pro-inflammatory cytokines (Sabroe et al., 2008).
The inactivation of NF-κB has been proven to be able to alleviate
the severity of intestinal inflammatory injury (Kang et al., 2017;
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Wan et al., 2019). Here, the colonic protein abundance of p-NF-
κB p65 in DSS-challenged mice was also decreased by MIF
supplementation. These results suggest that MIF attenuates
DSS-induced intestinal inflammatory injury via decreasing pro-
inflammatory cytokine release through inhibiting the TLR4/NF-
κB signaling pathway.

Although the exact pathogenesis of inflammatory bowel
disease is complex, intestinal microbiota disorder is one of
the most important observations (Zhai et al., 2019). As
noted previously, the species, richness, and abundance of
intestinal microbiota were markedly decreased in patients with
inflammatory bowel disease (Zmora et al., 2019). In this study, we
found that colonic microbiota in DSS-treated mice following MIF
supplementation exhibit more diversity of evenness and richness
than those in DSS-treated mice, as they have higher Shannon
and Simpson indices. Low microbial diversity is often regarded
as being associated with some infective intestinal disease, such
as inflammatory bowel disease (Manichanh et al., 2006). Thus,
the increase in microbial diversity induced by MIF may play a
positive role in the colonic health of mice, which partly elucidates
the alleviation of intestinal inflammatory injury in these mice.
Furthermore, we found that MIF increased the abundances of
Proteobacteria, Deferribacteres, and Melainabacteria, suggesting
that these bacteria may play an essential role in MIF treatment of
inflammatory bowel disease.

CONCLUSION

To summarize, our findings indicate that MIF have beneficial
effects on modulating intestinal barrier function and microbiota
in DSS-challenged mice. The reduced inflammatory factor
production and enhanced antioxidant capacity caused by MIF
may be associated with inhibited NF-κB signaling pathway and
activated Nrf2 signaling pathway, respectively. These results offer
a molecular basis for the potential contribution of MIF to the
prevention of intestinal barrier injury.
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