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The gut microbiome and its interaction with host have been implicated as

the causes and regulators of colorectal cancer (CRC) pathogenesis. However,

few studies comprehensively investigate the compositions of gut bacteria

and their interactions with host at the early inflammatory and cancerous

stages of CRC. In this study, mouse fecal samples collected at inflammation

and CRC were subjected to microbiome and metabolome analyses.

The datasets were analyzed individually and integratedly using various

bioinformatics approaches. Great variations in gut microbiota abundance and

composition were observed in inflammation and CRC. The abundances of

Bacteroides, S24-7_group_unidifineted, and Allobaculum were significantly

changed in inflammation and CRC. The abundances of Bacteroides

and Allobaculum were significantly different between inflammation and

CRC. Furthermore, strong excluding and appealing microbial interactions

were found in the gut microbiota. CRC and inflammation presented

specific fecal metabolome profiling. Fecal metabolomic analysis led to the

identification and quantification of 1,138 metabolites with 32 metabolites

significantly changed in CRC and inflammation. 1,17-Heptadecanediol and

24,25,26,27-Tetranor-23-oxo-hydroxyvitamin D3 were potential biomarkers

for CRC. 3α,7β,12α-Trihydroxy-6-oxo-5α-cholan-24-oic Acid and NNAL-N-

glucuronide were potential biomarkers for inflammation. The significantly

changed bacterial species and metabolites contribute to inflammation and

CRC diagnosis. Integrated microbiome and metabolomic analysis correlated

microbes with host metabolites, and the variated microbe-metabolite

association in inflammation and CRC suggest that microbes facilitate

tumorigenesis of CRC through interfering host metabolism.
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Introduction

Colorectal cancer (CRC) ranks third in the mortality rate of
malignant tumors, affecting more than a quarter of the world’s
population (Brenner et al., 2014). It is now commonly believed
that chronic inflammation is responsible for the occurrence of
neoplastic transformation of the intestinal epithelium (Ullman
and Itzkowitz, 2011). Inflammation promotes tumor outgrowth
in the overlying epithelium and was the critical factor for
CRC development (Clevers, 2004). Understanding the cell
microenvironment in early inflammatory and cancerous stages
of CRC is useful for its early diagnosis and treatment.

In recent years, a large number of emerging data indicated
that gut microbiota has been deemed as a key environmental
factor contributing to the progression of CRC through microbial
metabolites, energy balance disturbance, and inflammatory
response (Song et al., 2015; Plummer et al., 2016; Wong and
Yu, 2019). Gut microbiota disorder altered the gut ecosystem
and has been implicated in changes in CRC. Thus, the gut
microbiota has come to the forefront as a reflection of the tumor
environment. Nucleic acid sequencing of the bacterial 16S rRNA
gene remains the most widely used stable target for bacterial
identification and genetic evolutionary studies, and was widely
used in human bacterial pathogens identification (Church et al.,
2020). For example, based on 16S rRNA sequencing, it was
found that F. nucleatum could generate a pro-inflammatory
environment for colorectal neoplasia progression in ApcMin
mice (Kostic et al., 2013).

Intestinal metabolites are important factors regulating and
reflecting pathological processes of CRC as well. For example,
some nitrogenous metabolites have the potential to promote
cancer and exert carcinogenic effects via DNA alkylation, which
can cause mutations (Gill and Rowland, 2002). Metabolomics
could be applied to uncover the host gut metabolome to
explain the diet or disease impacts on intestinal metabolism
(Wu et al., 2016; Wang et al., 2020). Combined microbiome
and metabolomics analysis will provide an alternative approach
to study the CRC progression through associated alternations
in the gut environment (Ji et al., 2019; Yachida et al., 2019;
Chen et al., 2022; Yang et al., 2022). The microbiome and
the metabolome in intestine could be the robust non-invasive
targets for precision medicine.

Although there are a few studies showed associations
between gut microbiota and CRC, the profile of gut microbial
community and their impact on host metabolism at the
initial inflammatory and cancerous stages of CRC remain
unclear. Furthermore, the interplay between gut microbiota
and intestinal metabolites in inflammation and CRC has
not been comprehensively investigated. Thus, we built an
inflammation-associated colorectal cancer model in mouse. The
fecal microbiome and metabolome at inflammation and CRC
were studied to obtain evidence of dynamic phenotypes of fecal
microorganisms and metabolites.

Materials and methods

Animal experiments and sample
collection

Eight 4-weeks-old C57BL/6 mice were obtained from
Nanjing Medical University (SPF grade, SCXK 2016–0002) and
approved by the experimental animal administration committee
of Jiangsu Simcere pharmaceutical Co., Ltd. (approval No.
011). Mice were evenly divided into two groups, control
and experimental groups, each group had four replicates.
After 1 week of acclimatization, mice in the control group
were intraperitoneally injected with normal saline. While
mice in the experimental group was intraperitoneally injected
with azoxymethane (AOM, 12.5 mg/kg). One week later,
mice of experimental group would undergo intermittent oral
administration of dextran sulfate sodium salt (DSS). DSS (2.5%,
w/w) was added to the drinking water of mice at week 2,
week 5, and week 8 (Figure 1). While in the other weeks,
mice were fed with normal drinking water. The DSS-water
feeding circle will be conducted for 9 weeks. Mice in the control
group were fed with normal drinking water during the entire
experiment. Fecal samples of experimental group were collected
before AOM and DSS treatment (C group), after the first and
last DSS administration cycle in week 2 (L group) and week
8 (H group). Feces collected from control group at the end of
week 8 was regarded as BC group. Each Sunday, serum samples
were also collected to evaluate the degree of inflammation
using LC-MS/MS and MDA Assay Kit (Li et al., 2021). At the
end of the experiment, the mice were all euthanized, and the
colorectal tissues were collected and analyzed by hematoxylin
and eosin (HE) staining.

Liquid chromatography–tandem mass
spectrometry

Serum samples were analyzed by LC-MS/MS and MDA
assay kit to evaluate the level of inflammation. The details
of LC-MS/MS method were described. The serum samples
were derivatized with fluorenylmethyloxycarbonyl chloride,
and the N6-FMoc-lysine in samples were quantified by LC-
MS/MS technology. N6-FMoc-D-lysine was purchased from
TCI (Shanghai, China), and was quantified using an Agilent
1200 HPLC-coupled with an API 4500 QTRAP tandem mass
spectrometer (AB SCIEX, USA). The LC-MS/MS method
was built for N6-FMoc-D-lysine quantification. The fragment
ion combination 369.4/175.1 showed the best sensitivity and
specificity under 10 declustering potential and 20 collision
voltage. C18 column (ACQUITY UPLC BEH C18, 1.7 µm,
2.1 × 50 mm, Waters) was used. The LC gradient was showed
as followings. The flow rate was set at 0.4 ml/minute, and the
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FIGURE 1

Establishment of mouse colorectal cancer model. Timeline of chemical dosage in control (bottom) and experimental (top) mice.

injection volume was 10.0 µl. Mobile phase A was ddH2O with
0.1% formic acid, mobile phase B was acetonitrile. The gradient
began at 5% solvent B, increased to 20% in 0.5 min, 20–95% in
3 min, 95–5% in 0.5 min, retained at 5% B for 1 min.

Fecal DNA and metabolites extraction

QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany)
was used to extract DNA from fecal samples. The extraction
procedure was conducted according to manufacturer’s
guidelines. DNA purity and integrity were verified by
liquid chromatography (Agilent, USA) and 1% agarose gel
electrophoresis. The concentration of DNA was determined by
NanoDrop spectrophotometry (NanoDrop, Germany).

Generally, 50 mg fecal sample was lyophilized in 400 µl
extraction buffer (methanol/ddH2O = 4:1), then a steel ball
was added. The sample mixture was grinded for 6 min and
sonicated at 5◦C for 30 min. Then the mixture was kept at
−20◦C for 30 min and centrifuged at 13,000 g and 4◦C for
15 min. The supernate was collected and freeze dried. The
dried sample was redisolved in 100 µl 90% methanol aqueous
solution. Quality control sample was prepared by tanking 20 µl
solution from each sample and mixed together. QC samples
were injected at the interval of four to monitor and overcome
analytical drifts at regular intervals in UPLC–MS/MS during the
experimental sequence.

16S ribosomal RNA gene sequencing

The V3 to V4 region of the 16S ribosomal
RNA (rRNA) gene was amplified with primer 338F

(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) (Bao et al., 2022).
Polymerase chain reaction (PCR) cycles were performed as
follows: initial denaturation at 95◦C for 3 min, followed by 27
cycles of heat and cooling, 95◦C for 30 s, 55◦C for 30 s, 72◦C for
45 s, and kept at 72◦C for 10 min. The whole sequencing process
was conducted by Shanghai Meiji Biomedical Technology Co.,
Ltd. (Shanghai, China) using an ABI GeneAmp R© 9700 platform.

Sequencing data analysis

Cutadapter (v1.10) was used to process our raw sequence
reads (Martin, 2011). FastQC (v0.11.9) was applied to evaluate
data quality (Wingett and Andrews, 2018). UCHIME2 was used
to remove the chimera in the sequences (Edgar, 2016), then
UCLUST was used to cluster the sequences into operational
taxonomic units (OTUs) with 97% similarity (Edgar, 2010), the
taxonomic classification was assigned by RDP classifier (v2.2)
(Wang et al., 2007) against the Greengene database (v.13_8)
(McDonald et al., 2012). Alpha diversity and beta diversity were
performed to identify the complexity and diversity in samples.
Principle coordinate analysis (PCoA) was conducted using
weighted UniFrac distance metrics. The dissimilarities between
groups was illustrated by the analysis of similarities (ANOSIM).

LC-MS/MS data acquisition and
analysis

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) was performed as described (Wu et al., 2020). Samples
were analyzed with UPLC-Triple TOF mass spectrometer (AB
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SCIEX 5600). Both HILIC column (ACQUITY UPLC BEH
HILIC, 1.7 µm, 2.1 × 50 mm, Waters) and C18 column
(ACQUITY UPLC BEH C18, 1.7 µm, 2.1 × 100 mm,
Waters) were used. The flow rate was set at 0.4 ml/minute,
and the injection volume was 10.0 µl. When it is HILIC
column, the mobile phase consisted of two components: (A)
acetonitrile/water (95/5, v/v) with 10 mM ammonium acetate
and 0.1% formic acid, (B) acetonitrile/water (50/50, v/v) with
10 mM ammonium acetate and 0.1% formic acid. The gradient
began at 0% solvent B, increased to 25% in 1 min, 25–40%
in 3 min, 40–90% in 1 min, retained at 90% B for 1 min,
followed by 2 min 100% solvent A. For C18 column, mobile
phase A was ddH2O with 0.1% formic acid, mobile phase B was
acetonitrile/isopropanol (50/50, v/v) with 0.1% formic acid. The
gradient began at 5% solvent B, increased to 20% in 3 min, 20–
95% in 6 min, 95–5% in 4 min, retained at 5% B for 3 min.
The parameters of MS in positive ionization mode were applied
for both chromatographic modes: IonSpray Voltage to 5,000 V;
Ion Source Gas flow to 50 L/h; Curtain Gas to 30 L/h, Source
Temperature to 500◦C; Declustering Potential to 80 V; Collision
Energy rolling from 20 to 60 V. MS data was obtained by data-
dependent acquisition (DDA) and the same setting for both
HILIC and C18 analysis. The mass range for both TOF-MS scan
and Product Ion scan was set at 50–1,000 mass/charge (m/z).

The raw data files were processed by Progenesis QI
(Waters Corporation, Milford, USA) for peak picking and
alignment. Metabolite peaks were assigned by MS/MS analysis
combined with the MassFragmentTM application manager
(Waters Corporation, Milford, USA) by way of chemically
intelligent peak-matching algorithms and interpreted with
available biochemical databases, such as the KEGG,1 Human
Metabolome Database (HMDB)2, and METLIN3 (Kanehisa,
1997; Guijas et al., 2018; Wishart et al., 2018). Biomarker analysis
was conducted on Metaboanalyst 5.0 (Pang et al., 2021).

Statistical analysis

Significantly changed microorganisms and metabolites were
evaluated with Welch’s t-test. Differences were deemed as
significant when p < 0.05. Analysis of similarities (ANOSIM)
was used to evaluated the group variations which described by
PCoA analysis. Pearson correlation analysis was conducted to
calculate the correlation between microorganisms or between
metabolites and microorganisms. The p-value was adjusted by
the Benjamini-Hochberg (BH) correction for a maximum 0.05
probability of false positive detection. All data were analyzed
with R version 4.0.0 (R Foundation for Statistical Computing,
Vienna, Austria).

1 http://www.genome.jp/kegg/

2 http://www.hmdb.ca/

3 https://metlin.scripps.edu/

Results

Inflammation assessment

Mice were injected with AOM and fed DSS to induce
CRC (Figure 1). The level of inflammation was evaluated by
detecting oxidative stress biomarker and lipid peroxidation
in serum samples using LC-MS/MS and MDA Assay Kit,
respectively. As shown in Figures 2A,B, according to the
chemical administration cycle, the level of inflammation
changed periodically. The level of inflammation increased in
mice after the chemical dosage. Furthermore, HE staining of
colorectal tissue indicated that sever inflammation occurred
in the chemical dosed mice (Figure 2C). In the end, tumors
were also observed on the intestinal surface of chemical
dosed mice (Figure 2D). Therefore, long term inflammation in
intestine will cause CRC.

Diversity and composition of gut
microbiota in inflammation and
colorectal cancer

In total, 318,842 16S rRNA reads from 16 fecal samples were
obtained. The average number of reads per sample in group
BC, C, L, and H were 18,206, 21,317, 20,998, and 19,189. We
generated OTUs at 97% similarity level and the total number
of OTUs in group C, L, and H was 7,221, the OTUs number
of each sample was shown in Table 1. The α diversity and
β diversity between group BC and C were compared, and no
significant difference was observed, which demonstrated that
the gut microbiota stayed stable during the normal growth of
mice (Supplementary Figures 1, 2). Thus, the variations in the
diversity and composition of gut microbiota between group C,
L, and H were caused by the pathological process of CRC. The α

diversity of the gut microbiota in health, inflammation and CRC
were depicted using Chao1 Index (Figure 3A), Shannon Index
(Figure 3B), and Simpson Index (Figure 3C). There were no
significant differences in the Chao1 Index (group C, 912 ± 284;
group L, 834± 235; group H, 982± 102), Shannon Index (group
C, 5.3 ± 0.9; group L, 4.4 ± 1.0; group H, 5.5 ± 0.3), and
Simpson Index (group C, 0.88 ± 0.08; group L, 0.80 ± 0.10;
group H, 0.92 ± 0.02). Principal coordinate analysis (PCoA)
based on the weighted UniFrac distance metrics was performed
to investigate the β diversity of gut microbiota in health,
inflammation, and CRC. The result of PCoA analysis showed
that samples from the same group clustered together and
separated from the other, indicating that microbial community
composition variated between different groups (Figure 3D).
Similarity analysis demonstrated that microbial community
compositions had significantly changed in group L and H
compared with group C, which means inflammation and
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FIGURE 2

Biochemical testing of established mouse colorectal cancer model. Inflammation level detected by LC-MS/MS (A) and MDA Assay Kit (B) in
control and experimental mice from week 0 to week 8. (C) HE staining of colorectal tissue in control (left) and experiment (right) group.
(D) Macroscopic colorectal tumors in experimental mice.

tumorigenesis of CRC caused great variations in gut microbiota
community composition. (ANOSIM, Group C vs. Group L,
r = 0.79, p-value = 0.03; Group C vs. Group H: r = 0.98,
p-value = 0.03). There was no significant variation between
group L and H, suggesting similar gut microbiota community
composition in inflammation and CRC (ANOSIM, Group L vs.
Group H, r = 0.40, p = 0.06). These results suggested that the
composition of gut microbiota could be greatly altered by the
pathological process of CRC.

Alternations of gut microbiota
associated with inflammation and
colorectal cancer

At phylum level, Bacteroidetes had highest abundance in
each group, and Firmicutes was the second most abundant
phylum. Although Bacteroidetes and Firmicutes were the
dominant bacteria in health, inflammation and CRC, their
abundances have changed during the pathological process of
CRC (Figure 3E). The average abundance of Bacteroidetes
in Group C, Group L, and Group H were 81.5, 67.4, and
54.4%. The abundance of Bacteroidetes has decreased during
the CRC progression. The average abundance of Firmicutes
in Group C, Group L, and Group H were 13.0, 23.6, and
38.5%. The abundance of Firmicutes has increased during
the CRC progression. Welch’s t-test was used to identify

whether there were significant changes in the dominant bacteria
due to the development of CRC (Figure 3F). Significant
variations in the abundance of Bacteroidetes (p = 0.002)
and Firmicutes (p = 0.003) were observed between group C
and H, suggesting that Firmicutes booming and Bacteroidetes
depression contribute to the development of CRC.

TABLE 1 Statistics of sequencing and OTUs of 16S rRNA in
Group C, L, and H.

Sample ID Number of reads Observed OTUs

BC1 16,254 699

BC2 28,522 682

BC3 21,147 816

BC4 21,531 479

C1 18,026 596

C2 24,602 776

C3 23,776 741

C4 18,864 378

L1 20,871 505

L2 18,748 810

L3 23,866 437

L4 20,509 458

H1 21,569 544

H2 22,877 628

H3 16,734 706

H4 15,576 642
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FIGURE 3

Diversity and abundancy analysis of gut microbiota. (A) Boxplots of Chao1 Richness Index. (B) Boxplots of Shannon Diversity Index. (C) Boxplots
of Simpson Diversity Index. (D) PCoA plot of Group C, Group L, and Group H, showed a significant difference between health, colorectal
inflammation, and colorectal cancer. (E) Relative abundance of microbial communities at phylum level. The relative abundance is defined as a
percentage of the total microbial sequences in a sample. (F) Boxplots of significantly changed floras at phylum level. (G) Heat map of the 37
most abundant genera at genus level. (H) Boxplots of significantly changed floras at genus level. ns: p > 0.05, no significance. ∗p ≤ 0.05;
∗∗p ≤ 0.01.

At genus level, S24-7_group_unidifineted and Bacteroides
were dominant genera (Figure 3G). Welch’s t-test was used
to evaluate whether there were significant differences in the
abundance of genera between different groups (Figure 3H).
The average abundance of S24-7_group_unidifineted in Group
C, Group L and Group H was 70.2, 19.8, and 27.7%. The
abundances of S24-7_group_unidifineted significantly decreased
in inflammation and CRC, and the abundance of S24-
7_group_unidifineted was significantly different between CRC
and inflammation (Group C vs. Group L: p-value = 5.16× 10−5,
Group C vs. Group H: p-value = 1.55 × 10−4, Group L

vs. Group H: p-value = 0.03). Bacteroides, a subclass of
Bacteroidaceae, its average abundance was 3.6% in Group C,
then increased to 42.7% in Group L and 18.8% in group
H. Bacteroides had significantly changed in inflammation and
CRC. Besides, significant variation in Bacteroides abundance
was also observed between inflammation and CRC (Group C
vs. Group L: p-value = 3.21 × 10−3, Group C vs. Group H:
p-value = 0.04, Group L vs. Group H: p-value = 0.02). The
average abundance of Allobaculum was 0.12% in Group C
and 0.11% in Group L, and dramatically increased to 12.6%
in Group H (Group C vs. Group H: p-value = 0.031, Group
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TABLE 2 Significant changed pathways in different groups.

Pathway Type Alteration trend Fold-change P-value

Amino acid metabolism L/C ↓ 0.93 0.013

Cancers* L/C ↑ 1.28 0.034

Carbohydrate metabolism L/C ↑ 1.09 0.017

Cell growth and death L/C ↓ 0.91 0.027

Cellular processes and signaling L/C ↑ 1.15 0.017

Endocrine system L/C ↑ 1.18 0.037

Energy metabolism L/C ↓ 0.91 0.005

Enzyme families L/C ↓ 0.94 0.007

Metabolism L/C ↑ 1.07 0.027

Metabolism of cofactors and vitamins L/C ↓ 0.89 0.001

Nervous system L/C ↑ 1.14 0.007

Nucleotide metabolism L/C ↓ 0.89 0.011

Poorly characterized L/C ↑ 1.06 0.005

Replication and repair L/C ↓ 0.90 0.026

Transcription* L/C ↑ 1.27 0.006

Translation L/C ↓ 0.85 0.006

Folding, sorting, and degradation H/C ↓ 0.91 0.013

Amino acid metabolism H/C ↓ 0.93 0.034

Cell growth and death H/C ↓ 0.90 0.017

Energy metabolism H/C ↓ 0.90 0.027

Environmental adaptation H/C ↑ 1.12 0.017

Excretory system* H/C ↓ 0.77 0.037

Glycan biosynthesis and metabolism H/C ↓ 0.86 0.005

Membrane transport* H/C ↑ 1.33 0.007

Metabolic diseases H/C ↓ 0.85 0.027

Metabolism H/C ↑ 1.03 0.001

Metabolism of cofactors and vitamins H/C ↓ 0.88 0.007

Nervous system H/C ↑ 1.11 0.011

Nucleotide metabolism H/C ↓ 0.92 0.005

Poorly characterized H/C ↑ 1.05 0.026

Transcription H/C ↑ 1.25 0.006

Translation H/C ↓ 0.91 0.006

Carbohydrate metabolism H/L ↓ 0.95 0.043

Endocrine system H/L ↓ 0.86 0.047

Enzyme families H/L ↑ 1.05 0.042

*Significantly changed pathway related to colorectal cancer.

L vs. Group H: p-value = 0.031). Result from Welch’s t-test
showed that the growth of Allobaculum was initially stable in
inflammation and then massively expanded in CRC. The growth
of Bifidobacterium was inhibited in inflammation and later
recovered to its initial abundance in CRC (Group C vs. Group L:
p-value = 0.04). Overall, Bacteroides, S24-7_group_unidifineted,
Allobaculum, and Bifidobacterium were significantly changed
in CRC, they could be used in CRC auxiliary diagnosis.
The abundances of Allobaculum and Bacteroides were greatly
different between inflammation and CRC, they could be used
to distinguish early inflammation from CRC. The enriched
metabolic pathways of changed gut bacteria were listed in
Table 2.

Bacteria and bacterial interactions
associated with inflammation and
colorectal cancer

LEfSe (Segata et al., 2011) was used to generate a cladogram
to identify the specific bacteria that was associated with
inflammation or CRC. 30 discriminatory OTUs were identified
as key discriminant features (Figure 4A). Significant overgrowth
of Allobaculunm (LDA scores (log10) > 4) was observed in the
feces of CRC mice. Bacteroides was the most abundant genus
in the feces of inflamed mice (LDA scores (log10) > 4). S24-
7_group_ unidentified had the largest proportions (LDA scores
(log10) > 4) in the feces of health mice (Figure 4B).
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FIGURE 4

Linear discriminant analysis (LDA) effect size (LEfSe) and correlation analysis of bacterial communities based on 16S rRNA gene sequences.
(A) Taxonomic distribution of bacterial groups significant for inflammation and CRC. (B) Histogram of the LDA scores computed for differentially
abundant bacterial taxa between health, inflammation and CRC. (C) Correlation analysis of the 30 most abundant genera in Group C, Group L,
and Group H. *0.01 < p ≤ 0.05; **p ≤ 0.01.

In order to investigate the interactions of gut microbiota,
spearman correlation analysis was conducted at genus level
to draw the correlation matrix of 30 most abundant taxa
in gut microbiota (p < 0.05) (Figure 4C). We focus on the
correlation of bacteria that have greatly changed due to the
inflammation and CRC (r > 0.7 and p < 0.05). At genus level,
Bacteroides had a particularly strong excluding interaction
with S24-7_group_ unidentified (r = −0.83, p = 1.7 × 10−3),
Adlercreutzia (r = −0.79, p = 3.6 × 10−3) and Rikenella
(r = −0.65, p = 0.02). Bacteroides and Pseudomonas were

strongly and positively correlated (r = 0.65, p = 0.02).
Allobaculum had strong positive correlations with Adlercreutzia
(r = 0.65, p = 0.02) and SMB53 (r = 0.82, p = 1.2 × 10−3),
and had negative correlations with Acinetobacter (r = −0.65,
p = 0.016). Bifidobacterium had a positive correlation with
Turicibacter (r = 0.62, p = 0.03). S24-7_group_unidentified
was positively correlated with Adlercreutzia (r = 0.67,
p = 0.02), it also had an excluding interaction with Bacteroides
(r = −0.83, p = 1.7 × 10−3) and Oscillospira (r = −0.66,
p = 0.02).
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Identification of discriminatory
metabolites in inflammation and
colorectal cancer

Gut microbiota was demonstrated to be associated with the
development of CRC based on the microbiome analysis, we
hypothesized that fecal metabolome may be partially affected
due to gut microbiota alternations and CRC progression.
Thus, metabolome analysis of fecal samples was conducted
using LC-MS/MS based metabolomics approach. One thousand
one hundred and thirty-eight metabolites were successfully
identified and quantified in C, L, and H groups. Hierarchical
clustering analysis on the metabolite abundances in the C,
L and H group was performed (Supplementary Figure 3).
Twenty-eight and thirty-eight metabolites significantly changed
in the L group and H group, respectively (Supplementary
Table 1). Pearson correlation analysis of metabolites showed
correlations between significantly changed metabolites and
phenotypes (Figures 5A,B).

Partial Least Squares Discriminant Analysis (PLS-DA) was
used to overview whether there were metabolic changes in
CRC and inflammation (Figure 5C). Metabolome profiles of
fecal samples within the same group clustered together and
separated from the other, suggesting the obvious metabolic
shifts in CRC and inflammation. Welch’s t-test was applied

to find significantly changed metabolites in fecal samples of
CRC and inflammation. Features with fold change > 2 and
adjusted p-value < 0.05 (Benjamini-Hochberg) were considered
significantly changed (Supplementary Figure 4). Significantly
changed features were searched against databases (HMDB,
LMSD, and KEGG) for metabolites identification. The identified
metabolites and their library ID were listed in Supplementary
Table 1, in total 66 significantly changed metabolites were
characterized. There were 26 metabolites uniquely detected
in health mice, 3 metabolites uniquely detected in inflamed
mice and CRC mice (Supplementary Table 2). Moreover, we
combined the significantly changed metabolites and unique
metabolites for biological function analysis, and find out that
the dysregulated metabolites in CRC were mainly engaged in
alpha linolenic acid and linoleic acid metabolism (Figure 6A).
The dysregulated metabolites in inflammation were engaged
in histidine metabolism (p = 0.06) (Figure 6B). Unique
metabolites detected in health mice were engaged in glutathione
metabolism (Figure 6C). Represented metabolites engaged
in the most significant metabolic pathways were showed.
Tetracosapentaenoic acid was greatly down regulated in CRC
mice (Figure 6D), concentration of histamine was significantly
decreased due to inflammation (Figure 6E). Cadaverine and
Spermidine were unique metabolites engaged in glutathione
metabolism in health mice (Figure 6F). Taken together, our

FIGURE 5

Important discriminatory metabolites identified by clustering, correlation, and multivariate analysis in inflammation and CRC. (A) Hierarchical
clustering analysis (HCA) for the significantly changed metabolites in inflammation. (B) Hierarchical clustering analysis (HCA) for significantly
changed metabolites in CRC. (C) OPLS-DA analysis displaying the grouped discrimination of health, inflammation and CRC by the first two PCs.
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data clearly and robustly showed that CRC and inflammation
presented specific fecal metabolome profiling.

Correlations between microbes and
metabolites in inflammation and
colorectal cancer

Based on the fecal microbiome and metabolomics data, we
performed Pearson’s correlation analysis to identify microbe-
associated metabolites in inflammation, CRC and health mice
(Figures 7A–C). Compared with health mice, there were
fewer significant strong metabolite-microbe correlations in
inflamed mice and CRC mice, suggesting that interactions
between metabolite and microbe were affected due to CRC
progression. Three of the four microbes that significantly
correlated to metabolites in CRC are also observed to be
significantly associated with metabolites in inflammation.
The microbe-metabolite correlations are much more similar
between inflammation and CRC. It was found that same
bacteria were associated with different metabolites in health
and inflammation. While, common microbe-metabolite
correlation was observed in inflammation and CRC. For
instance, Akkermansia was correlated to different metabolites in
inflammation and health. Ralstonia was correlated to the same
metabolites in CRC and inflammation. In both inflammation
and CRC, Ralstonia was strongly correlated to Taurocholic acid
3-sulfate (LMST05020031), a sulfated bile acid. According to

Kim’s research, Ralstonia was able to cause renal injury (Kim
et al., 2021). Sulfated bile acids were the metabolic products
of cholestasis, the observed correlation between Ralstonia
and Taurocholic acid 3-sulfate in our study suggests that
Ralstonia induce renal problem probably through interfering
bile acid metabolism. Furthermore, the association between
Ralstonia and Taurocholic acid 3-sulfate predicts possible renal
dysfunction during CRC development.

Identification of colorectal cancer
stage-specific metabolites

Different metabolome profiling was observed in CRC and
inflammation, which could stand a chance for stage-specific
metabolic biomarkers discovery. In order to predict the
metabolic biomarkers, ROC (receiver operating characteristic)
curve analyses were performed based on random forests
algorithms. Top 15 most important metabolites for model
construction was selected for candidate biomarker screening
(Figures 8A–D). Among the 15 metabolites, metabolites with
extremely higher concentrations in inflammation or CRC
were considered as stage-specific candidate metabolites
(Figures 8E,F). As a result, 1,17-Heptadecanediol and
24,25,26,27-Tetranor-23-oxo-hydroxyvitamin D3 were
potential biomarkers for CRC. 3α,7β,12α-Trihydroxy-6-
oxo-5α-cholan-24-oic Acid and NNAL-N-glucuronide were
potential biomarkers for inflammation.

FIGURE 6

Pathway enrichment and statistical significance of the unique or significantly changed metabolites in CRC (A), inflammation (B), and health (C).
Represented metabolites engaged in the significantly changed metabolic pathways of CRC (D) and inflammation (E). (F) Represented unique
metabolites detected in health mice.

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1021325
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1021325 September 22, 2022 Time: 14:20 # 11

Liu et al. 10.3389/fmicb.2022.1021325

FIGURE 7

Integrated correlation-based network analysis (Pearson’s correlation) of microbes and metabolites in health (A), inflammation (B), and CRC (C).

Discussion

More and more evidences suggest that the gut microbiota
contribute to tumorigenesis in CRC (Yachida et al., 2019;
Wang et al., 2020). Thus, early screening and detecting
carcinoma based on the gut microbiome is a promising
field. A number of studies depicted the gut microbiota
abundance and composition in chronic disease, and low
gut bacterial richness was observed (Pascal et al., 2017).
Consistently, in our study the gut bacteria richness obviously
decreased when inflammation occurred and then gradually
increased during the CRC development. Adaptation of gut
microbiota to a long-term inflammatory environment results
in a slight recovery in bacterial richness. Beta diversity
analysis demonstrated that the composition of gut microbiota
has greatly changed in CRC and inflammation. Significantly
changed bacteria were observed in CRC and inflammation
in the phylum and genus level. In general, the booming of
Firmicutes and the decay of Bacteroidetes contribute to the
tumorigenesis of CRC. Furthermore, Bacteroides was sensitive
to both inflammation and CRC, its abundance was significantly
increased in both inflammation and CRC. Bacteroides was
previously observed with a high level in carcinoma and
adenoma patients (Feng et al., 2015), and in our study,
its abundance was proved also significantly increased in the
initial inflammatory stage of CRC. Thus, Bacteroides could
be a potential indicator for CRC early diagnosis. Bacteroides,

S24-7_group_unidifineted, Allobaculum and Bifidobacterium
were significantly changed in CRC, they could be used in CRC
auxiliary diagnosis. Allobaculum and Bacteroides responded
differently to inflammation and CRC, they could be used to
distinguish inflammation from CRC.

The microbial interactions of significantly changed gut
bacteria were investigated. Bacteroides had a particularly
strong excluding interaction with S24-7_group_ unidentified.
Allobaculum was strongly positively correlated with
SMB53 and Streptococcus. Based on the gut bacteria
concentration variations during CRC development
and the bacterial interactions, we could find out that
the tumorigenesis of CRC would make Bacteroides
and Allobaculum boom and occupy the intestinal
tract, thereby inhibiting the growth of S24-7_group_
unidentified. Understanding the bacterial interactions
during CRC development will provide more options
for CRC treatment.

The fecal metabolome directly reflects interactions among
dietary, environmental, and genetic factors. Thus, biomarkers
may be more effectively identified through metabolomics of
fecal samples. Following an untargeted approach, a larger
number of metabolites that have greatly changed due to
CRC development were identified in our study. Among
the changed metabolites, most of them have a decreased
concentration in inflammation and CRC. Previous studies have
also documented a larger number of decreasing metabolites
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FIGURE 8

Metabolic biomarker analysis of CRC and inflammation. (A) ROC curve analyses based on random forests algorithms for biomarker analysis in
CRC. (B) Top 15 metabolites discriminating CRC from health. (C) ROC curve analyses based on random forests algorithms for biomarker analysis
in inflammation. (D) Top 15 metabolites discriminating inflammation from health. (E) Candidate metabolic biomarkers of CRC screened out by
statistical analysis. (F) Candidate metabolic biomarkers of inflammation screened out by statistical analysis.

than increasing ones in the CRC patients (Monleon et al., 2009).
In our study, histamine showed a lower concentration
in inflammation than in the health mice, suggesting its
involvement in tumorigenesis, which was demonstrated by
other researchers that histamine regulates cancer-associated

biological processes during cancer development in multiple
cell types, including neoplastic cells and cells in the tumor
micro-environment. Interestingly, tetracosapentaenoic acid
had a lower concentration in the CRC than in the health
mice. Further, we detected greater amounts of fatty acids,
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amino acids, peptides, and analogs in the health mice,
which are known to be present in fecal samples from
health adults (Cockbain et al., 2012; Dermadi et al., 2017).
According to the pathway enrichment analysis results, the
significantly changed metabolites and unique metabolites were
engaged in variant pathways. Although tetracosapentaenoic
acid and histamine showed good discrimination between
disease mice and health mice, however, their concentrations
are very low in both sick and healthy mice, which could
bring burdens to their detection. Thus, biomarker analysis
(Xia et al., 2015), an objective approach was conducted
to find candidate biomarkers for CRC and inflammation.
Concentrations of 1,17-Heptadecanediol and 24,25,26,27-
Tetranor-23-oxo-hydroxyvitamin D3 were significantly
increased in CRC and much higher than the detection limit,
which make them good candidate biomarkers for CRC.
Similarly, 3α,7β,12α-Trihydroxy-6-oxo-5α-cholan-24-oic acid
and NNAL-N-glucuronide could be candidate biomarkers
for inflammation.

The correlations between microbes and metabolites were
investigated. The correlations of microbes and metabolites
were different in inflammation, CRC, and health mice.
While the microbe-metabolite correlations are much more
similar in inflammation and CRC. This phenomenon
suggested that interactions between gut microbiota and
metabolites variated at different stages of CRC. Microbes
probably facilitate CRC tumorigenesis through interfering
host metabolism.

Conclusion

Fecal microbiome data displayed the signature
microbiota representing the CRC, inflammation and
health status, i.e., enrichment of Allobaculum, Bacteroids,
Bifidobacterium in CRC, Allobaculum and Bacteroids
in inflammation. Furthermore, a non-targeted LC-MS-
based metabolomics approach was applied to differentiate
between health, inflammation and CRC, and associated
different metabolites with specific phenotypes. Given
that the study was conducted on mice, microbial and
metabolic biomarkers in this study pending further
validation studies. The integrated analysis of the identified
microbes and fecal metabolites provides more functional
insights than any single datasets. The variated microbe-
metabolite associations in inflammation and CRC suggesting
that microbes interfered host metabolism and facilitate
tumorigenesis of CRC.
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