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Rapid, accurate, and label-free detection of pathogenic bacteria and antibiotic 

resistance at single-cell resolution is a technological challenge for clinical 

diagnosis. Overcoming the cumbersome culture process of pathogenic 

bacteria and time-consuming antibiotic susceptibility assays will significantly 

benefit early diagnosis and optimize the use of antibiotics in clinics. Raman 

spectroscopy can collect molecular fingerprints of pathogenic bacteria in a 

label-free and culture-independent manner, which is suitable for pathogen 

diagnosis at single-cell resolution. Here, we report a method based on Raman 

spectroscopy combined with machine learning to rapidly and accurately 

identify pathogenic bacteria and detect antibiotic resistance at single-cell 

resolution. Our results show that the average accuracy of identification 

of 12 species of common pathogenic bacteria by the machine learning 

method is 90.73 ± 9.72%. Antibiotic-sensitive and antibiotic-resistant strains of 

Acinetobacter baumannii isolated from hospital patients were distinguished 

with 99.92 ± 0.06% accuracy using the machine learning model. Meanwhile, 

we  found that sensitive strains had a higher nucleic acid/protein ratio and 

antibiotic-resistant strains possessed abundant amide II structures in proteins. 

This study suggests that Raman spectroscopy is a promising method for 

rapidly identifying pathogens and detecting their antibiotic susceptibility.
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1. Introduction

Antimicrobial resistance (AMR) is a global public health 
challenge. It has been estimated that almost 5 million deaths 
globally are associated with bacterial AMR, including more than 
1.2 million deaths attributable to AMR in 2019 (Murray et al., 
2022). The number of deaths worldwide will reach 10 million a 
year by 2050 if the trend in rising AMR is not efficiently contained 
(O’neill, 2016). The emergence of AMR is ascribed to the overuse 
and misuse of antibiotics in clinical treatment, the livestock 
industry, and aquaculture (Andersson and Hughes, 2014; Aslam 
et al., 2018; Ben et al., 2019). Diagnostic uncertainty is a major 
reason for the overprescribing of antibiotics in clinical practice 
(Llor and Bjerrum, 2014; Michael et al., 2014; Roope et al., 2019), 
largely because of shortcomings of test time and accuracy in 
detecting infectious pathogens and antibiotic resistance (Michael 
et  al., 2014; Dadgostar, 2019; Jamrozik and Selgelid, 2020). 
Methods for rapid and accurate diagnosis are highly desirable to 
mitigate AMR and allow rational antibiotic therapy (Germond 
et al., 2018; Vasala et al., 2020).

Traditional pathogenic identification involves both phenotypic 
and molecular methods. Generally, phenotypic diagnoses are based 
on bacterial growth and metabolism. For instance, bacterial 
identification and the antimicrobial susceptibility test (AST) are 
performed simultaneously by the Vitek or BD Phoenix commercial 
systems in clinical microbiology (Syal et al., 2017; Franco-Duarte 
et al., 2019). These systems evaluate bacterial growth on a series of 
biochemical substrates or different carbon sources to identify 
bacterial species. Recently, MALDI-TOF mass spectrometry has 
been widely used in clinical microbiology laboratories because of 
its high throughput and rapid performance to identify isolated 
bacterial colonies (Wieser et al., 2012; Strejcek et al., 2018; Vasala 
et al., 2020). However, these methods are laborious and require 
time-consuming cell culture. Moreover, many bacteria are slow 
growing or non-culturable in the laboratory. For example, 
Mycobacterium tuberculosis needs more than 2 weeks for 
cultivation, sometimes up to 6–8 weeks (Acharya et  al., 2020). 
Molecular methods such as 16S rDNA gene sequencing and 
quantitative PCR provide high sensitivity and specificity, and they 
are also very rapid. In some cases, such as metagenomic sequencing, 
bacterial culture is not required for these nucleic acid-based 
detection methods. However, molecular methods conventionally 
require extensive sample preparation. Difficulties in preparing 
target DNA can arise when samples are present in tiny amounts or 
contaminated by interfering substances. Moreover, molecular 
methods of bacterial identification are all destructive. They cannot 
be utilized to identify living microbes in situ for real-world samples.

Raman spectroscopy is a non-invasive, culture- and label-free 
technique that is able to monitor the chemical composition and 
metabolism of single live microorganisms in real time (Lee et al., 
2021). The Raman spectrum of an individual cell represents an 
ensemble of different molecular vibration modes and structures, 
including nucleic acids, proteins, lipids, and carbohydrates (Lorenz 
et al., 2017; He et al., 2019; Yan et al., 2021a). High dimensional and 

complex Raman bands provide rich information about variable 
cellular phenotypes to distinguish different bacteria (Germond et al., 
2018; Du et al., 2020). However, it is challenging to classify different 
species because of the weak Raman signal of a single bacterium, 
spectral variations between individuals of the same species, and 
spectral overlaps of different molecules (Khan et al., 2018; Ho et al., 
2019; Yan et al., 2021b). A variety of chemometric analyses and 
machine learning methods, such as principal component analysis 
(PCA), support vector machine (SVM), random forest (RF), and 
convolutional neural networks (CNN), have been employed to 
analyze complicated Raman spectral data (Senger and Scherr, 2020; 
Xu et al., 2020). Of these, machine learning has shown great promise 
in rapidly and accurately identifying microorganisms at single-cell 
resolution (Ho et al., 2019; Lu et al., 2020; Zhou et al., 2022). Besides 
Raman-based identification of bacteria, Raman spectroscopy has 
also been used to determine bacterial antibiotic resistance when 
coupled with stable isotope probing, such as heavy water labeling 
(Yang et al., 2019; Zhang et al., 2020; Yi et al., 2021). However, this 
method requires pre-labeling and culturing bacteria in the presence 
of antibiotics. In theory, the label-free signatures of bacterial Raman 
spectra are excellent phenotypic indicators of antibiotic resistance 
(Germond et al., 2018; Verma et al., 2021). It is worth exploring the 
possibility of identifying bacterial species and detecting antibiotic 
susceptibility simultaneously using single-cell Raman spectra.

In this study, we  developed a method combining Raman 
spectroscopy with machine learning to identify a pathogenic 
bacterium and predict its antibiotic resistance rapidly and accurately 
at single-cell resolution. The average accuracy of identification of 
12 species of common pathogenic bacteria by the machine learning 
model was 90.73 ± 9.72%. The optimal machine learning model 
predicted the antibiotic susceptibility of Acinetobacter baumannii 
isolated from hospital patients with 99.92% accuracy. Meanwhile, 
we  found that antibiotic-resistant A. baumannii strains showed 
more abundant amide II structures in proteins and a lower nucleic 
acid/protein ratio than antibiotic-sensitive strains.

2. Materials and methods

2.1. Bacterial and yeast strains

The pathogens used in this study included seven species of 
gram-negative bacteria (A. baumannii, Enterobacter cloacae, 
Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, 
Salmonella enterica, and Vibrio parahaemolyticus), three species 
of gram-positive bacteria (Staphylococcus aureus, S. epidermidis, 
and Streptococcus pneumoniae), and two species of fungi 
(Cryptococcus neoformans and Candida albicans). Five clinical 
strains of A. baumannii (ST2 sequence type) were isolated from 
sputum of different patients in the intensive care unit of Cangzhou 
Central Hospital, Hebei Province, China. The five clinical 
A. baumannii strains all contained the carbapenem resistance gene 
oxa23, which was confirmed by PCR assays as previously 
described (Woodford et al., 2006; Jinshu et al., 2022).
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2.2. Single-cell Raman spectral 
measurements

The bacterial and yeast cells were cultured in Luria–Bertani 
(LB) medium or yeast extract peptone dextrose (YPD) medium 
with various culture times under different culturing conditions. 
The microbial cells were collected and suspended in 0.85% NaCl 
solution. A total of 20 μl suspended cells was injected in the sealed 
chamber for Raman spectral measurement. The Raman spectra 
were measured by laser tweezers Raman spectroscopy (LTRS) as 
previously described (Lu et al., 2020). Raman spectral calibration 
of the LTRS was performed at 620.9 cm−1, 1001.4 cm−1, and 
1602.3 cm−1 of the 10 μm polystyrene spheres. The integration time 
was set at 60–90 s. For each species, the Raman spectra of at least 
300 single cells collected from different batches were acquired. 
These Raman spectra were training data used for training the 
machine learning models. To test the classifying accuracy of the 
machine learning models, 80 single cells per species were gathered 
from other culturing batches, which were completely different from 
the batches used for model training. The Raman spectra acquired 
from these single cells were testing data, used for testing the models.

2.3. Raman spectral data processing and 
training of machine learning models

The spectra were pre-processed as follows: Savitzky–Golay 
smoothing to remove noise and polynomial fitting to remove the 
fluorescence background, followed by min–max normalization. The 
spectral range between 555 cm−1 and 1815 cm−1 was selected for 
model training and model testing. We used algorithms based on 
random forest (setting, 101 decision trees), support vector machine 
(selecting linear kernel), decision tree (using C5.0 algorithm), 
bagging (loading parallel backend), and naive Bayes (no Laplace 
correction) to build models for training Raman spectral data. A 
10-fold cross-validation of the training dataset was used to evaluate 
the robustness of the models. In this study, the training time for the 
five models was about 4 hours using a HP workstation (16G, 
i7-8550U CPU). Independent spectra acquired from 80 single cells 
of each species were used to assess the performance of models. 
Sample identification included the processes of sample preparation 
(cell collection for 1–2 min), Raman spectral acquisition 
(integration time for 60–90 s), and species prediction (less than 30 s).

2.4. The architecture of the antibiotic 
susceptibility detection model and 
training details

The antibiotic susceptibilities of all six A. baumannii strains 
(one reference strain and five clinical isolates) were first 
determined by the VITEK 2 instrument (bioMérieux, France) 
according to the instruction manual. The antibiotics used in the 
test included imipenem, meropenem, ampicillin, cefoperazone, 

and cefepime. The reference strain and all the clinical isolates were 
cultured in LB medium without adding any antibiotics, and then 
the cells were harvested to acquire the Raman spectra. Data on the 
antibiotic resistance of each strain are listed in 
Supplementary Table S1. The training data for constructing the RF 
antibiotic susceptibility detection model included 523 spectra 
acquired from different A. baumannii strains. An independent 
testing dataset of 1,255 spectra from six A. baumannii strains was 
collected for testing the predictive performance of the 
identification models and the antibiotic susceptibility detection 
model. The RF antibiotic susceptibility detection model with 101 
decision trees was evaluated by 10-fold cross-validation. 
Subsequently, the model with the highest prediction accuracy was 
selected. The receiver operating characteristic (ROC) curve was 
used to assess the diagnostic accuracy of the antibiotic 
susceptibility detection model in terms of antibiotic resistance. 
The A. baumannii strains were grouped based on the antimicrobial 
susceptibility test (Supplementary Table S1). The Raman spectra 
of strain ZB180325 were labeled as sensitive to imipenem and 
cefoperazone. The Raman spectra of strain ZB180589 were labeled 
as sensitive to cefoperazone and ampicillin. The Raman spectra of 
strains ZB180791 and ZB18102 were labeled as sensitive to 
imipenem and meropenem, respectively. We trained the RF model 
on the four-antibiotic prediction task. Completely different 
batches of the Raman spectra of strains were used to test the 
model. The main features of the Raman spectra of antibiotic-
resistant and antibiotic-sensitive A. baumannii were analyzed by 
principal component analysis (PCA).

The Raman spectral pre-processing, building machine 
learning models, PCA analysis, and statistical analysis were all 
performed using the R language (R ≥ 3.6.1). In this study, the main 
open-source packages of R included “caret” and “hyperSpec.”

3. Results

3.1. Raman spectra of 12 common 
clinical pathogens

To gather a training dataset, we measured the Raman spectra 
of 12 different pathogens, including seven gram-negative bacteria 
(A. baumannii, Enterobacter cloacae, Escherichia coli, Klebsiella 
pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and 
Vibrio parahaemolyticus), three gram-positive bacteria 
(Staphylococcus aureus, S. epidermidis, and Streptococcus 
pneumoniae), and two fungi (Cryptococcus neoformans and 
Candida albicans). To minimalize batch effects on the final 
classification, we constructed a reference dataset of 3,982 spectra 
from bacteria and yeast under different culturing conditions to 
cover a more varied cellular physiological status and heterogeneity 
in the same species. The normalized average Raman spectra of the 
12 pathogens with the standard deviations (SD) are shown in 
Figure 1A. The Raman spectral profiles of bacteria and fungi show 
a big visual difference. Although the Raman spectra of the 10 
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pathogenic bacteria look similar in pattern, the changes of Raman 
intensities and the SD among the different pathogens show 
obvious differences at the same Raman shift (Figure  1A). 
Subsequently, we analyzed the seven species of gram-negative 
bacteria and three species of gram-positive bacteria by principal 
component analysis (PCA). The PCA plot suggests that the gram-
positive and gram-negative bacteria are separated in two clusters 
(Figure 1B). The most common differences between Raman peaks 
of the two categories were at 1000, 1285, and 1,553 cm−1 
(Figure 1C). It is likely that the gram-positive bacteria have higher 
levels of phenylalanine (1,000 cm−1) and protein (1,285 cm−1; Choi 
et al., 2018). The gram-negative bacteria possess abundant amide 
II structures in proteins (Figure  1D). The spectral differences 
indicate that the composition and concentration of biomolecules 
are different for different species, and so it will be possible to 
extract the characteristics of different pathogens based on these 
informative variables.

3.2. Machine learning for pathogen 
identification from Raman spectra

As the 10 pathogenic bacteria bear a high resemblance in their 
Raman spectra, it is challenging to discern the subtle spectral 
difference between pathogens. Machine learning is a computer-
based strategy that can extract subtle variation of sophisticated 
hidden features within Raman spectra. Here, we compared the 
identification accuracy of five machine learning methods: random 
forest (RF), support vector machine (SVM), naive Bayes (NB), 
bagging, and decision tree (DT). The Raman dataset of 3,982 
spectra was used to train the machine learning models. We used 
10-fold cross-validation to evaluate the discriminative ability of 
these models. In this process, one fold was randomly split out and 
used to validate the model trained by all the other nine folds. This 
process was repeated until each of the 10 folds had acted as the test 
set once. Taking into account the identification accuracy and 
successes occurring by chance, two metrics of accuracy and 
Cohen’s kappa (Cohen, 1960; García et  al., 2009; Vieira et  al., 
2010) were utilized to evaluate the robustness of these models. The 
accuracies of both RF and SVM were higher than DT, bagging, 
and NB (Supplementary Figure S1), indicating that the 
performances of the RF and SVM models were superior to the 
other models for accurately identifying pathogens at the single-cell 
resolution. Likewise, the kappa scores for both RF and SVM were 
higher than the other three models. The data demonstrate that 
these two models have good consensus agreement for classifying 
microbial pathogens.

We further tested the models on the independent test dataset 
gathered from a separately cultured batch that consisted of 960 
spectra for the 12 pathogens (80 spectra per pathogen). Four 
indicators including accuracy, kappa, recall, and F1 score were 
selected to evaluate the performances of the different machine 
learning models. The results suggested that the RF is slightly 
superior to SVM (Supplementary Table S2). The RF model 

identified the 12 pathogens with an average accuracy of 
90.73 ± 9.72% (Figure 2). For the two fungal pathogens, C. albicans 
and C. neoformans, the accuracy of fungi identification reached 
100%. The identification accuracies for the gram-positive bacteria 
S. epidermidis and S. pneumonia were 98.75%, higher than for 
S. aureus with an accuracy of 91.25%. The classifying accuracy for 
K. pneumoniae was 100%, the highest accuracy of the gram-
negative bacteria. A. baumannii was the second highest accuracy, 
at 95%. The identifying accuracy for E. coli was 82.5%. The 
accuracies for the other three gram-negative bacteria (E. cloacae, 
P. aeruginosa, and V. parahaemolyticus) were between 75 and 83%.

3.3. Detection of the Acinetobacter 
baumannii antibiotic-resistant strain by 
machine learning

Species-level identification is only the first step in clinical 
practice, choosing the correct antibiotic against bacterial 
infections is more important for clinical outcome. To step toward 
a culture-free antibiotic susceptibility test using Raman 
spectroscopy, we  used five multidrug resistant (MDR) 
A. baumannii strains isolated from patients in the intensive care 
unit (ICU; Supplementary Table S1) as a proof-of-concept. 
A. baumannii is a ubiquitous opportunistic pathogen that is 
responsible for a broad range of severe nosocomial infections such 
as bloodstream infections (Antunes et al., 2014), especially in the 
ICU and immunocompromised patients (Eliopoulos et al., 2008; 
Vázquez-López et al., 2020). Carbapenem-resistant A. baumannii 
has been listed at the top of the greatest threat list by the World 
Health Organization (WHO; Abadi et al., 2019; Vázquez-López 
et al., 2020; Murray et al., 2022). Rapid and accurate diagnosis of 
antibiotic resistance is critical to allow timely performance of an 
effective therapeutic scheme (Butler et al., 2019).

We cultured one antibiotic-sensitive A. baumannii strain 
(isolate code: ZB18051) and five multidrug-resistant strains 
(isolate codes: ZB18101, ZB18102, ZB180325, ZB180589, and 
ZB180791) to acquire single-cell Raman spectra. To avoid the 
effects of residual antibiotics from cell culture when discerning the 
antibiotic-resistant strain, the multidrug-resistant strains and the 
drug-sensitive strain were cultured in the same LB medium 
without supplementing antibiotics. The 523 Raman spectra from 
the antibiotic-sensitive strain ZB18051 and four randomly selected 
multidrug-resistant strains (isolate codes: ZB18101, ZB18102, 
ZB180325, and ZB180589) were collected to build a training 
dataset. The training dataset was used to train the antibiotic 
susceptibility detection model. A separate testing dataset, 
consisting of 1,255 spectra from six A. baumannii strains, was 
prepared for the model validation. First, we used the pathogenic 
identification models constructed previously to predict the 1,255 
spectra of A. baumannii. The RF identification model achieved the 
highest identification accuracy of 95.86%, which is consistent with 
the previous prediction on 80 A. baumannii spectra (Figure 3A). 
This further confirmed that RF is the best identification model.
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Then, an RF model was constructed to distinguish antibiotic 
resistance from sensitivity using the training dataset. The 
sensitivity (true positive rate) and specificity (true negative rate) 
were evaluated by the receiver operating characteristic (ROC) 
curve (Figure 3B). The value of AUC (the area under the ROC 
curve) was 1, suggesting that the RF model detects antibiotic-
resistant and -sensitive A. baumannii with very high specificity 
and sensitivity based on the Raman spectra. As seen in Figure 3C, 
for the antibiotic-sensitive strains, the rate of correct detection was 
100%. For the antibiotic-resistant strains, just 0.09% of cells were 

mistakenly predicted as sensitive cells. Thus, the mean accuracy 
predicted by the RF model reached 99.92 ± 0.06% (Figure 3C). 
These results indicate that Raman spectroscopy combined with RF 
is not only a reliable approach to accurately identify pathogens at 
single-cell resolution, but is also able to accurately distinguish 
between antibiotic-resistant and antibiotic-sensitive bacteria 
without labeling and antibiotic treatment. It is desirable in clinical 
practice to choose the correct antibiotics to treat infectious 
diseases. Four antibiotics (imipenem, meropenem, cefoperazone, 
and ampicillin) are available to treat A. baumannii strains 

A B

C

D

FIGURE 1

Average Raman spectra of 12 common clinical pathogens. (A) The average Raman spectra of each species are shown by the solid line, and the 
standard deviations are represented by the shadow. The standard deviations for each pathogen are presented by heatmaps to indicate the 
variations of Raman bands. For each species, the Raman spectra of more than 300 single cells were acquired by LTRS. (B) Principal component 
analysis (PCA) between gram-positive and gram-negative bacteria. The explained variance (expl. var) of the first two PCs are 50 and 17%, 
respectively. The confidence ellipse of each strain is 0.95. (C) The loading of PC2 in PCA analysis. (D) Raman intensity of gram-positive and gram-
negative bacteria at peaks 1,000, 1,285 and 1,553 cm−1, shown by violin plots. Embedded box plots represent the median and first and third 
quartiles, with the whiskers representing the minimum and maximum values within 1.5 interquartile ranges from the first and third quartiles. Red 
dots are average Raman intensity. Two sided t-tests were applied to compare the statistical significances between gram-positive and gram-
negative bacteria. ****p ≤ 0.0001.
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(Supplementary Table S1). The A. baumannii strains were grouped 
based on the antimicrobial susceptibility test of A. baumannii. The 
independent training and testing data of A. baumannii were used 
to train and test the RF model, respectively. The average accuracy 
predicted by the RF model was 91.80%. The RF model accurately 
predicted the preferential antibiotics for the treatment of 
multidrug-resistant A. baumannii (Figure 3D). This result was also 
consistent with the results of testing with the VITEK 2 system 
(Supplementary Table S1). This implies that Raman spectroscopy 
combined with machine learning is able to identify the species of 
bacteria in situ, detect the antibiotic susceptibility, and facilitate 
the correct antibiotic choice at single-cell resolution.

3.4. Antibiotic resistance 
characteristics of Acinetobacter 
baumannii

Raman spectroscopy offers rich information on chemical 
compositions such as DNA/RNA, proteins, lipids, and 

carbohydrates, which are linked with cellular physiological 
functions, biochemical metabolism, and transcriptomic features 
(Germond et al., 2018; He et al., 2021; Cui et al., 2022). Since 
Raman spectral signatures of multidrug-resistant A. baumannii 
contribute to the discrimination of antibiotic-resistance 
phenotypes, we sought to detect the corresponding physiological 
or metabolic features of bacterial resistance based on the Raman 
spectra. The Raman spectrum difference was calculated by 
subtracting the average spectrum of antibiotic-sensitive 
A. baumannii from the average spectrum of antibiotic-resistant 
A. baumannii. The Raman bands at 860–918 cm−1 (polysaccharides 
and proteins), 1,336–1,367 cm−1 (carbohydrates and proteins), 
1,554 cm−1 (amide II of proteins), and 1,602 cm−1 (C–C or C–N 
protein bonds) were increased in the antibiotic-resistant strains 
(Figure 4A; Supplementary Figure S2; Table 1). In contrast, Raman 
peaks at 729, 783, and 1,576 cm−1 (DNA/RNA Raman bands) were 
decreased in the antibiotic-resistant strains. In addition, the 
Raman peaks at 1,002 cm−1 (phenylalanine) and 1,281 cm−1 (amide 
III of protein) in antibiotic-sensitive A. baumannii were also 
slightly increased (Figure 4A; Supplementary Figure S2; Table 1). 

FIGURE 2

Identification accuracy of the random forest identification model for 12 pathogens. The confusion matrix shows the percentage of accurate 
prediction for each pathogen.
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The Raman band changes reflect the differences between 
antibiotic-resistant and antibiotic-sensitive strains in the 
composition and proportion of carbohydrates, proteins, and 
nucleic acids.

To further reveal the primary differences between antibiotic-
resistant and antibiotic-sensitive A. baumannii, principal 
component analysis (PCA) was used to reduce the dimensionality 
of the spectra data and extract the main features. The first two 
principal components (PC1 and PC2) projected by the Raman 
spectral data accounted for 57.05% of the original variance. The 
scores plot of PC1 and PC2 suggested that the antibiotic-resistant 
and antibiotic-sensitive A. baumannii were completely separated 
in two clusters (Figure  4B). The two clusters represented a 
significant difference in Raman spectra along the PC1 score 
values. The Raman peak at 1,554 cm−1 showed a clear positive 
correlation to resistant bacteria. The loading of PC1 and PC2 
indicated that the Raman spectral difference between 

antibiotic-resistant and antibiotic-sensitive strains was 
predominantly assignable to the proteins and nucleic acids 
signals (Figure 4C). The PC1 loadings confirmed that the amide 
II Raman intensity at 1,554 cm−1 was increased for the antibiotic-
resistant A. baumannii (Figures 4A,D; Supplementary Figures S2, 
S3). The data indicate that antibiotic-resistant strains possess 
abundant amide II structures in proteins. This might reflect 
active synthesis of oxacillinase enzyme in the A. baumannii strain 
containing the oxa23 gene, even in the absence of antibiotic in 
the environment. In contrast to antibiotic-resistant A. baumannii, 
the Raman signal of nucleic acids in the antibiotic-sensitive 
strain showed a higher intensity at the 783 cm−1 peak 
(Figures 4A,D; Supplementary Figures S2, S3). Moreover, the 
average ratio of the Raman intensity for I783/I1554 (nucleic acids/
proteins) was 2.20 in the antibiotic-sensitive strain, while the 
average ratio of I783/I1554 in the antibiotic-resistant strains was 
close to 4.58 (Figure 4B).

A

B C D

FIGURE 3

Detection of multidrug-resistant Acinetobacter baumannii. (A) The identification accuracies achieved by different models using the 1,255 Raman 
spectra acquired from different A. baumannii strains. RF: random forest, SVM: support vector machine, DT: decision tree, NB: naive Bayes. (B) The 
receiver operating characteristic (ROC) curve of discriminating antibiotic-resistant bacteria by RF model based on the Raman spectra. Both the 
average AUC values of resistant and sensitive bacteria are 1. (C) The confusion matrix shows that the RF antibiotic susceptibility detection model 
distinguishes between antibiotic-resistant and -sensitive A. baumannii strains with 99.92 ± 0.06% accuracy. (D) The antibiotic predictions for 
treatment of A. baumannii by the RF model. The black boxes indicate the proportion correctly predicted.
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4. Discussion

Rapid pathogen identification and diagnosis of antibiotic 
susceptibility are critical for efficient clinical therapy and 
deceleration of AMR emergence. In this study, we  applied 
machine learning techniques to Raman spectroscopy to 
identify 12 common clinical pathogens at single-cell resolution. 
We also showed that the machine learning model can detect 
single antibiotic-resistant A. baumannii cells with high 
accuracy based on the Raman spectrum. Significantly, the 
combination of Raman spectra and machine learning could 
predict the bacterial antibiotic resistance in the absence of 
antibiotic treatment. We envision that it could be important to 
develop a method to detect the drug resistance of pathogens in 
situ. Such an approach combined with an automated system 
would rapidly and accurately identify each microbial cell in 

clinical samples, provide an opportunity for analyzing the 
biochemical and metabolic characteristics of each cell, and 
could even directly explore pathogenic ecophysiology in 
native habitats.

This study uses five machine learning algorithms (RF, SVM, 
DT, NB, and bagging) to construct prediction models. Compared 
with the accuracy of the other models, the SVM and RF models 
had the best performance. The average accuracy of the RF 
identification model to identify 12 common clinical pathogens 
was 90.73%, and the RF antibiotic susceptibility detection model 
predicted the antibiotic susceptibility of A. baumannii with an 
accuracy of 99.92%. Thus, RF is the best machine learning 
algorithm for construction of a prediction model in this study. RF 
works by various independent decision trees that vote on the 
pathogens and output the category labels for those have the 
majority vote (Biau and Scornet, 2016; Shaikhina et al., 2019). This 
method might be more robust than the single DT and bagging 

A

B D

C

FIGURE 4

Antibiotic resistance characteristics of A. baumannii single-cell Raman spectra. (A) Raman spectra of antibiotic-sensitive and antibiotic-resistant A. 
baumannii. The average Raman spectra are shown by a solid line and the standard deviations are represented by the gray shadow. The heatmaps 
indicate the spectral difference between antibiotic-resistant and antibiotic-sensitive bacteria. (B) Principal component analysis between antibiotic-
resistant and antibiotic-sensitive strains. The explained variance of the first two PCs are 35.93 and 21.12%, respectively. The confidence ellipse of 
each strain is 0.95. The color gradient represents the intensity ratio of the Raman peaks at 783 cm−1 and 1,554 cm−1 (I783/I1554). (C) The loading of PC1 
and PC2 in PCA analysis. (D) Raman intensity of antibiotic-resistant and antibiotic-sensitive strains at the 783 cm−1 and 1,554 cm−1 peaks. Box plots 
represent the median and first and third quartiles, with the whiskers representing the minimum and maximum values within 1.5 interquartile ranges 
from the first and third quartiles. Two-sided t-tests were applied to compare the statistical significance between antibiotic-resistant and antibiotic-
sensitive strains. ****p ≤ 0.0001. Each dot represents the Raman intensity of a single A. baumannii cell.
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methods (Cui et al., 2020). Moreover, RF model training takes less 
time than for DT and SVM (Parmar et al., 2019), which is a merit 
when applying this to larger datasets.

Antibiotic resistance is a consequence of the immense genetic 
plasticity of bacterial pathogens. Understanding the molecular 
mechanisms of resistance is of paramount importance to design 
strategies for curtailing the emergence and spread of resistance. 
This study lays the foundation to infer the mechanism of 
antibiotic resistance from Raman spectral signatures. Compared 
with the antibiotic-sensitive A. baumannii strain, the Raman 
spectral differences of five antibiotic-resistant strains were almost 
consistent, especially at the Raman peaks of proteins (1,554 and 
1,602 cm−1) that show significant increased intensity. Since all five 
strains contain the oxa23 gene that encodes the oxacillinase 
enzyme, the stronger protein Raman peaks might be related to 
the high expression level of oxacillinase in vivo. In addition, the 
increased phospholipids (1,445 cm−1), polysaccharides and 
proteins (860–918 cm−1 and 1,330–1,367 cm−1) in antibiotic-
resistant A. baumannii might promote changes in the bacterial 
cell membrane, resulting in enhanced biofilm formation 
(Ramirez-Mora et al., 2019; Gieroba et al., 2020; Park et al., 2021). 
Because of the complex and high-dimensional nature of the 
spectra, representing many biomolecules, it remains a challenge 
to assign a Raman spectrum wavenumber directly to a specific 
biomolecule to infer the molecular mechanism of bacterial 
antibiotic resistance. More efforts are required to develop 
computational methods to allow mapping between Raman 
spectra and biomolecular profiles. Meanwhile, the integration of 

big data obtained from single-cell genomes, transcriptomes, 
proteomes, and metabolomes with machine learning would assist 
in revealing the bacterial drug-resistance mechanism based on 
the Raman spectra.

The antibiotic-resistant A. baumannii strains used in this 
study have multiple drug resistance, including imipenem, 
ampicillin, sulfamethoxazole, ceftriaxone, and levofloxacin 
(Supplementary Table S1). This multiple drug resistance makes 
clinical anti-infective treatment more difficult and confers one of 
the most serious threats to public health. The RF antibiotic 
susceptibility detection model built in this study can only 
distinguish resistant strains from sensitive strains. This model is, 
thus far, unable to discern the specific antibiotic resistance. 
Future study will focus on applying deep learning in modeling to 
determine the spectral characteristics of resistance to each 
specific antibiotic. Such a technique would allow for accurate 
treatment and would limit MDR.

Although Raman spectroscopy has not yet been applied to 
pathogenic identification and antibiotic susceptibility 
detection in clinical practice, a standardized Raman spectral 
database of pathogenic microorganisms covering more cell 
physiological states, growth media and conditions, resistant 
and susceptible strains, and greater diversity in antibiotic 
susceptibility profiles would bridge the gap between academic 
research and clinical implementation. Raman spectroscopy 
combined with technologies such as hollow-core optical fiber 
or microscopy would enable the analysis of a single pathogen 
without time-consuming culturing and complex laboratorial 

TABLE 1 Assignment of Raman bands in difference spectra between antibiotic-resistant and antibiotic-sensitive Acinetobacter baumannii.

Strains Wavenumber (cm−1) Assignment/ wavenumber (cm−1) Reference

Resistant 860–918 Polysaccharides (868), hydroxyproline, tryptophan (879–880), protein 

(890), saccharide (891), glucose (913)

Hanlon et al., 2000; Krafft et al., 2005; 

Movasaghi et al., 2007; Kendall et al., 2011

1,330–1,367 CH2/CH3, twisting, collagen (1336), tryptophan (1359), glucose (1343), 

protein (1270–1,335)

Cheng et al., 2005; Krafft et al., 2005; 

Movasaghi et al., 2007; Ramirez-Mora 

et al., 2019

1,445 CH2 /CH3 of carbonic acid, cholesterol (1440–1,460), phospholipids 

(1445)

Maquelin et al., 2002; Töpfer et al., 2019; 

Park et al., 2021

1,554 Amide II of protein Faoláin et al., 2005; Movasaghi et al., 2007

1,602 C–C, C–N of protein (1061) Maquelin et al., 2002; Kuhar et al., 2021

Sensitive 729 Adenine of DNA/RNA(728) Neugebauer et al., 2010

783 Cytosine, uracil ring of DNA/RNA Maquelin et al., 2002; Movasaghi et al., 

2007; Kendall et al., 2011

811 O–P–O of lipids Notingher et al., 2003

1,002 Phenylalanine of protein Töpfer et al., 2019

1,099 CC skeletal and C–O–C glycosidic link (1098) Maquelin et al., 2002

1,125 C–C skeletal of acyl backbone in lipid (1126) Cheng et al., 2005

1,281 Amide III of protein CH2 wagging vibrations from glycine backbone 

(1280)

Dukor, 2001

1,576 Guanine, adenine of DNA/RNA (ring stretching) (1575) Maquelin et al., 2002
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analysis (Neugebauer et al., 2015). The Raman spectral dataset 
of clinical strains would promote the clinical use of a portable 
device for field tests. Non-destructive, culture-independent, 
label-free, and rapid identification of pathogenic 
microorganisms and the detection of antibiotic susceptibility 
in patient samples in a single step would be  a revolution, 
improving patient outcomes.
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