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Chronic heart failure (CHF) is the final outcome of almost all forms of cardiovascular
diseases, remaining the main cause of mortality worldwide. Accumulating evidence is
focused on the roles of gut microbial community in cardiovascular disease, but few
studies have unveiled the alterations and further directions of gut microbiota in severe
CHF patients. Aimed to investigate this deficiency, fecal samples from 29 CHF patients
diagnosed with NYHA Class III-IV and 30 healthy controls were collected and then
analyzed using bacterial 16S rRNA gene sequencing. As a result, there were many
significant differences between the two groups. Firstly, the phylum Firmicutes was found
to be remarkably decreased in severe CHF patients, and the phylum Proteobacteria was
the second most abundant phyla in severe CHF patients instead of phylum Bacteroides
strangely. Secondly, the α diversity indices such as chao1, PD-whole-tree and Shannon
indices were significantly decreased in the severe CHF versus the control group, as
well as the notable difference in β-diversity between the two groups. Thirdly, our result
revealed a remarkable decrease in the abundance of the short-chain fatty acids (SCFA)-
producing bacteria including genera Ruminococcaceae UCG-004, Ruminococcaceae
UCG-002, Lachnospiraceae FCS020 group, Dialister and the increased abundance of
the genera in Enterococcus and Enterococcaceae with an increased production of lactic
acid. Finally, the alternation of the gut microbiota was presumably associated with the
function including Cell cycle control, cell division, chromosome partitioning, Amino acid
transport and metabolism and Carbohydrate transport and metabolism through SCFA
pathway. Our findings provide the direction and theoretical knowledge for the regulation
of gut flora in the treatment of severe CHF.

Keywords: severe chronic heart failure, gut microbiota, 16S rRNA gene, SCFA, patients

INTRODUCTION

Chronic heart failure (CHF) is a major health problem worldwide. It is the final outcome of almost
all forms of cardiovascular diseases. CHF is recognized not only as a deregulation of hemodynamic
disorder and neurocrine activation, but also an uncontrolled elevation of inflammatory
responses and oxidative stress (Anker and Von Haehling, 2004; Gajarsa and Kloner, 2011;
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Hage et al., 2017; Huang et al., 2020). CHF is still associated with
a high rate of hospitalization and a devastating prognosis, despite
the recent development of modern combinational therapeutic
strategies. Therefore, it is possible that important pathogenic
mechanisms have not been targeted by current treatments, such
as gut microbiota dysbiosis which have also been implicated
to play a role in the development of cardiovascular diseases,
including CHF (Brial et al., 2018; Jia et al., 2019; Cheng et al.,
2020; Huang et al., 2020; Sanchez-Rodriguez et al., 2020).

The gut microbiota, comprising the trillions of bacteria in
the gastrointestinal tract, is essential for maintaining human
health in many aspects, digesting the indigestible nutrients
of the host, producing vitamins and hormones, shaping the
development of the mucosal immune system, and preventing
the colonization of pathogenic bacteria (Amoroso et al., 2020;
Sanchez-Rodriguez et al., 2020; Deledda et al., 2021). Host-
microbiota interactions involving inflammatory and metabolic
pathways have been proposed to contribute to the pathogenesis
of CHF (Dantzer et al., 2018; Moshkelgosha et al., 2018; Cheng
et al., 2019, 2021; Zhang et al., 2019; Kwon et al., 2020). In recent
years, several sequencing-based studies have reported that the
composition and function of intestinal flora between HF patients
and healthy subjects are different. There are some common
findings, but also considerable differences between studies (Kamo
et al., 2017; Luedde et al., 2017; Cui et al., 2018; Kummen et al.,
2018; Mayerhofer et al., 2018, 2020; Iqubal et al., 2020; Khan et al.,
2020; Qi et al., 2021). Some computational methods have been
applied in the field and other biological data (Long et al., 2021; Lv
et al., 2021; Yang et al., 2021). Thus, more studies are still needed
to provide detailed information on variations of gut microbial
composition and its impacts on CHF, especially the severe CHF.

In order to define a more robust HF-related gut microbiota
signature, we conducted this cross-sectional cohorts
investigation. In this study, we collected stool samples from
severe CHF patients and healthy controls, amplified the variable
region of intestinal bacteria 16S rRNA, constructed a DNA
library, and then assessed the taxonomic composition of the gut
microbiota in patients with severe CHF.

MATERIALS AND METHODS

Study Population and Sample Collection
Chronic heart failure patients (n = 29) were recruited from the
First Affiliated Hospital of Harbin Medical University and the
Fourth Affiliated Hospital of Harbin Medical University between
April 2020 and August 2020, as well as 30 asymptomatic persons
undergoing physical examinations as healthy controls. Patients
who were recruited represent multiple stages of HF progression,
as defined by NYHA Class III-IV. The inclusion criteria were
as follows: (1) the subjects had not received antacids, probiotics,
antibiotics, or antimicrobial agents within 30 days before sample
collection; (2) there was no organic disease of the digestive
system; and (3) they had no gastrointestinal surgery. NYHA
classification was performed by patients’ treating cardiologist
and adjudicated by 2 HF specialists who were blinded to the
results. All patients with HF were treated according to current

HF management guidelines. Associated clinical information was
collected from electronic medical records. All participants (or
their direct relatives) gave written informed consent, and the First
Affiliated Hospital of Harbin Medical University and the Fourth
Affiliated Hospital of Harbin Medical University approved all
study protocols.

We collected fresh fecal samples (each 2–5 g) from all the
participants 1–2 days after admission, then transferred into sterile
collecting pipes and frozen at−80◦C immediately.

DNA Extraction and 16S rRNA Gene
V3-V4 Region Sequencing
The bacterial DNA was extracted from the fecal samples using
the Tiangen stool mini kit (Tiangen, Beijing, China) according
to the manufacturer’s instructions. The extracted DNA from each
sample was used as the template to amplify the V3–V4 region of
16S rRNA genes using PCR. PCR amplification, sequencing of the
PCR amplicons and quality control of raw data were performed.
A sequencing library of the V3–V4 regions of the 16S rRNA
gene was prepared as described previously (Han et al., 2021). The
purified products were mixed at an equal ratio for sequencing
using an Illumina MiSeq system (Illumina Inc., United States).

Statistical Analysis
We evaluated the quality of sequencing data using the Fast-QC
software1 firstly. Next we obtained the clean data for subsequent
analysis after removing the Chimera Sequence using QIIME2.2

Third, operational taxonomic units (OTUs) were delineated
at the cutoff of 97% also using QIIME2, and the sequencing
results were compared and analyzed to obtain the family and
genus annotations of OTUs based on the Silva database.3 Then
α- and β-diversity analyses were performed using QIIME2
fourthly. Shannon-wiener diversity index, Simpson diversity
index, the observed OTUs, PD (phylogenetic diversity)-whole-
tree and Chao1 index were evaluated. A normalized OTU
abundance table was used for the β-diversity analysis, including
principal coordinate analysis (PCoA) based on weighted UniFrac,
and unweighted UniFrac distances. Next, we performed Lefse
analysis to clarify the dominant bacteria. LEfSe is a software for
discovering high-dimensional biomarkers and revealing genome
characteristics. LEfSe uses linear discriminant analysis (LDA)
to estimate the impact of the abundance of each component
(species) on the difference effect. At last, the gene function of the
sample was inferred based on the species composition obtained
by sequencing, and the functional difference between different
groups was analyzed using PICRUSt.4 Subsequently, the Welch’s
t-test method of two groups was performed using the STAMP
software to filter the parts with P-value > 0.05, and Heatmap
Plot, PCA plot, and Extented error bar graphs were drawn
to reveal significant differences in species abundance between
different samples.

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://qiime.org/
3https://www.arb-silva.de/
4https://picrust.github.io/picrust/index.html
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RESULTS

Baseline Characteristics
The baseline characteristics of all the participants are shown
in Table 1. Patients with CHF were characterized by a greater
number of males, increased prevalence of comorbidity with
Atrial fibrillation, worsened cardiac functions including larger
left ventricular end diastolic diameter (LVEDD), decreased
left ventricular ejection fraction (LVEF) and stroke volume
(SV), increased E/e’, coupled with increased serum Troponin
I (TnI) and NT-pro B-type natriuretic peptide (NT-proBNP)
levels. Patients with CHF also have worse renal function. Most
(21) of the patients were classified to be heart failure patients
with reduced ejection fraction, only 1 were classified to be
heart failure patients with preserved ejection fraction, and
the rest 8 of the patients were classified to be heart failure
patients with midrange ejection fraction. All patients with HF
were treated according to current HF management guidelines,
including diuretics, βblocker, Aldosterone receptor antagonist,
Angiotensin converting enzyme inhibitor/Angiotensin receptor
antagonist/Angiotensin receptor neprilysin inhibitor, and
Sodium-glucose cotransporter 2 inhibitor.

Species Classification
The different distribution of relative abundance of top 19 at
the phylum level in the two groups is presented in Figure 1A.
Sequencing analysis showed that gut microbiota of the two
groups were mainly classified into four phyla, including the phyla
Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The
phylum Firmicutes was found with the highest abundance of
reads in CHF patients, accounting for 59.5% in total, which was
significantly decreased versus that of an abundance of 72.4%
in the controls. The second was the phylum Proteobacteria,
accounting for 21.3% in total, which was much more abundant
versus that of an abundance of 6.9% in the controls. Likewise,
bacteria belonging to the phyla Actinobacteria were more
abundant in CHF patients than that in the healthy controls (2.7
vs. 0.9%), While bacteria belonging to the Bacteroidetes phyla
were slightly less abundant in HF patients than that in the healthy
controls (14.9 vs. 17.7%).

At the genus level, the microflora of CHF patients was
characterized by less abundant of Faecalibacterium (10.5 vs.
22.8%), as well as more abundant of Escherichia-Shigella (10.3 vs.
4.6%), Enterococcus (7.7 vs. 0.0%), and Klebsiella (6.9 vs. 1.1%)
than that in the healthy controls (Figure 1B).

Analysis of α and β Diversity Index
The α diversity analysis was performed and then chao1 curve,
observed-otus curve, PD-whole-tree curve, Shannon-Wiener
curve and Simpson curve based on the species annotation
information were subsequently obtained by sequencing analysis.
As a result, the chao1 and PD-whole-tree indices were
significantly decreased in the CHF versus control group, as
well as the Shannon indices (Figures 2A–C). The taxonomic
composition of the metagenomic populations of the gut
microflora samples from patients with CHF compared to those

TABLE 1 | Baseline characteristics of the study participants.

Variables HF patients
(n = 29)

Healthy controls
(n = 30)

P value

Age, years 60.69 (11.67) 60.0 (9.64) 0.8062

Sex, male 24 (83%) 10 (33%) <0.0001

BMI (kg/m2) 24.0 (3.47) 24.9 (3.08) 0.2849

NYHA class (III/IV) 10/19 — —

HFrEF/HFpEF/HFmrEF 21/1/8 — —

Hypertension 14 (48%) 11 (37%) 0.3757

Diabetes 10 (34%) 5 (16.7%) 0.1202

Atrial fibrillation 10 (6.7%) 0 (0) 0.0003

Smoking 12 (41.4%) 6 (20%) 0.0769

Echocardiographic parameters

LVEDD, mm 62.0 (8.67) 43.7 (3.99) <0.0001

LVEF, % 33.8 (9.1) 63.2 (4.65) <0.0001

SV, ml 46.7 (11.1) 68.9 (11.94) <0.0001

E/e’ 19.3 (6.5) 13.4 (3.1) <0.0001

Laboratory parameters

TnI, ng/dL 55.87
(0.10–88.7)

0.012 (0–0.048) 0.0007

NT-proBNP, pg/mL 4745.7
(1130–16755)

124.0 (25–258) <0.0001

Leukocyte,109/L 7.2 (3.00) 6.7 (1.74) 0.4366

Neutrophils,109/L 4.9 (2.51) 4.0 (1.30) 0.0878

Lymphocytes, 109/L 1.63 (0.61) 2.1 (0.65) 0.0110

Monocyte, 109/L 0.5 (0.18) 0.4 (0.14) 0.0632

Hemoglobin, g/L 140.7 (26.53) 140.8 (17.04) 0.9834

BUN, mg/dl 8.0 (3.04) 5.5 (1.81) 0.0003

Serum creatinine, mg/dl 87.4 (35.16) 67.4 (18.35) 0.0078

Fast glucose 6.5 (3.67) 5.2 (1.30) 0.0698

Cholesterol 4.2 (0.96) 5.0 (0.90) 0.0013

Triglycerides 1.5 (0.92) 1.9 (1.66) 0.2305

HDL-C 0.9 (0.22) 0.91 (0.22) 0.8917

LDL-C 2.5 (0.87) 2.9 (0.80) 0.0592

Treatment diuretics 29 (100%) — —

β blocker 27 (93%) — —

MRA 29 (100%) — —

ACEI/ARB/ARNI 26 (90%) — —

SGLT2i 21 (72%) — —

Results are presented as median (with standard error or upper and lower
quartiles) or% where appropriate. BMI, body mass index; NYHA, New York
Heart Association; HFrEF, heart failure with reduced EF; HFpEF, heart failure with
preserved EF; HfmrEF, heart failure with midrange EF; LVEDD: left ventricular
end diastolic diameter; LVEF: Left ventricular ejection fraction; TnI, Troponin I;
NT-proBNP: NT-pro B-type natriuretic peptide; HDL-C, high density lipoprotein-
cholesterol; LDL-C, low density lipoprotein-cholesterol; MRA, Aldosterone receptor
antagonist; ACEI, Angiotensin converting enzyme inhibitor; ARB, Angiotensin
receptor antagonist; ARNI, Angiotensin receptor neprilysin inhibitor; SGLT2i,
Sodium-glucose cotransporter 2 inhibitor.

from the healthy control group were also analyzed using Principal
Coordinate Analysis (PCoA). The differences in β-diversity based
on the weighted UniFrac between the HF and healthy control
groups were also shown in Figure 2D, which indicates that
the fecal microbial structure in the CHF group was obviously
different than that of the healthy control group in condition of
the presence of OTU.
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FIGURE 1 | The distribution of relative abundance in the CHF and the healthy control group. Panel (A) shows the distribution of relative abundance of top 19 at
phylum level in the two groups. Panel (B) shows the distribution of relative abundance at the genus level in the two groups. HF, CHF group; CON, the healthy control
group.

Analysis of Differential Taxonomy
Expression
A differential taxonomy expression analysis was performed using
limma algorithms, focusing on differences at the genus level
(Figure 3). There was a remarkable difference with 152 generus
in fecal microflora between the CHF and healthy control group
in our result. Among these changes, the decreased abundance of
the genera Ruminococcaceae UCG-004, Ruminococcaceae UCG-
002, Lachnospiraceae FCS020 group, Dialister and the increased
abundance of the genera in Enterococcus and Enterococcaceae
were the most notable features (Figure 3B).

Analysis of Predictive Function
Based on the closed-reference OUTs, PICRUSt was utilized to
predict abundances of the functional category COG orthologs
(COs) and KEGG orthologs (KOs). Some of these COs and
KOs were indicated to be significantly different in fecal
microbiomes between the CHF and healthy control group
(P < 0.05; Figure 4). Furthermore, there were also some
meaningful results related with the function including cell

cycle control, cell division, chromosome partitioning, Inorganic
ion transport and metabolism, translation, ribosomal structure
and biogenesis, amino acid transport and metabolism and
carbohydrate transport and metabolism.

DISCUSSION

In the current study, bacterial 16S rRNA gene sequencing
was applied to confirm the composition and differential
expression in gut microbiota between 29 severe CHF patients
and 30 healthy controls, resulting in a number of notable
differences between these two groups. Firstly, the phylum
Proteobacteria was significantly more abundant in CHF patients
than controls, whereas the phylum Firmicutes was found
remarkably decreased in CHF patients. Secondly, the α

diversity indices significantly decreased in the CHF versus
control group, as well as the notable differences in β-diversity
between the CHF and healthy control groups, which indicates
that the fecal microbial structure in the CHF group was
obviously different than that of the healthy control group in
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FIGURE 2 | The α-diversity indices and the β-diversity of the gut microflora between the CHF group and the healthy control group. (A) PD-whole tree indice; (B)
Chao1 indices; (C) Shannon indices; (D) β-diversity based on the weighted UniFrac. HF, CHF group; CON, the healthy control group.

condition of the presence of OTU. Thirdly, the microflora of
CHF patients was characterized by the decreased abundance
of the genera Ruminococcaceae UCG-004, Ruminococcaceae
UCG-002, Lachnospiraceae FCS020 group, Dialister and the
increased abundance of the genera in Enterococcus and
Enterococcaceae. Finally, the alternation of the gut microbiota
was presumably associated with the function including cell
cycle control, cell division, chromosome partitioning, inorganic
ion transport and metabolism, translation, ribosomal structure
and biogenesis, amino acid transport and metabolism and
carbohydrate transport and metabolism. To our knowledge, this
is the first study to explore the changes in the gut flora of patients
with severe CHF.

Tang et al. (2017) put forward the “gut hypothesis of
heart failure” for the first time. The hypothesis implies that
reduced cardiac output caused by heart failure can lead to
decreased intestinal perfusion, mucosal ischemia, and then
intestinal mucosal destruction. These changes in the intestinal
barrier function, in turn, can lead to increased intestinal
permeability, intestinal malnutrition, bacterial translocation and
increased circulating endotoxins, resulting in the potential
inflammation associated with HF (Nagatomo and Tang, 2015;
Tang et al., 2017, 2019; Harikrishnan, 2019). There are also
several studies that have reported the composition and function
of intestinal flora between HF patients and healthy subjects are

different (Kamo et al., 2017; Luedde et al., 2017; Cui et al., 2018;
Mayerhofer et al., 2018, 2020). Likewise, we found significant
differences in the composition of fecal microbes between CHF
patients and healthy controls, suggesting that there is a link
between intestinal microflora disorders and CHF. At the phylum
level, Firmicutes and Bacteroides are the two most abundant phyla
in the healthy intestine. They are closely related to environmental
conditions and may be beneficial or problematic for human and
animal health. However, the phylum Firmicutes was remarkably
decreased in severe CHF patients simultaneously in our study.
What is more, the phylum Proteobacteria was the second most
abundant phyla in severe CHF patients instead of phylum
Bacteroides. All the members of the phylum Proteobacteria
are Gram-negative bacteria, with the outer membrane mainly
composed by lipopolysaccharide (LPS). Most of the phylum
Proteobacteria are pathogenic bacteria, as a result, it is considered
to be a microbial signature of dysbiosis in gut microbiota
(Shin et al., 2015). Furthermore, LPS leaking into the blood
through the intestinal wall can stimulate the production of a
variety of pro-inflammatory cytokines, which are involved in
the apoptosis, hypertrophy and fibrosis of heart cells, playing an
important role in the occurrence and development of heart failure
(Sandek et al., 2012).

Microbiota diversity has been considered to be a new health
biomarker (Shanahan, 2010; Tang et al., 2018; Aponte et al., 2020;
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FIGURE 3 | The results of differential taxonomy expression analysis using limma algorithm. Panel (A) shows the differential taxonomy expression in the CHF patients
vs. healthy control group; (B) shows the differential taxonomy expression in every samples.

Nadia and Ramana, 2020; Mulpuru et al., 2021). The α diversity
index mainly focuses on the number of species in a local
uniform habitat, reflecting the abundance and diversity of the
microbial community. As the indicators of the community
richness, the chao1 and PD-whole-tree indices were significantly
decreased in the CHF patients versus control group, as well
as the Shannon indices, which is an important index used to
estimate the microbial diversity. β-diversity is a comparative
analysis of the microbial community composition of different
groups of samples, constituting the overall diversity together
with α diversity. These significantly different indexes in the
current study revealed that loss of gut flora biodiversity is
associated with CHF.

In the further differential classification expression analysis
using the limma algorithm, we are more focused on the
differences in the genus level. Consistent with other experimental
results (Kummen et al., 2018; Mayerhofer et al., 2020), the
decreased abundance of the genera Ruminococcaceae and
Lachnospiraceae were also discovered in our study, which are
known for their ability to synthesize short-chain fatty acids
(SCFA) through the fermentation of dietary polysaccharides.
In addition, we firstly reported that the decrease of genra
Dialister and the increase of the genera in Enterococcus and
Enterococcaceae were also the most notable features in CHF
patients. Dialister is one of the most representative types

of intestinal flora associated with irritable bowel syndrome
(Lopetuso et al., 2018). The main products are lactic acid, acetic
acid and formic acid, and those are also SCFAs. Enterococcus
and Enterococcaceae (Byappanahalli et al., 2012; Gouba et al.,
2020; Xie et al., 2021) are conditional pathogens, causing
infections such as urinary tract infections, purulent abdominal
infections, sepsis, endocarditis and diarrhea. On the other
hand, their microbial preparations can enhance the activity of
macrophage cells and promote the immune response. At the
same time, due to their metabolism to produce lactic acid,
they can form a lactic acid barrier to resist foreign pathogenic
microorganisms. The above results suggested that the intestinal
flora may participate in the occurrence and development of
heart failure through the action of SCFAs. As we all know,
SCFAs play an important role in the regulation of inflammation,
which is definitely involved in the pathophysiological process
of CHF. SCFAs can reduce the production of inflammatory
factors by activating GPR41/43 (Li et al., 2018; Weber et al.,
2018; Onyszkiewicz et al., 2019). Acetic acid may reduce the
production of interleukin-6 and interleukin-8 (Sah et al., 2013; Yu
et al., 2015), and butyric acid and propionic acid can reduce the
production of interleukin-6 (Esquivel-Rendon et al., 2019; Yue
et al., 2020). Butyrate plays an anti-inflammatory role through
inducing Foxp3 + Treg cell proliferation and suppressing the
generation of Th17 cells by activating G protein-coupled receptor
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FIGURE 4 | The results of PICRUst based on closed-reference OTU to predict the abundances of functional categories COG orthologs (COs) and KEGG orthologs
(KOs). Panels (A,C) shows the KOs with significantly different abundances in the fecal microbiome between the CHF group and healthy control group; (B,D) shows
the COs with significantly different abundances in the fecal microbiome between the CHF group and healthy control group. HF, CHF group; CON, the healthy control
group.

43 (Sivaprakasam et al., 2016; Bhaskaran et al., 2018). Other
studies have also shown that SCFAs can also improve insulin
sensitivity, regulate fat and muscle energy metabolism, and play
an important role in the development of diabetes and obesity
(Canfora et al., 2015; Muller et al., 2019).

The consequent results from analysis of predictive function
using PICRUSt revealed several functional pathways involved in
the relationship between gut microbiomes and CHF, including
cell cycle control, cell division, chromosome partitioning,
inorganic ion transport and metabolism, ribosomal structure
and biogenesis, amino acid transport and metabolism and
carbohydrate transport and metabolism. The occurrence and
development of heart failure are inseparable from the disorders
of carbohydrate metabolism, amino acids metabolism and
lipid metabolism. The aforementioned differential classification
expression analysis has indicated a notable reduction in SCFA-
producing bacteria in patients with severe CHF. As a matter
of fact, SCFAs can not only modulate the carbohydrate
metabolism through activating G protein-coupled receptor and

AMP-activated protein kinase, improving insulin sensitivity
(Gao et al., 2009; den Besten et al., 2013), but also increasing
the production of ketogenic amino acids and ketone bodies
(Thevenet et al., 2016; Pujol et al., 2018), which is considered to
be one of the energy sources of failing myocardium and closely
related to the process of heart failure. Furthermore, as a histone
deacetylase inhibitor, SCFAs can partly regulate cell proliferation,
apoptosis and differentiation by inhibiting histone deacetylase, as
well as exert anti-inflammatory effects (Koh et al., 2016; Makki
et al., 2018; Alrafas et al., 2020).

Some limitations should be acknowledged. First, although
all participants were from the same region, experienced a
normal/routine lifestyle and had similar nutritional patterns,
including typical Chinese diets based on carbohydrates versus
high-fat diets, and participated in routine levels of general
physical activity (e.g., housework and walking), we were still
unable to completely account for the influence of diet on gut
microbiota. Second, the enrolled cohort was a small sample
size and predominantly male in patients with severe CHF.
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Further studies informing the generalizability of gut microbiota
in patients with CHF are warranted. Third, it is also necessary
to address temporality of associations between gut dysbiosis
and CHF. Finally, multiple omics data, such as metabolomics
and proteomics, will be warranted to confirm the suppose
that SCFAs produced by the gut microbiota participating the
pathophysiological processes of CHF and explore the exact
mechanisms.

In conclusion, the current results firstly exhibited remarkable
differencesion the composition and diversity of the gut flora
of severe CHF patients and healthy controls using bacterial
16S rRNA gene sequencing. The microflora of severe CHF
patients was characterized by the decreased abundance of the
SCFA-producing bacteria including genera Ruminococcaceae
UCG-004, Ruminococcaceae UCG-002, Lachnospiraceae FCS020
group, Dialister and the increased abundance of the genera in
Enterococcus and Enterococcaceae with an increased production
of lactic acid. Moreover, the alternation of the gut microbiota
was presumably associated with the function including cell
cycle control, cell division, chromosome partitioning, amino
acid transport and metabolism and carbohydrate transport and
metabolism through SCFA pathway. This information may not
only improve our understanding of the pathogenesis of severe
CHF, but also suggest that the regulation of the composition of
gut microbiota may represent a promising therapeutic target.
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