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Biofilm formation is a fundamental part of life cycles of bacteria which affects
various aspects of bacterial-host interactions including the development of
drug resistance and chronic infections. In clinical settings, biofilm-related
infections are becoming increasingly difficult to treat due to tolerance to
antibiotics. Bacterial biofilm formation is regulated by different external and
internal factors, among which quorum sensing (QS) signals and nucleotide-
based second messengers play important roles. In recent years, different kinds
of anti-biofilm agents have been discovered, among which are the Chinese
herbal medicines (CHMs). CHMs or traditional Chinese medicines have long
been utilized to combat various diseases around the world and many of
them have the ability to inhibit, impair or decrease bacterial biofilm formation
either through regulation of bacterial QS system or nucleotide-based second
messengers. In this review, we describe the research progresses of different
chemical classes of CHMs on the regulation of bacterial biofilm formation.
Though the molecular mechanisms on the regulation of bacterial biofilm
formation by CHMs have not been fully understood and there are still a lot of
work that need to be performed, these studies contribute to the development
of effective biofilm inhibitors and will provide a novel treatment strategy to
control biofilm-related infections.

KEYWORDS

biofilm formation, traditional Chinese medicine, anti-biofilm agents, quorum
sensing, second messenger

Introduction

Biofilm is a self-protective state formed by bacteria to adapt to the poor living
environment. It is a microbial community attached to biotic or abiotic surfaces and wrapped
by self-produced extracellular polymeric matrix (EPS) that contains extracellular
polysaccharides, nucleic acids (extracellular DNA and extracellular RNA), amyloid proteins,
lipids, and many other biomolecules (Karygianni et al., 2020). All bacterial species can form
biofilm under suitable conditions, and actually it is estimated that more than 90% of
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microorganisms exist in the form of biofilm (Costerton et al., 1999).
Bacteria in biofilms are physiologically distinct from their
planktonic cell state which makes them tolerant to harsh conditions
and tolerance to antibacterial treatments such as antibiotics (Roy
etal,, 2018; Hawas et al., 2022). In clinical settings, biofilm formation
of pathogens causes persist infections and biofilm-related infections
are becoming increasingly difficult to treat due to tolerance to
antibiotics which poses a great threat to human health. It is
estimated that approximately 65%-80% of bacterial infections in
humans are associated with biofilm formation (Chen et al., 2010;
Bjarnsholt et al., 2018). Thus, it is urgent to develop effective and
robust strategies to control biofilm formation of pathogens.

Strategies for combating bacterial biofilms have been classified
into three main categories: (i) changing the properties of
susceptible surfaces to prevent biofilm formation; (ii) regulating
signaling pathways to inhibit biofilm formation; (iii) applying
external forces to eradicate the biofilm (Yin et al., 2021; Figure 1).
Besides the development of novel biofilm-resistant materials and
application of physical forces to eradicate biofilms, most of the
researchers focus on investigating the regulatory signaling
pathways of biofilm formation including bacterial quorum sensing
(QS) system and nucleotide-based second messengers cyclic
dimeric guanosine monophosphate (c-di-GMP), cyclic dimeric
adenosine monophosphate (c-di-AMP), cyclic guanosine
monophosphate (cGMP), cyclic adenosine monophosphate
(cAMP) and guanosine tetraphosphate ((p)ppGpp; Wu et al.,
2015; Yin et al., 2021), and several kinds of anti-biofilm agents
have been discovered so far, including Quorum Sensing Inhibitors
(QSIs) such as quercetin which dampens QS signaling (Ouyang
et al,, 2016), and nitric oxide (NO)-generating agents such as
sodium nitroprusside (SNP) that restricts c-di-GMP signaling
(Barraud et al., 2009). Other anti-biofilm agents targeting bacterial
adhesion and disruption of extracellular DNA have also been
identified recently, such as Dispersin B which cleaves the major
EPS polysaccharide poly-p 1,6-N-acetylglucosamine, and
Deoxyribonuclease I which degrades extracellular DNA present
in the EPS (Kaplan et al., 2003; Qin et al., 2007).

Traditional Chinese medicine (TCM) is one of the oldest
healing systems which includes herbal medicine, acupuncture,
moxibustion, massage, food therapy, and physical exercise, and
have been used for a long history in China against various diseases
(Tang et al., 2008). Many TCMs are derived from natural herbs
and Chinese herbal medicines (CHMs) are important component
of TCMs (Liu et al., 2021). CHMs are usually a mixture of herbal
plants or extracts which comprise hundreds of different
constituents with widely differing physiochemical properties
(Tang et al., 2008). As such, roots, stems, leaves and/or fruits of
diverse herbs species are commonly used in CHMs. The
standardized formulae of CHMs are now commonly used as
tablets, capsules, and even ampoules as well as the traditional
decoctions of individualized prescriptions (Tang et al., 2008; Kong
etal., 2009). As natural active drugs, CHMs have the advantages
of abundant resources, higher safety, and lower toxicity compared
with chemically synthesized drugs (Flower et al., 2015; Liao et al.,
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2022). However, due to the complex composition of CHMs, the
large-scale application of TCMs is limited. Thus, more and more
researchers have shifted their research focus to the identification
and clarification of the antibacterial mechanisms of active
components from CHMs, many of which exert anti-infection
effect through inhibition of bacterial biofilm formation (Liu et al.,
2011; Packiavathy et al., 2014). In exploring their antibacterial
mechanisms, it was found that different chemical classes of CHMs
metabolites, including flavonoids, terpenoids, phenols, organic
acids, alkaloids and their derivatives, can inhibit bacterial biofilm
formation by regulating bacterial QS system and nucleotide-based
second messengers. In this review, we describe the research
progresses of CHMs that act on bacterial QS system and second
messengers in terms of bacterial biofilm formation, and to provide
evidence of the potential of CHMs for the treatment and/or
control of biofilms-associated infections and, in this way,
encourage more and more advanced research on this area.

Quorum sensing

Quorum sensing (QS) is a bacterial communication system
that plays a pivotal role in regulating bacterial biofilm formation
(Irie and Parsek, 2008). QS is driven by signaling molecules in a
density-dependent manner that contributes to a variety of
biological functions, such as virulence factor secretion (Singh and
Ray, 2014; Hernandez-Ramirez et al., 2020), swimming/swarming
motility (Daniels et al., 2004; Yang and Defoirdt, 2015), and
bioluminescence (Nealson et al., 1970; Zhao et al., 2016). Various
signaling molecules have been identified in bacteria so far,
including N-acyl-homoserine lactone (AHL), autoinducing
(AIP), autoinducer-2 (AI-2),
norepinephrine signaling molecules, the diffusible signal factor
(DSEF), and 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde (Irie
and Parsek, 2008; Dickschat, 2010; Lee et al., 2013; Zhou et al,,
2017). Among these molecules, AHL, AIP, and AI-2 are most
widely studied. These different signaling molecules mediate

peptide Al-3/epinephrine/

different types of QS systems (Reading and Sperandio, 2006).
While the QS system of most Gram-negative bacteria is the LuxI/
LuxR type self-induction system that uses AHL as signaling
molecule (Parsek and Greenberg, 2000), the QS system of Gram-
positive bacteria is mediated by the small molecule peptide AIP
(Kleerebezem et al., 1997). Moreover, there is a QS system that
exists in both Gram-negative and Gram-positive bacteria, the
LuxS/AI-2 type signaling system which uses AI-2 as the system’s
signaling molecule for information exchange between bacterial
species (Chen et al., 2002; Camilli and Bassler, 2006).

The regulatory mechanism of the bacterial QS system has
been extensively studied. It has been found that the system can
be targeted for the development of antibacterial inhibitors, and
such inhibitors are called Quorum Sensing Inhibitors (QSIs;
Chaieb et al., 2022). In addition to common antimicrobial
peptides and antibiotics, many natural active substances extracted
from TCMs and plants are also QSIs that can play an important
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A typical biofilm cycle and the strategies to control biofilm formation. A typical biofilm formation consists of five stages: (i) reversible attachment
to surface; (ii) irreversible attachment to surface; (i) microcolony formation; (iv) maturation of biofilm; and (v) biofilm dispersal. Strategies for
combating bacterial biofilms are classified into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm
formation; (i) regulating signaling pathways to inhibit biofilm formation; and (iii) applying external forces to eradicate the biofilm, which are
displayed in light blue rectangles. Strategies discussed in this review are presented in bold. Lines with arrow head, positive regulation; Lines with
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role in the regulation of bacterial biofilm formation. The
mechanisms of QSIs in blocking QS pathway are broadly classified
into three types: (i) inhibition of signaling molecules synthesis; (ii)
promotion of signaling molecules degradation; and (iii)
competition with signaling molecules for receptor proteins
binding (Zhou et al., 2020). Table 1 shows TCMs metabolites and
their derivatives which displayed anti-bacterial biofilm formation
via QS in the literatures, as well as their targets.

TCMs that inhibit quorum sensing

Flavonoids

Flavonoids refer to a series of chemical compounds with two
variable phenolic structure and many of them show various
bioactive functions including antioxidant, antiviral, antibacterial,
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and anti-inflammation (Chu et al., 2015; Lee et al., 2018; Table 1;
Figure 2). Plants are rich in flavonoids and many of which have
been utilized as TCMs for a long period, such as quercetin leaves
(Ouyang et al., 2016), Pericarpium Citri Reticulatae (Ma et al.,
2021), and Scutellaria baicalensis (Chen Y. et al., 2016). Clinical
studies have shown that flavonoids can protects gut microbiota
from dysbiosis (Klinder et al., 2016), but whether this is through
QS signaling is still unknown. Common flavonoids discovered so
far including flavanone, quercetin, curcumin, baicalin, kaempferol,
and fisetin, all of which exhibit different degrees of anti-biofilm
activity via bacterial QS signaling (Table 1; Figure 1).

The glycosylated flavanones naringin, neohesperidin, and
hesperidin extracted from orange reduce the activity of Yersinia
enterocolitica and inhibit its biofilm formation by interfering with
the production of the signaling molecule AHL of QS system
(Truchado et al, 2012). These flavanones downregulate the
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TABLE 1 Different classes of anti-biofilm TCMs metabolites and their mechanisms of action via bacterial QS system.

10.3389/fmicb.2022.1039297

icei\:lioli tes Main plant origin Mechanism of action Target bacteria Reference
Flavonoids
Flavanones Orange Inhibits the production of AHL Yersinia enterocolitica Truchado et al. (2012)
Quercetin Usnea longissimi Reducing the expression levels of lasl, ~ Chromobacterium violaceum; Gopu et al. (2015), Ouyang
lasR, rhil and rhIR; Competes with Pseudomonas aeruginosa etal. (2016)
AHL for receptor protein
Curcumin Curcuma longa Competes with AHL for receptor P. aeruginosa Shukla et al. (2020)
protein LasR and LuxR
Baicalin Scutellaria baicalensis Suppression of QS regulatory genes Staphylococcus aureus; Chen Y. et al. (2016),
agrA, RNAIII and sarA; Inhibits the Streptococcus saprophyticus; Peng et al. (2019), Wang et al.
production of AI-2; binds to LuxS APEC (2019), Meng et al. (2022)
Kaempferol Kaempferia galanga L Binds to LuxS;inhibits the production  Lactobacillus reuteri S. aureus Ming et al. (2017, 2022)
of AI-2
Fisetin Cotinus coggygria Inhibits the production of AI-2 S. aureus; Streptococcus Diirig et al. (2010)
dysgalactiae
Terpenoids
Sesquiterpene lactone  Magnoliaceae Inhibits the production of AHL P. aeruginosa Amaya et al. (2012)
Carvacrol Clove Integration with ExpI/ExpR Pectobacterium Joshi et al. (2016)
Eugenol Passion fruit Integration with ExpI/ExpR Pectobacterium Joshi et al. (2016)
Sclareol Salvia miltiorrhiza Bge. Blocking AgrA from binding to DNA  S. aureus Iobbi et al. (2021)
or activating agrA after
phosphorylation
Manool Salvia miltiorrhiza Bge. Blocking AgrA from binding to DNA  S. aureus Tobbi et al. (2021)
or activating agrA after
phosphorylation
Andrographolide Andrographis paniculata Inhibits the activity of AI-2; decreases  Escherichia coli Guo et al. (2014), Yu et al.
the expression level of arg gene and the (2022)
activity of arg promoter P2
Phenols
Catechin Combretum albiflorum Reduction of the expression of QS P aeruginosa Vandeputte et al. (2010)
controlled virulence factors
Hamamelitannin Hamamelis virginiana Suppression of QS regulatory RNAIIl 8. aureus Kiran et al. (2008)
Syringic acid Oak Suppression of QS regulatory genes Staphylococcus epidermidis Minich et al. (2022)
agrD and agrA
Resveratrol Veratrum album Suppression of QS regulatory genes S. aureus Qin et al. (2014)
agrA, agrB, agrC, hld and sarA
Ursolic acid Prunella vulgaris L.; Ilex rotunda Suppression of QS regulatory genes S. aureus Qin et al. (2014)

Tea polyphenols

(Epigallocatechin

gallate)

Zingerone

Organic acids

Gallic acid

Vanillic acid

Thunb

Green tea (Camellia sinesis)

Ginger

Green tea (Camellia sinesis);

Libidibia ferrea

Vanilla beans

agrA, agrB, agrC, hld and sarA
Regulation of AI-2 synthesis; reduction

of C4-AHL production

Interference with the ligand receptor
interaction with QS receptors (TraR,

LasR, RhIR and PgsR)

Downregulates of the expression of
gtfB, gtfC and gtfD genes; inhibits
expression of pgaABCD

Inhibits the production of AHL

S. aureus; Stenotrophomonas
maltophilia; Streptococcus

mutans; P. aeruginosa

P aeruginosa

Streptococcus pyogenes; E. coli; P.

aeruginosa

C. violaceum; Aeromonas

hydrophila

Diirig et al. (2010), Vidigal
etal. (2014), Zhang et al.
(2014), Wu et al. (2018), Hao
etal. (2021)

Kumar et al. (2015)

Kang et al. (2018),
Albutti et al. (2021),
Passos et al. (2021)
Deryabin et al. (2019)

Frontiers in Microbiology

04

(Continued)

frontiersin.org


https://doi.org/10.3389/fmicb.2022.1039297
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

TABLE 1 (Continued)

10.3389/fmicb.2022.1039297

Elcei\:lioli tes Main plant origin Mechanism of action Target bacteria Reference
Alkaloids
Berberine Coptis chinensis Suppression of QS regulatory gene S. aureus Gao et al. (2021)
agrA
Matrine Sophora alopecuroides, broad bean Inhibits the activity of AI-2 E. coli; S. epidermidis; P. Jia et al. (2019), Pourahmad
roots and Sophora flavescens aeruginosa Jaktaji and Koochaki (2022)
Others
Halogenated Delisea pulchra Competes with AHL for receptor Vibrio harzianus’ Rabin et al. (2013), Reuter
Furanones protein; accelerates folding of LuxR etal. (2016)
Trans-anethole Anise Binds to LasR regulatory proteins P. aeruginosa Hanger Aydemir et al. (2018)
Diallyl disulfide Garlic Inhibites virulence factors including P. aeruginosa Lietal. (2018)
exonuclease LasA, elastase LasB, lectins
LecA and LecB
Esculetin Sieve bean Disturbs QS S. aureus; E. coli; Salmonella Girennavar et al. (2008),
typhimurium; P. aeruginosa Diirig et al. (2010)
Furocoumarins Sieve bean Disturbs QS S. aureus; E. coli; S. typhimurium; ~ Girennavar et al. (2008),
P. aeruginosa Diirig et al. (2010)
Piper betle extract Piper betle Inhibits the production of AHL P aeruginosa Siddiqui et al. (2012)

TCMs, Traditional Chinese medicines; AHL, N-acyl-homoserine lactone; QS, Quorum sensing; Al-2, Autoinducer-2; APEC, Avian pathogenic E. coli.

expression of genes involved in the synthesis of AHL (yenI and
yenR) to impair QS signaling and biofilm formation. In vivo,
naringin and hesperidin protects mice from endotoxin shock
through inhibition of bacterial numbers and inflammatory
cytokine release (Kawaguchi et al., 2004a,b).

Similarly, quercetin, another flavonoid from Usnea longissimi,
inhibit the biofilm formation of diverse bacteria species including
Pseudomonas aeruginosa (Ouyang et al., 2016), Chromobacterium
violaceum (Skogman et al., 2016), and Klebsiella pneumoniae
(Gopu et al., 2015) through QS signaling. Quercetin, although not
affecting the growth of P. aeruginosa, significantly inhibit the
production of biofilm and virulence factors by downregulation of
the expression levels of lasl, lasR, rhll, and rhiIR (Ouyang et al.,
2016). It further demonstrates that quercetin inhibit QS via
binding with LuxI-type AHL synthases and/or LuxR-type AHL
receptor proteins (Deryabin et al., 2019). In vivo, quercetin
supplementation reduces the number of pathogenic species
including Enterococcus, Neisseria and Pseudomonas and increases
the number of non-pathogenic Streptococcus sp. and oral
microbiome diversity (Mooney et al., 2021).

Moreover, curcumin from Curcuma longa also reduce the
ability of P. aeruginosa to form biofilms and inhibit virulence
factors expression. Curcumin binds to both LasR and LuxR that
leads to the inactivation of these proteins and reduction in biofilm
formation (Shukla et al., 2020). In a clinical study, curcumin
treatment significantly diminishes the severity of dyspepsia and
eradication of Helicobacter pylori in patients, indicating that
curcumin can be used as a candidate drug for the treatment of
functional dyspepsia (Panahi et al., 2021).

Baicalin, another flavonoid isolated from the root of
Scutellaria baicalensis, downregulates the gene expression of
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Staphylococcus aureus QS regulators agrA, RNA III and sarA
and ica to inhibit biofilm formation, leading to increased
vancomycin permeability (Chen Y. et al., 2016). Wang et al.
(2019) further demonstrated that the reduction of biofilm
formation by baicalin was achieved by inhibiting the MsrA
efflux pump and the Agr system in Streptococcus saprophyticus.
Moreover, baicalin also inhibits QS signaling molecule AI-2
and the expression of virulence genes in avian pathogenic
Escherichia coli (APEC; Peng et al., 2019). In vivo, baicalin
significantly reduces APEC colonization and increases the
abundance of short chain fatty acid (SCFA)-producing
bacteria of gut microbiota to alleviate lung injury (Peng
et al., 2021b).

Furthermore, in silico analyzation by molecular docking
reveales the binding mode of four natural products, norathyriol,
mangiferin, baicalein, kaempferol and baicalin, to LuxS. All of
these products show good binding ability to LuxS and inhibit the
production of AI-2 (Meng et al., 2022). In addition, kaempferol
extracted from Kaempferia galanga L. could also reduce the
biofilm formation of S. aureus by inhibit the activity sortase A
and the expression of adhesion-related genes (Ming et al., 2017).
This is also the case for fisetin, a compound extracted from
Cotinus coggygria, which dramatically inhibit biofilm formation
of both S. aureus and Streptococcus dysgalactiae via a similar
mechanism (Diirig et al., 2010).

Terpenoids

Terpenoids are a class of secondary metabolites that have the
general formula of (CsHj) n. According to the number of isoprene
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or isopentane (CsHy), terpenoids and their derivatives are divided
into several subclasses including monoterpenes, sesquiterpenes,
diterpenes, triterpenes, tetriterpenes, and polyterpenes (Zhuang
and Chappell, 2015). Terpenoids are widely distributed in nature
and many of them play a wide range of pharmacological effects as
TCMs, such as antiparasitic and antibacterial effects. Many
terpenoids including sesquiterpene lactones, carvacrol, eugenol,
sclareol, manool, and andrographolide have been discovered with
anti-biofilm activity (Table 1; Figure 2). It is been shown that six
sesquiterpene lactones, three of the goyazensolide-type and three
of the isogoyazensolide-type extracted from Centratherum
punctatum, inhibited biofilm formation of P aeruginosa by
downregulation of QS signaling molecule AHL and inhibit
bacterial growth in a concentration dependent manner (Amaya
et al., 2012), but the detailed molecular mechanisms still need to
be investigated.

Carvacrol and eugenol, which are commonly isolated from
clove and passion fruit, respectively, and utilized in essential oils,

10.3389/fmicb.2022.1039297

could also specifically interfere with the QS system of
Pectobacterium. By constructing homology models for high
serine lactone synthase (Expl) or regulatory proteins (ExpR) and
performing molecular docking simulation tests, carvacrol and
eugenol have the ability to bind ExpI/ExpR, which in turn leads
to decreased accumulation of the intracellular QS signaling
molecule AHL and inhibit biofilm formation (Joshi et al., 2016;
Deryabin et al., 2019). Moreover, eugenol inhibit the formation
of Acinetobacter baumannii biofilms and disrupt biofilm
structure by downregulation of the transcription of genes
involved in biofilm formation (Karumathil et al., 2016). In vivo
studies demonstrate that carvacrol inhibits the colonization of
several pathogens, including Campylobacter jejuni (Mousavi
etal,, 2020), S. typhimurium (Kortman et al., 2014), and Listeria
monocytogenes (Silva et al., 2015), to host cells and thus protest
host from infections. Similarly, eugenol can also inhibit the
colonization of S. typhimurium and restricts host inflammation
(Zhao et al., 2022).
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The labdane diterpenoids sclareol and manool from Salvia
tingitana are considered potential QSIs against methicillin-resistant
S. aureus (MRSA). They can inhibit MRSA biofilm formation and
virulence factor expression by prevention of the activation of AgrA
upon binding or phosphorylation of the helper gene regulator AgrA
to DNA (Iobbi et al,, 2021). Guo et al. investigated the effect of
andrographolide, the main active ingredient of Andrographis
paniculata, on the pathogenies of APEC O78. They found that
andrographolide significantly decrease the lactate dehydrogenase
release, F-actin cytoskeleton polymerization, and bacterial adhesion
to chicken type II pneumocytes by inhibiting the expression of QS
signaling molecule AI-2 and virulence factors (Guo et al., 2014).
However, study also showed that andrographolide had no effect on
the production of AI-2, but significantly decreased the expression
level of arg gene and the activity of arg promoter P,, leading to
inhibition of the
L. monocytogenes (Yu et al., 2022).

biofilm formation and virulence of

Phenols

Plant phenols are found in the leaves, shells, pulp and seed
coat of plants, and are second only to cellulose, hemicellulose and
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lignin in content. Plant phenols have a long history of medical
applications and have been shown to have strong antioxidant
activity, effective in preventing chronic diseases such as
(Westfall 2018),
(Yazdanparast et al., 2008), cardiovascular and cerebrovascular

hyperglycemia et al, hyperlipidemia
diseases (Wu et al., 2010), as well as reducing cancer risk (Cesmeli
et al, 2021). Common plant phenols such as catechin,
hamamelitannin, syringic acid, ursolic acid, zingerone, resveratrol,
and tea polyphenols have been shown to inhibit the formation of
biofilm by bacteria (Table 1; Figure 4).

Catechin, one of the phenols isolated from Combretum
albiflorum leaves and bark extracts, inhibit the biofilm formation
and pathogenesis by reduction of the expression of QS controlled
virulence factors in P, aeruginosa (Vandeputte et al., 2010). The use
of RhIR-and LasR-based biosensors indicated that catechin might
interfere with the perception of the QS signal N-butanoyl-L-
homoserine lactone by RhIR, thereby leading to a reduction of the
production of QS factors. In vivo studies showed that catechin can
promote the proliferation of beneficial intestinal bacteria and
regulate the balance of intestinal flora to relieve the inflammatory
bowel disease (Fan et al., 2017). Hamamelitannin, a polyphenolic
natural product found in the bark of Hamamelis virginiana, has no
effect on staphylococcal growth in vitro, but reduce biofilm
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formation by inhibiting the QS regulator RNA III (Kiran et al,
2008). Moreover, several synthetic hamamelitannin analogs have
been identified as antibiotic potentiators for S. aureus treatment
(Vermote et al.,, 2016). Hamamelitannin increases the susceptibility
of S. aureus to antibiotic treatment in vivo Caenorhabditis elegans
and mouse mammary gland infection models (Brackman et al.,
2016). Syringic acid, which is also a phenolic compound isolated
from oak bark lignin, reduce biofilm formation up to 80% and EPS
up to 55% by downregulation of mRNA expression of two genes of
the QS system, agrD and agrA in Staphylococcus epidermidis
(Minich et al., 2022). Moreover, inhibition of biofilm formation by
interfering with the QS system is also observed by treatment with
resveratrol (extracted from Veratrum album, a plant of Liliaceae)
and ursolic acid (found in the whole grass of Prunella vulgaris L.,
a labiatae plant, and the leaves of Ilex rotunda Thunb), upon which
the expressions of genes related to the QS system (agrA, agrB, agrC,
hld and sarA) are downregulated (Qin et al., 2014). Similar to
catechin, resveratrol and ursolic acid have also shown protective
effects on gut microbiota in vivo (Cai et al., 2020; Peng et al., 2021a).

Investigation of the molecular mechanism also identified
several phenolic compounds that interacts with QS signaling
molecules. Zingerone, which is mainly found in root of ginger
(Zingiber officinale), reduces the ability of P. aeruginosa to form
biofilms and inhibits virulence factors expression by competing
with signaling molecules for receptor proteins (TraR, LasR, RhIR
and PqsR), thereby blocked the QS signaling (Kumar et al.,
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2015). Of note, zingerone effectively reduced P aeruginosa
biofilm-associated murine acute pyelonephritis (Sharma et al.,
2020), suggesting it is a potential effective therapeutic agent for
clinical application. Zhang et al. investigated the effects of citral,
cinnamaldehyde, and tea polyphenols on the formation of mixed
biofilms of foodborne S. aureus and Salmonella enteritidis. The
results showed that citral, cinnamaldehyde and tea polyphenols
could significantly inhibit the formation of mixed biofilms.
Interestingly, while citral could reduce the synthesis of AI-2,
cinnamaldehyde and low concentrations of tea polyphenols
increased AI-2 synthesis (Zhang et al, 2014). Similarly,
Epigallocatechin gallate (EGCG, tea polyphenol), which is
present in green tea, also showed anti-biofilm and anti-infection
activities by Stenotrophomonas maltophilia and P. aeruginosa by
reduction of C4-AHL production (Vidigal et al., 2014; Hao et al.,
2021). In mice, these compounds protect mice from infections
by different pathogens, including methicillin-resistant S. aureus
(Long et al., 2019), H. pylori (Muhammad et al., 2015; Deng
et al., 2022), and S. typhimurium (Wang et al., 2021; Zhao
etal., 2021).

Organic acids

Natural organic acids are widely distributed in the leaves,
roots and especially fruits of herbs such as umeboshi (pickled
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Japanese plum), schisandra (dry and mature fruit of Schisandra
chinensis) and raspberry. Some natural organic acids have certain
biological activities including antibacterial (Fontanay et al., 2008),
anti-inflammatory (Wu et al., 2023), hypoglycemic (Pandey et al.,
2022), antioxidant (Ma et al., 2018), and immune modulation (Wu
et al,, 2004; Fontanay et al., 2008; Ma et al., 2018). Common
natural organic acids including gallic acid and vanillic acid have
antibacterial biofilm effects (Table 1; Figure 5).

Gallic acid, also known as 3,4,5-trihydroxybenzoic acid, is a
naturally occurring secondary metabolite. It is extracted from
Green tea (Camellia sinesis) as a major component together with
other anti-biofilm compounds such as EGCG, propyl gallate, and
octyl gallate (Vidigal et al., 2014). The anti-biofilm activity of gallic
acid has been investigated in diverse bacteria species. Gallic acid
and ethyl gallate extracted from Libidibia ferrea (Mart. ex Tul.)
inhibits Streptococcus pyogenes biofilms by downregulation of the
expression of gtfB, gtfC and gtfD genes (Passos et al., 2021). Gallic
acid at a concentration of 2mg/ml significantly inhibits the
expression of pgaABCD genes and effectively suppress the formation
of E. coli biofilm in a dose-dependent manner (Kang et al., 2018).
Moreover, high concentrations of gallic acid inhibited the biofilm
formation and growth of Proteus spp., Pseudomonas spp.,
Salmonella spp., Streptococcus mutans, and S. aureus (Albutti et al.,
2021). In vivo, gallic acid reduces inflammation and proliferation of
Brucella abortus in spleens of mice (Reyes et al., 2018). Vanillic acid
is a benzoic acid derivative that can be extracted from vanilla beans.
Studies showed that vanillic acid inhibited the QS-dependent
violacein biosynthesis in C. violaceum and biofilm formation in
Aeromonas hydrophila by downregulation of AHL production
(Deryabin et al,, 2019). However, the detailed mechanisms of
vanillic acid on biofilm formation needs to be further elucidated.

Alkaloids

Alkaloids are nitrogen-containing heterocyclic compounds
which are widely found in plants including Papaveraceae,
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0
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\o

o (o] 5
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gallic acid vanillic acid

FIGURE 5

Chemical structures of the different organic acids that inhibit
biofilm formation via QS. ChemDraw software has been utilized
to draw the chemical structures of the molecules.
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Berberidaceae, and Fabaceae. Lots of alkaloids have been identified
so far and many of them exert antibacterial effects with broad
spectrum and fewer adverse effects (Table 1; Figure 6). Their main
antibacterial mechanisms include (i) inhibition of bacterial cell
wall synthesis; (ii) inhibition of bacterial biofilm formation; (iii)
alteration of cell membrane permeability; (iv) inhibition of
bacterial metabolism; and (v) inhibition of nucleic acid and
protein synthesis (Larghi et al., 2015; Table 1; Figure 5).

Berberine is an alkaloid extracted from Coptis chinensis and
also an isoquinoline derivative according to its chemical
structure. Berberine has been reported to have antibacterial
efficacy in eliminating bacterial and fungal biofilms. As such,
berberine exerted synergistic effects on inhibiting Candida
albicans/S. aureus dual strain biofilms in combination with
amphotericin B, an efficient antibiotic that utilized for the
treatment of fungal infections in clinic (Gao et al., 2021). A study
by Ning et al. demonstrated that berberine inhibited biofilm
formation via downregulation of the expression of the QS
regulatory gene agrA in a concentration-dependent manner in
S. aureus (Ning et al., 2022). Moreover, Ferrazzano et al. found
that berberine exerted efficient antimicrobial efficacy against
diverse endodontic pathogens including Fusobacterium
nucleatum, Prevotella intermedia, and Enterococcus faecalis
(Ferrazzano et al., 2011). Interestingly, berberine also regulates
gut microbiota and microbial tryptophan catabolites to protect
mice from inflammatory bowel diseases (Zhang et al., 2019; Jing
etal,, 2021).

Matrine is another alkaloid that is widely distributed in
Sophora alopecuroides (a perennial leguminous herb distributed
in northwestern and northern China), broad bean roots and
Sophora flavescens. It has anti-inflammatory, antibacterial,
antioxidant, immunomodulatory and anticancer effects (Sun et al.,
2022). Similar to berberine, matrine is also found to inhibit the
biofilm formation of different bacteria species. Matrine reduce the
formation of antimicrobial-resistant E. coli (a strain that showed
resistant to different antibiotics) biofilms by downregulation of
QS-related genes [uxS, pfS, sdiA, hflX, motA and fliA (Sun et al,
2019). In S. epidermidis, the biofilm formation is also inhibited by
matrine through decreasing the QS signaling molecule AI-2
activity (Jia et al., 2019). In combination with antibiotics, matrine
dramatically decreases the multidrug-resistant P. aeruginosa
biofilms (Pourahmad Jaktaji and Koochaki, 2022). Moreover, in
vivo studies found that matrine can modulate the composition and
functions of gut microbiota to improve gut barrier integrity and
reduce murine colitis (Yao et al., 2021).

Others

Besides the major classes of anti-biofilm compounds
mentioned above, many other compounds have been identified
from natural sources or TCMs with anti-biofilm activity including
but not limited to trans-anethole, diallyl disulfide, esculetin, and
furocoumarins. (Table 1; Figure 7).
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Trans-anethole, the main component of anise oil, exhibit
inhibitory effect on biofilm formation and the expression of
QS-regulated virulence factors in P. aeruginosa by binding to
LasR regulatory protein (Hanger Aydemir et al., 2018). Similarly,
the P. aeruginosa biofilms and virulence factors including
exonuclease LasA, elastase LasB, lectins LecA and LecB can also
be inhibited by diallyl disulfide, a compound utilized in garlic
oil (Li et al., 2018). Moreover, diallyl disulfide had beneficial
effects on establishment of microbiota biofilms and colonic
mucus production that alleviate murine colitis (Motta et al.,
2015). Coumarins are a class of organic compounds which are
not only isolated from sieve bean, but also in many different
plants, such as Tonka beans, verbena, wild vanilla and orchid
(EINaggar et al., 2022). Studies found that some coumarins
including esculetin and furocoumarins have broad range anti-
biofilm activity by disturbing QS in S. aureus, E. coli,
S. typhimurium, and P. aeruginosa via reduction of AHL
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(Girennavar et al., 2008; Diirig et al., 2010). Further studies
demonstrated that esculetin is structurally compatible with the
TraR AHL-binding site and downregulates numerous genes
associated with QS signaling (Zeng et al,, 2008; Zhang
et al., 2018).

Apart from these CHMs metabolites, the anti-biofilm
activities of some plant’s crude extract have also been investigated.
For example, halogenated furanone compounds extracted from
red seaweed Delisea pulchra can inhibit colonization, swarming
and biofilm formation of Gram-negative bacteria, attenuate
bacterial virulence and prevent bacterial infections (Chang et al.,
2019; Aburto-Rodriguez et al., 2021). The structure of halogenated
furanones is similar to that of the signaling molecule AHL, which
compete with AHL for the receptor protein and replace AHL
molecules binding to the receptor (Rabin et al., 2013). In Vibrio
fischeri and Vibrio harveyi, halogenated furanones are also found
to accelerate the folding of luxR, which in turn diminishes the

frontiersin.org


https://doi.org/10.3389/fmicb.2022.1039297
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Zhang et al.

ability of LuxR to bind to DNA and the transcription initiation
process (Reuter et al., 2016). Moreover, Siddiqui et al. demonstrate
that Piper betle extract (PBE) inhibit P aeruginosa biofilm
formation by reduction of AHL and EPS (Siddiqui et al., 2012).
Also, PBE can reduce the virulence of P. aeruginosa by affecting
the QS system (Datta et al., 2016).

Nucleotide-based second
messengers

Nucleotide-based second messengers are small non-protein
molecules produced intracellularly. Bacteria can respond to
extracellular signals through changes in the concentration of
second messenger molecules (increase or decrease) by binding to
cell surface receptors, regulating the enzymatic activity of
intracellular metabolic systems, amplifying the original signal and
thus inducing intracellular expression of a series of specific genes,
and ultimately affecting a variety of physiological and biochemical
processes in bacteria (Romling et al., 2013; Opoku-Temeng et al.,
2016). Second messenger molecules have been shown to
be involved in regulating bacterial growth and metabolism and
other physiological functions, such as virulence factor expression
(Ahmad etal., 2011, 2013), fatty acid synthesis (Zhang et al., 2013;
Gerhardt et al, 2020; Li et al, 2022), cell wall metabolic
homeostasis (Witte et al., 2013; Commichau et al., 2018),
extracellular polysaccharide synthesis and biofilm formation (da
Aline Dias et al., 2020; Junkermeier and Hengge, 2021). Six major
types of second messengers have been discovered in bacteria so
far, including c-di-GMP (Rémling et al., 2013), c-di-AMP (Peng
etal., 2016), cGAMP (Davies et al., 2012; Li et al., 2019), cGMP
(Linder, 2010), cAMP (Harman, 2001) and (p)ppGpp (van Delden
et al., 2001). While c-di-GMP is recognized as an ubiquitous
second messenger for the regulation of bacterial biofilm formation,
biofilm formation regulated by the other second messengers is
only found in certain bacteria species, including S. mutans (Lemos
et al., 2004; Peng et al., 2016), Bacillus subtilis (Gundlach et al.,
2016; Townsley et al.,, 2018), S. aureus (Gries et al., 2016),
P, aeruginosa (Luo et al., 2015), K. pneumoniae (Ou et al., 2017),
and E. coli (Hufnagel et al., 2016; Li et al.,, 2019). Therefore, the
development of novel anti-biofilm agents in terms of nucleotide-
based second messengers s
c-di-GMP signaling.

mainly targeted on

TCMs that inhibit second messenger
molecules

Given the important role of second messenger-regulated
signaling pathways in bacterial biofilm formation, the
development of antimicrobial compounds via second
messenger-regulated signaling pathways to control infections
has become a research priority. The mechanism of action for

blocking second messenger signaling is broadly divided into

Frontiers in Microbiology

11

10.3389/fmicb.2022.1039297

three categories: (i) inhibition or activation of second messenger
synthases; (ii) inhibition or activation of second messenger
degradation enzymes; and (iii) competition for signaling
pathway receptor proteins (Zhou etal., 2013; Sambanthamoorthy
et al, 2014; Zheng et al, 2016). Although thousands of
literatures have provided biological insights into second
messenger signaling so far, the development of small-molecule
inhibitors of second messengers on bacterial biofilm formation
is significantly lagging behind, with even fewer studies on
natural compounds such as TCMs metabolites as inhibitors
(Opoku-Temeng et al., 2016). Compounds which inhibit
bacterial second messengers signaling are listed in Table 2;
Figure 8.

Cyclic di-GMP is recognized as an ubiquitous second
messenger that regulates bacterial sessility/motility lifestyle
transition (Simm et al., 2004), cell cycle (Xu et al., 2020), virulence
(Ahmad et al., 2011), biofilm formation and dispersal (Ross et al.,
1987; Miller et al., 2022). The intracellular concentrations of
c-di-GMP depend on the rates of synthesis and degradation,
which are regulated by diguanylate cyclase (DGC) and
phosphodiesterase (PDE), respectively, that can sense different
signals (Boyd and O’Toole, 2012; Rémling et al., 2013). At present,
c-di-GMP signaling inhibitors discovered in herbs are mostly
c-di-GMP analogs or non-nucleotide small molecules that inhibit
DGCs. Ohana et al. isolated a specific and efficient inhibitor of
DGGC, triterpenoid saponin, from extracts of Pisum sativum.
Triterpenoid saponin inhibits DGC of Acetobacter xylinum,
thereby reduces the intracellular concentration of c-di-GMP
(Ohana et al., 1998). In vivo, triterpenoid saponin increase
beneficial bacteria, while decreases sulfate-reducing bacteria, and
alleviate intestinal inflammatory gut environment in mice (Chen
L. et al., 2016). Moreover, using a virtual approach with a three-
dimensional pharmacophore model, two catechol-containing
sulfonyl hydrazide compounds are identified with the ability to
competitively inhibit DGC PleD in Caulobacter crescentus and
could serve as potential inhibitors of bacterial c-di-GMP signaling
(Fernicola et al., 2016).

Coumarin is found in tonka beans, verbena, wild vanilla and
orchid, and has the smell of fresh hay and fenugreek (EINaggar
et al.,, 2022). Coumarins have been shown to have antibacterial
activity as a QSI in a broad spectrum of pathogens. Coumarin
alters the expression of genes associated with the type III secretion
system and c-di-GMP metabolism to inhibit biofilm formation.
Coumarin significantly reduces the cellular c-di-GMP levels of
P aeruginosa PAO1 and clinical P. aeruginosa strains (Zhang
etal., 2018). Raffinose, a plant galactose derived from ginger, can
bind to a carbohydrate-binding protein LecA to effectively inhibit
P aeruginosa biofilm and alter bacterial phenotype without
impairing bacterial growth (Kim et al, 2016). In addition,
raffinose also decreases the concentration of c-di-GMP by
increasing the activity of c-di-GMP-specific phosphodiesterase
(Kim et al., 2016). Moreover, procyanidins are the general name
of a large class of polyphenol compounds, which are abundant in
grape seeds. Water-soluble extract from cranberry standardized to
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TABLE 2 Different classes of anti-biofilm TCMs metabolites and their mechanisms of action via bacterial second messengers (-related) signaling

pathways.

TCMs metabolites Main plant origin Mechanism of action Target bacteria Reference
Terpenoids

Triterpenoid saponin Pisum sativum Inhibits DGC Acetobacter xylinum Ohana et al. (1998)
Flavonoids

Luteolin Mignonette Inhibits the assembly of amyloid curli fibers by E. coli Pruteanu et al. (2020)
Myricetin Red bayberry driving CsgA subunits into oligomers

Morin Morus flavescens

Quercetin Usnea longissimi

Phenols

Proanthocyanidin Grape seeds Modulation of the intracellular c-di-GMP level Vibrio cholerae Pederson et al. (2018)
Tea polyphenols Green tea (Camellia sinesis)  Downregulates c-di-AMP level E. coli; Bacillus subtilis Opoku-Temeng and Sintim

theaflavin-3’-gallate
theaflavin-3,3’-di-gallate

Green tea (Camellia sinesis)

Green tea (Camellia sinesis)

Alters the expression of genes associated with the

type III secretion system and c-di-GMP

Decreases the concentration of c-di-GMP by

increasing the activity of c-di-GMP-specific

Others
Catechol-containing sulfonyl  Acacia catechu (L.f.)Willci. Inhibits DGC PleD
hydrazide
Counarins Tonka Beans; verbena; wild
vanilla and orchid

metabolism
Raffinose Ginger

phosphodiesterase
PGG Green tea (Camellia sinesis)

Interferes with initial attachment and the

B. subtilis
B. subtilis

C. crescentus

P. aeruginosa

P aeruginosa

S. aureus

(2016)

Fernicola et al. (2016)

Zhang et al. (2018)

Kim et al. (2016)

Lin et al. (2011)

synthesis of polysaccharide intercellular adhesin

TCMs, Traditional Chinese medicines; DGC, Diguanylate cyclase; PGG, 1,2,3,4,6-Penta-O-galloyl-p-D-glucopyranose; c-di-GMP, Cyclic dimeric guanosine monophosphate; c-di-AMP,

Cyclic dimeric adenosine monophosphate; cAMP, Cyclic adenosine monophosphate.

4.0% proanthocyanidins could significantly inhibit Vibrio cholerae
biofilm formation by reducing the biofilm matrix production and
secretion via modulation of the intracellular c-di-GMP level
(Pederson et al., 2018).

Besides the compounds mentioned above, it’s demonstrated
that green tea polyphenol EGCG inhibits E. coli biofilms by
elimination of the biofilm matrix via interfering with CsgD
expression and the assembly of curli subunits into amyloid fibers
(Serra et al.,, 2016). Study from the same group also identified
several plant flavonoids including luteolin, myricetin, morin and
quercetin as biofilm inhibitors. These flavonoids strongly reduce
the extracellular matrix production by directly inhibiting the
assembly of amyloid curli fibers through driving CsgA subunits
2020). Additionally,
1,2,3,4,6-Penta-O-galloyl-p-D-glucopyranose (PGG), an active

into oligomers (Pruteanu et al,
ingredient in plants, inhibits S. aureus biofilm formation by
interfering with initial attachment and the synthesis of
polysaccharide intercellular adhesin (Lin et al., 2011), but whether
¢-di-GMP is also involved in this process stills unknown.

Plant anti-biofilm compounds targeting other second
messengers are quite few and still needs to be discovered. Opoku-
Temeng et al. identified three tea polyphenols including tannic
acid, theaflavin-3’-gallate and theaflavin-3,3’-di-gallate as
c-di-AMP inhibitors in B. subtilis. They found that these
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polyphenols specifically inhibited DisA activity to downregulate
c-di-AMP level (Opoku-Temeng and Sintim, 2016).

Conclusion

The majority of bacteria in nature live in a biofilm state, and
infections due to biofilms pose a great threat to clinical treatment.
The bacterial QS system and second messenger signaling
pathways play an important role in the regulation of biofilm
formation, but their complex regulatory mechanisms need to
be further investigated. These works on bacterial biofilm
formation have provided many potential therapeutic targets for
the development of antibacterial drugs. Many TCMs from natural
compounds are well-known for their safety and less toxicity to
host (Flower et al., 2015; Liao et al., 2022). The different chemical
classes of TCMs metabolites with antibacterial activity act in the
QS system and second messenger signaling pathways mainly by
reducing the production of signaling molecules or competing for
receptor proteins, and no TCMs' metabolites with enzymatic
activity to degrade signaling molecules have been discovered. In
addition, most TCMs metabolites work alone at high
concentrations and take a long time to function without the
ability to kill bacteria, but they work well in combination with
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FIGURE 8
Chemical structures of the compounds that inhibit biofilm formation via second messengers (—related) signaling pathways. ChemDraw software
has been utilized to draw the chemical structures of the molecules.

antibiotics or as antibiotic potentiators. Strategies such as U19A2038, 31872505, 32072824, and 32102670), the Natural
modification of chemical structures and precision delivery by Science Foundation of Jilin Province (grant nos. 20200201120]C,
nanomaterials to the target of action can be developed to enhance 20220101295JC), the Fundamental Research Funds for the
the antibacterial ability of TCMs’ metabolites. In conclusion, with Central Universities, Shandong Provincial Modern Agricultural
the continuous development of life science, TCMs, as a valuable Industry Technology System (SDAIT-27), and Key Technology
asset left to mankind by nature and our ancestors, must have a Research and Development Program of Shandong
longer-term development prospect in the fight against (2021TZXDO012).

bacterial infections.
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