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Plankton are effective indicators of environmental change and ecosystem health in

freshwater habitats, but collection of plankton data using manual microscopic methods is

extremely labor-intensive and expensive. Automated plankton imaging offers a promising

way forward to monitor plankton communities with high frequency and accuracy in

real-time. Yet, manual annotation of millions of images proposes a serious challenge

to taxonomists. Deep learning classifiers have been successfully applied in various fields

and provided encouraging results when used to categorize marine plankton images.

Here, we present a set of deep learning models developed for the identification of

lake plankton, and study several strategies to obtain optimal performances, which

lead to operational prescriptions for users. To this aim, we annotated into 35 classes

over 17900 images of zooplankton and large phytoplankton colonies, detected in Lake

Greifensee (Switzerland) with the Dual Scripps Plankton Camera. Our best models were

based on transfer learning and ensembling, which classified plankton images with 98%

accuracy and 93% F1 score. When tested on freely available plankton datasets produced

by other automated imaging tools (ZooScan, Imaging FlowCytobot, and ISIIS), our

models performed better than previously used models. Our annotated data, code and

classification models are freely available online.

Keywords: plankton camera, deep learning, plankton classification, transfer learning, Greifensee, ensemble

learning, fresh water, lake plankton images

1. INTRODUCTION

Plankton are a key component of the Earth’s biosphere. They include all the aquatic organisms
that drift along with the currents, from tiny bacteria and microalgae, to larvae of vertebrates and
invertebrates. Photosynthetic phytoplankton are responsible for about half of the global primary
production (Behrenfeld et al., 2001) and therefore play a central role in atmospheric carbon fixation
and oxygen production. Zooplankton are a broad group of aquatic microorganisms, spanning over
tens of thousands of species (Sournia et al., 1991), and comprising both carnivores and herbivores,
the latter feeding on phytoplankton. Plankton are a critical component of aquatic food-webs,
producing organic matter that forms the ultimate source of mass and energy for higher trophic
levels (Lotze et al., 2019), and serve as food for fish larvae (Banse, 1995). The death and excretion
of planktonic organisms results in massive amounts of carbon being sequestered, regulating the
biological carbon pump locally and globally (Volk and Hoffert, 1985). Plankton biodiversity and
dynamics therefore directly influence climate, fisheries and the sustenance of human populations
near water bodies.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.746297
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.746297&domain=pdf&date_stamp=2021-11-15
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sreenath.kyathanahally@eawag.ch
mailto:marco.baityjesi@eawag.ch
https://doi.org/10.3389/fmicb.2021.746297
https://www.frontiersin.org/articles/10.3389/fmicb.2021.746297/full


Kyathanahally et al. Classification of Lake Zooplankton

Planktonic organisms, being mostly small in size, have
short lifespans and a strong sensitivity to environmental
conditions, which makes their diversity and abundances very
effective indicators of environmental change and ecosystem
health. Particularly in freshwater ecosystems, they suffer from
combined exposure to human local impacts and global change,
such as warming and invasive species (Williamson et al.,
2009). Information on individual plankton species is also
critically important for the monitoring of harmful algal blooms,
which can cause huge ecological and economical damage
and have severe public health consequences (Huisman et al.,
2018). The diversity and abundance of plankton is generally
measured using labor intensive sampling and microscopy, which
suffer from a number of limitations, such as high costs,
specialized personnel, low throughput, high sample processing
time, subjectivity of classification and low traceability and
reproducibility of data. These limitations have stimulated the
development of a multitude of alternative and automated
plankton monitoring tools (Lombard et al., 2019), some of
which were recently applied in freshwater systems (Spanbauer
et al., 2020; Merz et al., 2021; Tapics et al., 2021). Recently
developed methods like eDNA hold a lot of promise in particular
to monitor biodiversity at large spatial and temporal scales,
to identify cryptic species (not detectable morphologically),
and to account for genetic/functional diversity (Deiner et al.,
2017) but are not yet implemented for high frequency
on-site monitoring.

If, on one side, studying freshwater environments offers
the opportunity to approach several issues related to (i)
automated recognition of plankton taxa in systems that are
heavily monitored for water quality, and (ii) the creation of
plankton population time series useful for both research and lake
management, on the other side it presents a series of practical
advantages. The number of species present in a lake is in the
order of few hundreds and community composition changes at
the scale of decades (Pomati et al., 2012), and virtually all lakes
of the same region tend to share the same geographic/climatic
region and the same species pool of plankton taxa (Monchamp
et al., 2019). This would allow us to process real Lake data with a
diminished need to account for species variability, build rather
quickly a database that comprises all seen taxa, and easily use
our models for more than one site. Moreover, lakes are usually
characterized by lower levels of non-planktonic suspended solids
(e.g., sand, debris) compared to coastal marine environments, so
one can expect to work with cleaner images, with a relatively
small number of non-biological or non-recognizable objects
being detected.

Among automated plankton monitoring approaches, imaging
techniques have the highest potential to yield standardized and
reproducible quantification of abundance, biomass, diversity and
morphology of plankton across scales (Lombard et al., 2019;
Merz et al., 2021). Currently, several in-situ digital imaging
devices exists such as, Imaging FlowCytobot (Olson and Sosik,
2007), Scripps Plankton Camera (SPC) (Orenstein et al., 2020),
Video Plankton Recorder (Davis, 1992), SIPPER and a dual-
magnification modified SPC (www.aquascope.ch) (Merz et al.,
2021).

These digital imaging systems can produce very large volumes
of plankton images, especially if deployed in-situ for automated
continuous monitoring (Orenstein et al., 2020; Merz et al., 2021).
While the extraction of image features that describe important
plankton traits like size and shape are well-established (Orenstein
et al., 2020; Merz et al., 2021), classifying large volumes of objects
into different plankton taxonomic categories is still an ongoing
challenge, and represents the most important component
for plankton monitoring (MacLeod et al., 2010). Automated
classification of imaged plankton objects may help taxonomists
annotating images and allow sampling and counting taxa at
high temporal and spatial resolution. Automation of plankton
monitoring could represent a key innovation in the assessment
and management of water quality, aquatic biodiversity, invasive
species affecting ecosystem services (e.g., parasites, invasive
mussels), and early warning for harmful algal blooms.

Automated plankton classification is characterized by a set
of features that make this task less straightforward than other
similar problems. The data sets used for training, as well as the
images analyzed after deployment, cover wide taxonomic ranges
that are very unevenly distributed (some taxa are very common
and others are rarely seen - this is called data imbalance or class
imbalance) (Orenstein et al., 2015), and this distribution changes
over time, e.g., with new taxa appearing or disappearing, or a
different life stages of a species dominating the signal (Schröder
et al., 2018). Moreover, many images do not belong to any
taxon (e.g., dirt), or they cannot be identified due to the low
resolution, their position, focus, or being cropped. Furthermore,
labeling these data sets requires a high effort, because they need
to be annotated by expert taxonomists, and sampling images
from videos, as it is done e.g., for camera traps (Tabak et al.,
2019), is not helpful because the alignment of the organisms with
respect to the camera does not generally change throughout the
exposure time.

Image classification models fall into several broad categories,
including unsupervised models (which clusters and classifies
images without any manually-assigned tags), supervised models
(which use a training library of manually identified images to
develop the classification model), and hybrid models (which
combine aspects of supervised and unsupervised learning). Even
though there is current research that relies on unsupervised
learning (Salvesen et al., 2020; Schröder et al., 2020) or on
the development of specific kinds of data preprocessing (Zhao
et al., 2010; Zheng et al., 2017), the current state of the art
for classifying plankton data sets most often involves deep
convolutional neural networks trained on manually classified
images (Dai et al., 2016; Dai et al., 2017; Lee et al., 2016;
Li and Cui, 2016; Py et al., 2016; Orenstein and Beijbom,
2017; Cui et al., 2018; Dunker et al., 2018; Luo et al., 2018;
Rodrigues. et al., 2018; Bochinski et al., 2019; Lumini and
Nanni, 2019; Eerola et al., 2020; Kerr et al., 2020; Lumini et al.,
2020; Guo et al., 2021; Henrichs et al., 2021)1, which allow for
a great flexibility across applications and were demonstrated

1For a synthetic survey of relatively recent applications of deep and machine
learning to plankton classification we refer the reader to Moniruzzaman et al.
(2017) and Lumini et al. (2020).

Frontiers in Microbiology | www.frontiersin.org 2 November 2021 | Volume 12 | Article 746297

www.aquascope.ch
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kyathanahally et al. Classification of Lake Zooplankton

more satisfactory than relying on the manual extraction of
features (González et al., 2019). These applications very often
resort to transfer learning (Tan et al., 2018), which consists of
using models which were pretrained on a large image dataset
[usually, ImageNet (Deng et al., 2009)], and adapting them to the
specific image recognition problem. Transfer learning requires
comparatively less human annotated data in the target domain to
get a reasonable model after training than the model trained from
the scratch. It also speeds up the training process and results in a
better performing model. Transfer learning was used in a two-
step process to deal with data imbalance (Lee et al., 2016), but
most commonly it is used because it allows for the training of
very largemodels in reasonable times. Themain differences in the
various applications to plankton often dwell in the kind of image
preprocessing. For example, Dai et al. (2017) filters the images in
different ways, and feeds both the original and the filtered images
as input to the models, Cui et al. (2018) applies logarithmic image
enhancement on black and white images, and Lumini and Nanni
(2019) tests different ways of resizing the pictures.

Furthermore, several models can be used in synergy in order
to obtain better performances (be it to deal with data imbalance
or to reach a higher weighted accuracy). Two main approaches
to combining multiple models are collaborative models and
ensembling. The former consists of training models together to
produce a common output (Dai et al., 2017; Kerr et al., 2020),
while the latter trains the models separately and combines the
outputs in a later stage. Collaborative models were used recently
to counter data imbalance, yielding high performances on single-
channel (i.e., black and white) images obtained in Station L4 in
the Western English Channel (Kerr et al., 2020). However, this
involves deploying simultaneously several models, resulting in a
very high memory usage, unless one uses smaller versions of the
typically used models (thus, not allowing for transfer learning).
Ensembling allows to fuse virtually any number of learners, and
resulted in very satisfactory performances when joining different
architectures (where DenseNets most often do best) or kinds of
preprocessing (Lumini and Nanni, 2019).

The mentioned methods for automated plankton
classification were principally deployed in salt-water coastal
habitats. To our knowledge, the only previous work performing
image classification on freshwater images is Hong et al. (2020),
where the data does not come from an automated system, and
they study a small balanced dataset sorted in four categories
(daphnia, calanoid, female cyclopoid, male cyclopoid), and
obtain a maximum classification accuracy of 93%.

In this paper, we study the classification of plankton organisms
from lake ecosystems, on a novel dataset of lake plankton
images that we make freely accessible, together with a code that
allows to easily train and deploy our deep neural networks.
We analyze plankton images from the Dual-magnification
Scripps Plankton Camera (DSPC), which is a dark field
imaging microscope, currently deployed in Lake Greifensee
(Switzerland) (Merz et al., 2021), and specifically the images
from the 0.5x magnification, which targets zooplankton and large
colony-forming phytoplankton taxa in the ranges of 100 µm
to 1 cm. We manually annotated 17943 images consisting of
nc = 35 unevenly distributed categories (classes), which were

collected in-situ using the DSPC deployed at 3 m depth in Lake
Greifensee. We propose a set of deep learning models that makes
use of transfer learning, and we combine them through versions
of collaborative and ensemble learning. In particular we explore
several ways to ensemble our models based on recent findings in
statistics (D’Ascoli et al., 2020; Geiger et al., 2020). We evaluate
the performances of our models on publicly available datasets,
obtaining a slight but systematic increase in performance with
respect to the previous literature. The simplest of the presented
models were used to analyze part of the data in Merz et al. (2021).

2. MATERIALS AND METHODS

2.1. Data Acquisition
We used images coming from the DSPC (Merz et al., 2021),
deployed in Lake Greifensee, and acquired from wild plankton
taxa across the years 2018 to 20202. The DSPC takes images of
the microscopic plankton taxa at user-defined frequencies and
time intervals (for more details and camera settings see Merz
et al., 2021). The original full frame images may contain from
zero to several images of planktonic organisms, as well as non-
organic matter. The full frames are segmented on site in real
time, and regions of interest (ROIs), which contain e.g., plankton
organisms, are saved and used for image feature extraction and
classification. Images of objects at the boundary of the vision
range of the camera result cropped, but we keep them anyway,
as most of the time we are still able to identify them. The images
have a black background, which favors the detection of ROIs.
These have different sizes depending on the size of the detected
object. For each ROI, we extracted 64 morphological and color
features, and performed a series of graphical operations to make
the image clearer3. In Figure 1A we show some examples of
what the final images look like. In the Supplementary Section 1,
we provide an extensive description of the dataset and all its
classes, together with one sample image from each class in
Supplementary Figure 1. In the Supplementary Section 2, we
describe the afore-mentioned 64 morphological features.

2.2. Data Preparation
The DSPC can be run with two different magnifications (Merz
et al., 2021), but in this paper we report only on the images taken
at the lower magnification, which contain mostly zooplankton
taxa and several large colonial phytoplankton. We manually
annotated a dataset of 17,943 images of single objects, into nc =
35 classes4. In Figure 1B we show the names of all the nc classes,
along with the number of labeled images of each class. Note that

2Details on the camera and on the data acquisition can be found in Merz et al.
(2021) (and Orenstein et al., 2020 for an analogous camera deployed in the ocean).
3For details and code on image preparation we refer the reader to
https://github.com/tooploox/SPCConvert. This code contains the pipeline we
used, of color conversion, edge-detection and segmentation, morphological feature
extraction, foreground masking, and inverse filtering of masked foreground.
4Throughout this text, we use the machine-learning connotation of the work
“class,” which indicates a category for classification, and not a taxonomic rank. In
other words, our classes are not necessarily related to the taxonomic classification
of the categories. For example, we call “class” categories like “diatom chain,”
“unknown” or also “dirt”.
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FIGURE 1 | (A) Sample images from the DSPC in Lake Greifensee. (B) Abundance of each class in our dataset. The word class is intended in the classification sense,

and does not indicate the taxonomic rank. Note that the y axis has a logarithmic scale.

there are 300 times more annotated images of the most common
class (dinobryon) than the rarest class (chaoborus).

2.3. Open-Access Availability of Our
Dataset
We call ZooLake the described dataset of labeled plankton
images. We give extensive details on ZooLake in the
Supplementary Sections 1, 2, and made the data openly
available online at the following link: https://data.eawag.ch/
dataset/deep-learning-classification-of-zooplankton-from-
lakes.

2.4. Further Data Preparation
Since for most deep learning models it is not convenient to
have images of different sizes, we resized our images in such a
way that they all had the same size. The two simplest ways of
doing this are either by (i) Resizing all the images to 128 × 128
pixels irrespective of its initial dimensions thus not maintaining
the original proportions, or (ii) Shrinking them in such a way
that the largest dimension is at most 128 pixels (no shrinking is
done if the image is already smaller) and padding them with a
black background in order to make them 128 × 128. The former
method has the disadvantage of not maintaining proportions.
The latter has the problem that in images with a very large
aspect ratio there is a loss of information along the smallest
dimension5. The two methods are compared in Lumini and
Nanni (2019), where it is seen that procedure (i) gives slightly

5Imagine that an image is originally 1280× 50 square pixels. Re-scaling the largest
dimension to 128 pixels, maintaining the proportions, implies that there resulting
image is only 5 pixels high, which means that we almost completely lose the
information contained in the image. Further, with method (ii), the large images are

better performances in most datasets. Further, the information
lost when reshaping of the objects’ aspect ratios can be recovered
by using the initial aspect ratio (and similar quantities) as an extra
input feature. For these reasons, the results we show in the main
text are all obtained through method (i).

In order to artificially increase the number of training
images, we used data augmentation technique of applying
random deformations to the training images (Abadi et al.,
2016). The transformations we applied, which did not change
the data distribution, include rotations up to 180◦, flipping,
zooming up to 20%, and shearing up to 10%. As for the
morphological and color features, we calculated 44 additional
ones on unaugmented images (see Supplementary Section 3),
and standardized the resulting 111 features to have zero mean
and unit standard deviation.

2.5. Training, Validation, and Test
We split our images into training, validation and test sets, with a
ratio of 70:15:15. All the splits had a distribution of classes similar
to the overall data distribution. The exact same splittings were
used for all the models. The validation set was used to select the
best model (hyper)parameters, while the test set was set aside
throughout the whole process, and used only at the very end to
assess and compare the performance of all the proposed models.

2.5.1. Performance Metrics
In order to assess the performance of our models, we used
accuracy, precision, recall and F1-score. Depending on the
specific application, one can be interested in one metric or the

re-scaled, while the small ones are not, so even in this case the image size suffers a
non-linear transformation.
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other. In this section, we define and briefly explain each one of
them, in terms of true positive counts (TP), false positives (FP),
and false negatives (FN).

Accuracy. The accuracy, A, indicates the number of correct
guesses out of the total number of images,

A =
total # of TP

total # of images
. (1)

We calculated the accuracy on the whole dataset, without
distinguishing classes. This means that the accuracy is dominated
by the most present classes.

Precision. When we have a batch of images that have been
assigned to a class i by our models, we can be interested in
knowing how many of those we expect to actually belong to i.
For this, we use the precision, P, that is defined as

P =
TP

TP + FP
(2)

We first measure the precision related to each single class, and
then average the per-class precision. This is called a macro
average, and it gives every category the same weight. This ensures
that this metric is not dominated by the most abundant classes.

Recall. The recall, R, related to a class i is the fraction of images
belonging to class i that were correctly labeled,

R =
TP

TP + FN
(3)

Also in the case of the recall we use macro averages.
F1-Score. The F1-Score combines the messages of precision

and recall into a single number, which is the harmonic average
between the two:

F1 Score = 2
P R

R+ P
(4)

In order to have a high F1-score for a specific class, the
predictions of classifier need to have both high precision and
recall (i.e., a low number of FP and of FN). Also for the F1-score
we report macro averages.

2.6. Deep Learning Architectures
A common challenge when choosing deep learning architectures
is how to best jointly scale architecture depth, width and image
resolution. A recent solution was given in Tan and Le (2019), that
proposes a scaling form for these three variables simultaneously,
together with a baseline model, called EfficientNetB0, for
which this scaling is particularly efficient. This results in better
performances than previous state of the art models, with a
smaller investment in terms of model parameters and number
of operations. The provided scaling form allows us to obtain
efficiently scaled models according to how many computational
resources we are willing to invest. These models, ordered
by increasing size, are called EfficientNetB1, EfficientNetB2,
EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6,
and EfficientNetB7. Given the aforementioned large efforts to
apply deep learning models to plankton classification, we believe

that it is worth to assess the performances of these architectures
on plankton recognition. Aside from those, we also test other
deep neural network architectures, some of which were already
used successfully for our kind of problems.

In the main text of this manuscript, we report on 12
different models. These are the EfficientNets B0 through
B7 (Tan and Le, 2019), InceptionV3 (Szegedy et al., 2015),
DenseNet121 (Huang et al., 2016), MobileNet (Sandler et al.,
2018) and ResNet50 (He et al., 2015), trained with transfer
learning (section 2.7). Each individual model was trained
four times, with different initial conditions from the same
parameter distribution6. Additionally, we trained multi-layer
perceptrons (MLPs) using as input the 111 morphological and
color features mentioned in section 2.4, and trained Mixed
(collaborative) models that combine the MLPs with a larger
model trained on images (section 3.2). In Figure 2 we sketch the
structure of these Mixed models. Finally, we also trained 4-layer
convolutional networks, to assess whether through specific kinds
of ensembling we could reach performances that match larger
models (Supplementary Section 5).

2.7. Transfer Learning
Since training the mentioned models is a very demanding
computational task, we used transfer learning, which
consists of taking models that were already trained for image
recognition on ImageNet, a very large dataset of non-planktonic
images (Russakovsky et al., 2015)7. We loaded the pretrained
model and froze all the layers. We then removed the final layer,
and replaced it with a dense layer with nc outputs, preceded and
followed by dropout. The new layers (dropout, dense, dropout,
softmax with categorical cross-entropy loss) and learning rate
were optimized with the help of the keras-tuner (O’Malley
et al., 2019). We ran the keras-tuner with Bayesian optimization
search8, 10 trials and 100 epochs, to find the best set of
hyperparameters from the Bayesian search. Then, we trained
for 200 epochs and used early stopping, i.e., interrupting the
training if the validation loss did not improve for 50 epochs, and
keeping the model parameters with the lowest validation loss.
We then fine-tuned the model by unfreezing all the parameters
and retraining again with a very low learning rate, η = 10−7, for
400 epochs.

2.8. Ensemble Learning
Ensemblemethods usemultiple independent learning algorithms
to obtain better predictive performance than could be obtained

6All the initial conditions of all models were different realizations from the
same distribution. We used a Glorot (or Xavier) uniform initializer, which is a
uniform distribution within [−a, a], where a =

√

6/(ni + no), and ni and no
are, respectively, the number of input and output units in the weight tensor. All
the models were trained with the Adam optimizer, a stochastic gradient descent
method that is based on adaptive estimation of first-order and second-order
moments. We used, respectively, 0.9 and 0.999 as decay rate of the first and second
moment estimates.
7Transfer learning frommodels trained on plankton images was tried in Orenstein
and Beijbom (2017), but it did not yield better results than using themodels trained
on ImageNet.
8The Bayesian optimization is a trial-and-error based scheme to find the optimal
set of hyperparameters (Mockus, 2012).
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FIGURE 2 | Diagram of the three main kinds of models that we mention in our

paper. Image models are convolutional networks that receive only images as

input, feature models are multi-layer perceptrons (MLPs) that receive as input

only features extracted from the image, but not the image per se, and Mixed

models join and fine-tune Image and Feature models.

from any of the constituent learning algorithms alone, often
yielding higher overall classification metrics and model
robustness (Seni and Elder, 2010; Zhang and Ma, 2012). For
our study we made use of two ensembling methods: averaging
and stacking.

2.8.1. Averaging
For every image, the output of a single model is an nc-
dimensional confidence vector representing the probability that
the model assigns to each class. Themodel’s prediction is the class
with the highest confidence. When doing average ensembling
over nmodels, we take the average over the n confidence vectors,
and only afterwards choose the class with the highest confidence.
With this procedure, all the models contribute equally to the
final prediction, irrespective of their performance.We performed
average ensembling on the following choices of the models:

1. Across different models, as for example it was successfully
done for plankton recognition in Lumini and Nanni (2019)
and Lumini et al. (2020).

2. Across different instances of the same model, trained
independently 4 times. This is inspired by the recent
observation that this kind of averaging can lead to a better
generalization in models with sufficiently many (but not too

many) parameters (D’Ascoli et al., 2020). We provide a deeper
discussion in the Supplementary Section 5.

3. Manual selection of the six best individual models (on
the validation set) over all the models. These best models
resulted to be DenseNet121, EfficientNetB2, EfficientNetB5,
EfficientNetB6, EfficientNetB7 and MobileNet. For each,
we chose the initialization that gave the best validation
performance. We call this the Best_6_avg ensemble model.

2.8.2. Stacking
Stacking is similar to averaging, but each model has a different
weight. The weights are decided by creating a meta-dataset
consisting of the confidence vectors of each model, and training
a multinomial logistic regression on this metadataset. We
performed stacking both across initial conditions and across
different architectures. We call Best_6_stack the ensemble model
obtained by stacking the six individual best models (these are the
same models that we used for the Best_6_avg model).

3. RESULTS

3.1. Performances
In Table 1, we summarize the performance of the individual
models, along with the various forms of ensembling described
in section 2.8.

We categorize the models in three ways, according to the kind
of data they take as input. Feature models take numerical features
extracted from the images, image models take the processed
image, andmixed models take both features and image.

3.1.1. Individual Model Performance
First, we focus on the performances of the single models.
Already the MLP, our simplest model, which does not take the
images as input, had a best accuracy of 91.2%. However, the
F1-score below 80% reveals that the accuracy is driven by the
predominant classes.

All the image models performed better than the MLP both
in terms of accuracy and F1-Score. The model with the best
F1-score is the EfficientNetB7 (F1 = 90.0%), followed by the
EfficientNetB2, which obtained almost the same value, but with
a much smaller number of parameters (8.4 × 106 parameters
instead of 6.6× 107 parameters for EfficientNetB7)9. The lightest
of the models we present is the MobileNet, with around 3.5×106

parameters, with a maximum F1-score of 89.1%.
We tried to further improve the performance of EfficientNets

by adopting basic methods for dealing with class imbalance. We
reweighted the categories according to the number of examples of
each class, in order to give an equal weight to all of them despite
the class imbalance. We did not notice sizable improvements,
so we restricted to only two models. We report on this in the
Supplementary Section 4.

9EfficientNetB7 models also took about 8 h to train, more than twice to train than
their lightweight counterpart. We show the times required for hyperparameter
tuning and for training in Supplementary Table 3.
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TABLE 1 | Test accuracy and F1-score of the individual models across four different initial conditions.

Model

type

Model

name

Initial

condition 1

(Accuracy/F1-score)

Initial

condition 2

(Accuracy/F1-score)

Initial

condition 3

(Accuracy/F1-score)

Initial

condition 4

(Accuracy/F1-score)

Average

ensemble

(Accuracy/F1-score)

Stacking ensemble

(Accuracy/F1-score)

Feature MLP 0.910/0.747 0.912/0.768 0.910/0.748 0.909/0.723 0.915/0.762 0.909/0.752

Image

EfficientNetB0 0.956/0.858 0.963/0.884 0.964/0.892 0.964/0.869 0.971/0.905 0.968/0.907

EfficientNetB1 0.956/0.848 0.958/0.866 0.966/0.893 0.963/0.892 0.970/0.902 0.968/0.897

EfficientNetB2 0.967/0.893 0.967/0.899 0.968/0.894 0.966/0.889 0.975/0.915 0.969/0.913

EfficientNetB3 0.958/0.841 0.957/0.880 0.959/0.877 0.958/0.868 0.969/0.904 0.965/0.883

EfficientNetB4 0.958/0.876 0.964/0.870 0.962/0.874 0.962/0.873 0.972/0.903 0.970/0.907

EfficientNetB5 0.965/0.879 0.967/0.892 0.963/0.854 0.959/0.850 0.971/0.891 0.970/0.899

EfficientNetB6 0.964/0.880 0.965/0.879 0.968/0.897 0.964/0.865 0.971/0.904 0.970/0.912

EfficientNetB7 0.966/0.885 0.970/0.899 0.967/0.886 0.969/0.900 0.974/0.913 0.971/0.909

InceptionV3 0.965/0.876 0.961/0.883 0.954/0.867 0.964/0.884 0.972/0.901 0.971/0.913

DenseNet121 0.958/0.859 0.962/0.821 0.971/0.861 0.968/0.890 0.976/0.916 0.975/0.884

MobileNet 0.960/0.875 0.959/0.891 0.958/0.886 0.965/0.870 0.971/0.907 0.971/0.907

ResNet50 0.962/0.878 0.955/0.853 0.959/0.858 0.959/0.837 0.974/0.908 0.970/0.889

Image

ensemble

Average 0.976/0.911 0.977/0.923 0.975/0.909 0.976/0.914 0.977/0.919

Stack 0.975/0.908 0.976/0.919 0.976/0.914 0.977/0.915 0.978/0.921

Best_6_avg 0.978/0.924

Best_6_stack 0.979/0.927

The rightmost and the bottom lines describe the performance of our ensemble models. The stacked model over all 48 image models performs stacking only once (we do not do two

rounds of stacking). The entries in italics represent the six models that we chose for Best_6_avg and Best_6_stack based on the validation F1-score (therefore their performance on the

test set is not necessarily the best). In bold, we represent the overall best for each sector.

3.1.2. Ensembling Across Initial Conditions
As we discuss in the Supplementary Section 5, ensembling
across initial conditions can help reduce the generalization gap
(i.e., the difference between train and test performance). This
was shown for average ensembling (D’Ascoli et al., 2020; Geiger
et al., 2020), but we also tested it for stacking. We see that
(rightmost columns of Table 1), both for stacking and averaging,
this kind of ensembling improves the overall result compared
to each individual model’s performance. We also show this in
Supplementary Figures 4C,D, where in each column we show
the performances of all the repetitions of a single model, as
well as the result of ensembling through initial conditions.
Average ensembling over (only four) initial conditions is very
successful for some specific models such as EfficientNetB2
and DenseNet121.

3.1.3. Ensembling Across Models
We also ensembled across available models. For consistency, we
first used only one initial condition per architecture (randomly
picked, without repetitions). The results shown in Table 1 and
Supplementary Figures 4A,B (first four columns of each plot)
display a clear improvement when performing this kind of
ensembling, which in most cases seems more effective than over
initial conditions.

3.1.4. Overall Ensembling
Finally, we ensembled over all models and initial conditions,
obtaining a further small improvement. We obtained a slightly
better improvement when ensembling on the six best models
of the validation set (Best_6_avg and Best_6_stack ), which had

the further advantage of requiring less resources than using all
48 models. Our final best image model, Best_6_stack , has an
accuracy of 97.9%, and an F1-score of 92.7%.

Toward practical purposes, the performances of Best_6_avg
and Best_6_stack are even better than they appear if we take into
account the nature of our dataset: the dataset is imbalanced, and
for the most numerous two thirds of the classes we have almost
perfect classification, as shown in Figure 3, where we show the
per-class performances. For the remaining third, the minority
classes, the performance is good, though less reliable due to the
very low number of test images at hand. If we keep into account
the number of available images, the only three classes with a lower
performance are the container (or junk) classes: unknown, dirt,
unknown_plankton10. This is not surprising, since these classes
contain a wide variety of different objects, and it is less of a
problem from the point of view of plankton monitoring, since
misclassifications involving these classes are less relevant (we
show the confusion matrices in the Supplementary Figure 5).

If we exclude the three junk classes (unknown, dirt,
unknown_plankton), we reach F1-score=97.3%. If we only
consider the 23 classes for which the ZooLake dataset contains
at least 200 examples (and keep the junk classes with ≥ 200
examples), the F1 scores go up to 98.0%. Finally, if we both
exclude the classes with less than 200 examples and the junk
classes, we obtain F1-score=98.9%.

10We have a fourth container class, maybe_cyano, but in that case we obtain
almost perfect classification. See Supplementary Section 1 for a description of
this category.
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FIGURE 3 | Per-Class precision, recall, and F1-score of Best_6_avg (left) and Best_6_stack (right) model on test set sorted based on Figure 1B. Support i.e., the

number of samples of the true response that lies in each class of target values is given beside class name.
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TABLE 2 | Top-1 and top-2 recall and accuracy.

Model Macro recall Accuracy

Best_6_avg (top-1) 0.926 0.978

Best_6_avg (top-2) 0.958 0.992

Best_6_stack (top-1) 0.928 0.979

Best_6_stack (top-2) 0.947 0.988

Top-n scores treat true positives and false negatives based on the n highest values of the

confidence vector. In other words, the top-2 scores are the model performances in the

case that either of the top two guesses is correct.

Moreover, even when making mistakes, our models are not
completely off. We can see this in Table 2, where we plot
the top-2 metrics of the Best_6_avg and Best_6_stack models.
These represent how good the models’ guesses are if the second
choice of the classifier is considered as a success. We see
that the macro-averaged recall increases by 3%, and the total
number of misclassified images is halved, with the top-2 accuracy
exceeding 99%.

3.2. Mixed Models
Since our image preprocessing did not conserve information on
the image sizes, we trained mixed models that took as input
a combination of image and 111 numerical features calculated
from the image.

The numerical features were fed into theMLP described in the
Supplementary Section 3, while the images were given as input
to one of the image models described in Table 1. The two models
were then combined and fed into a dense layer, followed by a
softmax with categorical cross-entropy loss.

With both features and images (and no image augmentation)
as input we trained with a low learning rate η = 10−5 for
400 epochs. For each choice of the initial conditions, each single
imagemodel was combined with its corresponding feature model
(an MLP). In total, we trained 12 mixed models for 4 initial
conditions each, so 48 mixed models in total.

Then, we ensembled through models and initial conditions
in the same way as with the image models described in
section 2.8. The test performance of the mixed models
is shown in Table 3. The single-model performances
are slightly better than those obtained through image-
only models (Table 1). However, after ensembling, the
performance of mixed models becomes quite similar to
that of image models. The best F1 score of the mixed
models improves that of the image models by 0.3%,
reaching 93.0%.

3.3. Comparisons With Literature on Public
Datasets of Marine Plankton Images
To compare our approach with previous literature, we evaluated
our models on the publicly available datasets indicated in
Zheng et al. (2017), which reports classification benchmarks
on ZooScan (Gorsky et al., 2010) and the subsets of the
Kaggle (Cowen et al., 2015) and WHOI (Sosik et al., 2014)
plankton datasets. The ZooScan (Gorsky et al., 2010) consists of
3,771 grayscale images acquired using the Zooscan technology

from the Bay of Villefranche-sur-mer. It consists of 20 classes
with variable number of samples for each class. The Kaggle
subset (Zheng et al., 2017) comprises 14,374 grayscale images
from 38 classes, acquired by in-situ Ichthyoplankton Imaging
System (ISIIS) technology in the Straits of Florida and used
for the National Data Science Bowl 2015 competition. The
distribution among classes is not uniform, but each class has at
least 100 samples. The WHOI subset (Sosik and Olson, 2007)
contains 6,600 grayscale images of different sizes, that have
been acquired by Imaging FlowCytobot (Olson and Sosik, 2007),
from Woods Hole Harbor water samples. The subset contains
22 manually categorized plankton classes with equal number of
samples for each class.

We compared the performance of our image models with the
best models of Zheng et al. (2017), Lumini and Nanni (2019), and
Lumini et al. (2020). ForWHOI, we used the exact same train and
test sets, since the dataset splitting was available. For ZooScan
and Kaggle we used, respectively, two-fold cross-validation and
five-fold cross-validation as in Lumini et al. (2020). We used our
Best_6_avg and Best_6_stack models, and did transfer learning
starting from the weight configurations trained on our ZooLake
dataset11. We fine-tuned each of the 6 selected models belonging
to Best_6_avg and Best_6_stack with a learning rate η = 10−5,
and followed with average and stack ensembling12.

As we show in Figure 4, our Best_6_avg and Best_6_stack
models performed always slightly better than all the previous
methods/studies. The improvement in terms of F1-score
is consistent throughout the three datasets, with a 1.3%
improvement on the previously best model for ZooScan, a 1.0%
on Kaggle, and a 0.3% on WHOI. The same data of Figure 4 is
available in the Supplementary Table 2.

Note that these improvements come with a further advantage.
Our results require ensembling over a smaller number of models,
and of total parameters. The 6-model average ensemble consisted
of around 1.58 × 108 parameters compared to the 6.25 × 108

(4.0 times more) of the best model in Lumini et al. (2020) and
the 1.36 × 109 (8.6 times more) of the best model in Lumini
and Nanni (2019). A major advantage of having lighter-weight
models is that it allows for a simpler deployment and sharing with
field scientists.

4. DISCUSSION

In this paper, we presented the first dataset, to our knowledge,
of Lake plankton camera images, and showed that through an
appropriate procedure of preprocessing and training of deep
neural networks we can develop machine learning models that

11Since our Best_6_avg and Best_6_stack models were originally trained on three-
channel image data, we had to adapt WHOI and Kaggle data images as they
consisted of single channel images. The single channel was replicated 3 times
to have 3 channels image such that they are similar to ZooLake . The ZooScan
however had 3 channels images similar to ZooLake .
12We stress that for simplicity we used the 6 models that performed best on our
ZooLake validation set. Arguably, we could expect an even higher performance if
we selected the 6 models on the validation set of each of the three public datasets.
We did not do this because it made the reporting more complicated, and our
models perform better than the previous literature even in this case.
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TABLE 3 | Mixed model test accuracy and F1-score of the individual models across four different initial conditions.

Model

type

Model

name

Initial

condition 1

(Accuracy/

F1-score)

Initial

condition 2

(Accuracy/

F1-score)

Initial

condition 3

(Accuracy/

F1-score)

Initial

condition 4

(Accuracy/

F1-score)

Average

ensemble

(Accuracy/

F1-score)

Stacking

ensemble

(Accuracy/

F1-score)

Mixed

EfficientNetB0+MLP 0.962/0.874 0.969/0.857 0.968/0.867 0.966/0.882 0.973/0.917 0.963/0.856

EfficientNetB1+MLP 0.965/0.872 0.967/0.890 0.970/0.899 0.968/0.860 0.972/0.908 0.964/0.856

EfficientNetB2+MLP 0.971/0.906 0.969/0.899 0.971/0.907 0.970/0.906 0.976/0.917 0.965/0.866

EfficientNetB3+MLP 0.964/0.864 0.965/0.904 0.965/0.897 0.965/0.884 0.971/0.913 0.958/0.829

EfficientNetB4+MLP 0.967/0.897 0.968/0.864 0.967/0.884 0.968/0.886 0.973/0.909 0.962/0.847

EfficientNetB5+MLP 0.967/0.894 0.971/0.868 0.968/0.864 0.967/0.878 0.972/0.889 0.964/0.856

EfficientNetB6+MLP 0.971/0.881 0.971/0.891 0.971/0.897 0.967/0.873 0.974/0.914 0.966/0.863

EfficientNetB7+MLP 0.969/0.901 0.973/0.916 0.973/0.909 0.970/0.896 0.975/0.916 0.964/0.838

InceptionV3+MLP 0.968/0.878 0.965/0.893 0.962/0.888 0.970/0.896 0.973/0.911 0.965/0.842

DenseNet121+MLP 0.966/0.878 0.965/0.833 0.972/0.870 0.972/0.881 0.974/0.881 0.962/0.836

Mobile+MLP 0.964/0.886 0.966/0.899 0.962/0.893 0.970/0.879 0.971/0.904 0.964/0.857

ResNet50+MLP 0.965/0.861 0.964/0.890 0.963/0.857 0.965/0.856 0.971/0.875 0.964/0.856

Mixed

ensemble

Average 0.975/0.917 0.976/0.923 0.976/0.916 0.975/0.912

Stack 0.974/0.914 0.976/0.919 0.975/0.912 0.975/0.912

Best_6_avg 0.976/0.930

Best_6_stack 0.977/0.925

The trained image models and its corresponding feature model in each of the initial conditions were chosen from Table 1. The bottom four lines depict the performances when using

the four kinds of ensembling described in the main text. The italics represent the six models that we chose for Best_6_avg and Best_6_stack based on the validation F1-score (therefore

their performance on the test set is not always the best). In bold, we represent the overall best for each sector.

FIGURE 4 | Performances Accuracy/F1-score of our Best_6_avg and Best_6_stack models (blue points) on the publicly available datasets (ZooScan, Kaggle, WHOI),

and comparison with previous results from literature. The yellow points indicate ensemble models from (Lumini et al., 2020): SFFS (Sequential Forward Floating

Selection—a feature selection method used to select models), WS (Weighed Selection—a stacking method that maximizes the performance while minimizing the

number of classifiers). The red points are the Fus models from (Lumini and Nanni, 2019), which fuse diverse architectures and preprocessing. The green points stand

for non-linear multi kernel learning (NLMKL), where an optimal non-linear combination of multiple kernels (Gaussian, Polynomial, and Linear) is learnt to combine

multiple extracted plankton features.
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classify them with high reliability, reaching 97.9% accuracy
and 93.0% (macro-averaged) F1-score. These metrics improve
to 98.7% accuracy and 96.5% F1-score if we exclude the few
container classes (dirt, unknown, unknown_plankton), that do
not identify any specific taxon, with the F1 score reaching 98.9%
if we further restrict to the two thirds of the categories with a
sufficient number of examples13.

We trained several deep learning models. Our main novelties
with respect to previous applications to plankton are the usage of
EfficientNet models, a wise and simple ensemble model selection
in the validation step, and the exploration of ensemblingmethods
inspired by recent work in theory of machine learning (D’Ascoli
et al., 2020). We checked the utility of using mixed models
which as input include, in addition to the image, numerical
features such as the size of the detected object, and found that
this increases the single-model performance, but the gain is
flattened out once we ensemble across several models (though
the best F1 score still improved from 92.7 to 93.0%). We
also checked whether the performance of the EfficientNets
improved by correcting through class imbalance through class
reweighting, and found no sizable improvement. We compared
the performances of our models with previous literature on salt-
water datasets, obtaining an improvement that was steady across
all datasets.

The best performing individual models were EfficientNets,
MobileNets, and DenseNets. Notably, the performance of the
EfficientNets did not scale monotonously with the number of
model parameters, perhaps due to the class imbalance of our
dataset. The EfficientNets B2 and B7 were the best performing,
but B2 uses a smaller number of parameters. If we had to
select a single architecture, our choice would lean toward
MobileNet or EfficientNetB2, given their favorable tradeoff
between performance and model size. If we apply ensembling,
averaging and stacking provide similar performances, so we
prefer averaging due to its higher simplicity. As for Mixed
models, their narrow increase in performance after ensembling
does not seem to justify their additional complexity in terms
of deployment.

The Scripps Plankton Camera systems are a new technology
that allows users to obtain large volumes of high-resolution color
images, with virtually any temporal frequency. We noticed that
the images that we obtained were clearer than those coming from
marine environments (c.f. Orenstein et al., 2020), which favored
the process of annotation and classification. Additionally, the
taxonomic range is more stable during the seasonal progression
compared to marine studies: fewer taxa are present in lake

13It is not guaranteed that the performances of a classifier on the test set (i.e., on
a hold-out partition of the dataset) are equally good when deployed in the real
world (Hand, 2006; Moreno-Torres et al., 2012; Recht et al., 2019). This is because
it is hard (or even impossible) to guarantee that a data set consists of completely
independent samples which are fully representative of the underlying distribution
of images. In particular, this is a source of concern with plankton, where there
is a large number of sources of bias, such as environmental conditions, species
composition, and annotation bias (González et al., 2017). Therefore, one can expect
that our model performances can be lower when deployed for field monitoring.
Prescriptions to validate models in a real-life context require large annotation
efforts (González et al., 2017, 2019), which we plan to report on in future work.

than coastal marine environments, colonization by new taxa are
relatively rare at the inter-annual scale (new taxa do not appear
often), and lakes of the same region share large part of the
plankton community composition. This makes the study of lake
plankton dynamics an interesting andmore controlled case study
for method development due to its relative ecological simplicity
and temporal stability, and implies that classifiers for lake taxa
are more robust in these environments over space and time. This
is particularly important from an application point of view, since
the tools we developed in this paper are not only applicable for
analyzing plankton population time series in Lake Greifensee,
addressing problems such as inferring interactions between taxa
and predicting algal blooms, but theymay be transferable to other
similar lakes. Lakes represent very important water resources for
human society and require routine monitoring for water quality
and provision of ecosystem services.

The models developed in this study have already been used
in real-world monitoring, for part of the counting performed in
Merz et al. (2021). We make both the dataset and our code freely
available14.
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