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Anthropogenic activities are modifying the oceanic environment rapidly 

and are causing ocean warming and deoxygenation, affecting biodiversity, 

productivity, and biogeochemical cycling. In coastal sediments, anaerobic 

organic matter degradation essentially fuels the production of hydrogen sulfide 

and methane. The release of these compounds from sediments is detrimental 

for the (local) environment and entails socio-economic consequences. 

Therefore, it is vital to understand which microbes catalyze the re-oxidation 

of these compounds under environmental dynamics, thereby mitigating their 

release to the water column. Here we use the seasonally dynamic Boknis Eck 

study site (SW Baltic Sea), where bottom waters annually fall hypoxic or anoxic 

after the summer months, to extrapolate how the microbial community and its 

activity reflects rising temperatures and deoxygenation. During October 2018, 

hallmarked by warmer bottom water and following a hypoxic event, modeled 

sulfide and methane production and consumption rates are higher than in 

March at lower temperatures and under fully oxic bottom water conditions. 

The microbial populations catalyzing sulfide and methane metabolisms are 

found in shallower sediment zones in October 2018 than in March 2019. DNA-

and RNA profiling of sediments indicate a shift from primarily organotrophic 

to (autotrophic) sulfide oxidizing Bacteria, respectively. Previous studies using 

data collected over decades demonstrate rising temperatures, decreasing 

eutrophication, lower primary production and thus less fresh organic matter 

transported to the Boknis Eck sediments. Elevated temperatures are known to 

stimulate methanogenesis, anaerobic oxidation of methane, sulfate reduction 

and essentially microbial sulfide consumption, likely explaining the shift to a 

phylogenetically more diverse sulfide oxidizing community based on RNA.
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Introduction

Coastal marine environments play a pivotal role for element 
transformations and local economy. They are, however, very 
susceptible to anthropogenic activities. Human-triggered changes 
include increasing atmospheric carbon dioxide mole fractions 
accompanied by rising temperatures, ocean acidification 
(increasing carbon dioxide levels) and ocean deoxygenation 
(declining oxygen concentrations; Schmidtko et al., 2017; Brauko 
et al., 2020). Ongoing deoxygenation has promoted the expansion 
of hypoxia (<62.5 μM oxygen) and anoxia, affecting oceanic 
biodiversity, productivity and biogeochemical cycling (Breitburg 
et al., 2018; Brauko et al., 2020).

Marine sediments cover ~70% of Earth’s surface and are the 
largest long-term carbon sink on Earth (LaRowe et al., 2020). 
Theoretically, microbial degradation of sedimentary organic 
matter (OM) occurs along a vertical redox cascade, with oxygen 
as an electron acceptor in the oxic layer followed by alternative 
electron acceptors, i.e., nitrate, metal oxides and sulfate, as well as 
fermentative processes and methanogenesis (Middelburg, 2018); 
although different redox reactions appear to occur in parallel, if 
sufficient OM is available (e.g., Sela-Adler et al., 2017). Depending 
on the microbial metabolism, a variety of reduced metabolic 
products are released from the microbial cells: hydrogen sulfide is 
biologically produced if OM degradation or anaerobic oxidation 
of methane (AOM) are coupled to sulfate reduction (SR) while 
methane is generated by methanogens in the final step of 
sedimentary OM degradation (Middelburg, 2018). These reduced 
solutes diffuse upwards in the sediment column until they come 
into contact with available electron acceptors and are oxidized. 
Although microbes can generate energy by exploiting this 
chemical disequilibrium, a fraction of these reduced species may 
not be oxidized and emitted into the overlying bottom waters. 
Some of these products like hydrogen sulfide and the greenhouse 
gas methane have negative impacts on the function of immediate 
marine ecosystems and beyond. For example, hydrogen sulfide is 
toxic and can cause marine species’ mortality, affecting the food 
webs (Vaquer-Sunyer and Duarte, 2008) and posing a threat to 
fishery-based economics (Diaz and Rosenberg, 2008; Levin et al., 
2009). Recent modeling studies indicate that the benthic release 
of toxic sulfide may be intensified by ongoing ocean warming and 
deoxygenation (Wallmann et al., 2022b).

The shallow (28 m) Boknis Eck time-series station1 in the 
Eckernförder Bay (SW Baltic Sea) is a well-known site to study the 

1 www.bokniseck.de

benthic-pelagic coupling of nutrient cycles and redox processes. 
The OM contents of Boknis Eck sediments are overall high and 
phytoplankton blooms in spring, summer and autumn provide 
high OM fluxes to the seafloor (Smetacek et al., 1984; Smetacek, 
1985). Enhanced OM degradation leads to elevated respiration 
rates, increased oxygen demand, consolidating developed hypoxia 
or even anoxia during certain times of the year (Lennartz et al., 
2014). Sluggish deep-water renewal and restricted seafloor 
topography amplify local oxygen depletion (Dietze and Löptien, 
2021). High benthic degradation rates under anoxic conditions 
support increased rates of SR and methanogenesis producing 
hydrogen sulfide and methane, respectively (Treude et al., 2005; 
Bertics et al., 2013; Maltby et al., 2018). However, over the last 
decades Boknis Eck has been exposed to environmental change 
and experienced a clear shift towards warmer water temperatures, 
higher frequencies of temperature anomalies, and an ongoing 
decline in bottom water oxygen levels, despite decreasing 
eutrophication and primary production (Lennartz et al., 2014). 
We here compare and discuss geochemical and microbiological 
data from Boknis Eck sediments exposed to warmer, previously 
hypoxic bottom waters (October 2018) with those subjected to 
colder, fully oxic bottom waters (March 2019). We  aim at 
understanding how environmental changes, in particular 
temperature and related deoxygenation, affect the microbial 
community, as reflected by DNA-and RNA-profiling, and their 
buffer ability to mitigate hydrogen sulfide and methane emissions 
from sediments.

Materials and methods

Discrete seawater samples for the determination of 
dissolved nutrients (nitrate, nitrite, ammonium, phosphate and 
silicate), oxygen and methane concentrations were taken on a 
monthly basis between January 2018 and April 2019 as part of 
the regular sampling program at Boknis Eck (Eckernförde Bay, 
SW Baltic Sea, Germany) (54°31.20’N, 10°02.50′E). 
Furthermore, water column samples were taken for the analysis 
of components of dissolved organic matter (DOM) including 
dissolved amino acids and dissolved organic carbon (DOC), as 
well as nano-and pico-plankton cell counts as part of the regular 
sampling program in March and October from 2015 to 2019 
with DOC measurements starting only in October of 2016 (see 
Piontek et al., 2022 for analyses). Nano- (2–20 μM) and pico-
plankton (< 2 μM) cell counts were divided into two groups 
based on the pigments chlorophyll a (Chl a) and phycoerythrin 
(phy). The latter group includes small cyanobacteria such as 
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Synechococcus. DOM and phytoplankton cell counts were 
integrated over the whole water column between the depths 1 m 
and 25 m. Additionally, in two sampling campaigns in autumn 
(23rd October) 2018 and spring (15th March) 2019, a total of 
seven sediment cores were collected at Boknis Eck using a 
minicorer (MIC) device. Hydrogen sulfide, sulfate, manganese 
and iron (Fe) concentrations, total alkalinity and chloride were 
determined for the sediment pore waters. Fe oxide and sulfide 
minerals were analyzed for the sediments. A non-steady state 
model was set up to evaluate pore water data and quantify 
metabolic rates for Boknis Eck sediments. Microbiological 
analyses were conducted for the sediment layers down to a 
maximum of 26 cm. They included bacterial and archaeal 16S 
tag sequencing of DNA and RNA (cDNA), cell number 
enumeration, CARD-FISH (catalyzed-reported deposition-
fluorescence in situ hybridization) and qPCR (quantitative 
PCR). An overview of the analyses conducted for the different 
sediment cores is given in Supplementary Table S1. All 
procedures for geochemical analyses, the reactive transport 
model and microbiological analyses are detailed in the 
Supplementary material and methods S1–S4.

Results and discussion

In the current study we  investigated how the sedimentary 
microbial community and its catalytic ability to buffer sulfide and 
methane release from the sediments is affected by ongoing 
environmental modifications. For studying seasonal effects, 
we used material collected in October 2018 and March 2019 and 
included numerous environmental factors into our analyses. This 
included water chemistry (Supplementary Figure S1) and 
phytoplankton data as well as total amino acid concentrations 
(Supplementary Figure S2) from the water column (surface to 
bottom waters at 25 m). Sediments were investigated down to 
26 cm sediment depth and analyses combined pore water 
chemistry (Figure  1), solid phase reactive iron species 
(Supplementary Figure S3), cell numbers and relative proportions 
of active sedimentary microbes (Figure 2). Modeled metabolic 
rates for sulfate reduction (SRR), AOM, sulfide oxidation (SOR) 
and methanogenesis (Figures 3, 4; Supplementary Figures S4, S5) 
were linked to 16S tags of bacterial and archaeal transcripts 
(Supplementary Figures S6, S7). Additionally, we  compared 
microbial RNA-profiling data, considered to include currently 
active communities, with DNA-profiling expected to reflect 
communities adapted to current and previous environmental 
conditions (Figure 5).

General characteristics at Boknis Eck

Environmental features of the water column
Our water column data for 2018 and 2019 

(Supplementary Figure S1) agreed with the typical seasonal 

variability of water temperature, salinity, nutrient concentrations, 
and methane levels as also observed between 1957 and 2013 
(Lennartz et al., 2014; Ma et al., 2020; Gindorf et al., 2022). Just 
before our sediment sampling campaign in October 2018, a 
hypoxic event started to develop in 25 m water depth (67 μM 
oxygen in August 2018) and reached minimum (i.e., suboxic) 
oxygen concentrations (6 μM) by mid-September 
(Supplementary Figure S1). Then, oxygen concentrations in 25 m 
water depth increased to 194 μM by mid-October 2018 
(Supplementary Figure S1) indicating that the deep water at 
Boknis Eck had returned to oxic conditions. In March 2019 near 
bottom water oxygen concentrations in 25 m water depth were 
276 μM (Supplementary Figure S1).

Nano-and pico-plankton cell counts 
(Supplementary Figures S2A,B) were in line with recent work, 
which has demonstrated an intensification of cyanobacteria 
blooms over the last decades (Beltran-Perez and Waniek, 2022). 
The shift in the composition of phytoplankton can lead to a 
difference in the composition of the particulate organic matter 
(POM) reaching the seafloor, but we currently have no data from 
the seafloor detailing the POM composition. The concentration of 
total dissolved amino acids (TDAA) in the water column, here 
used as a tracer for degraded OM (Gaye et al., 2022) reached 
maximum concentrations in October 2018 
(Supplementary Figure S2C), coinciding with maximum 
picoplankton cell numbers (Supplementary Figure S2B). The 
higher microbial OM turnover in summer matched data from 
previous field and laboratory studies positing a temperature 
dependence of the carbon flux from the autotrophic into the 
heterotrophic community in the Baltic Sea (von Scheibner et al., 
2018; Bunse et al., 2019). How these shifts in the phytoplankton 
community affect the POM rain rate and which proportion and 
quality of the OM actually reaches the sediments remains unclear. 
However, it is generally assumed that the highest particulate 
organic carbon (POC)-flux is generated in February/March with 
the onset of maximum productivity (Wasmund, 2017; Wallmann 
et al., 2022a). For more discussions on water column properties 
see Supplementary Material.

Geochemistry of the pore water/sediments
The geochemical data obtained for pore waters of sediments 

from October 2018 and March 2019 included hydrogen sulfide, 
sulfate, iron (Fe), manganese, alkalinity, and chloride. These data 
are summarized in Figure  1 and are discussed in more detail 
together with sedimentary reactive Fe (Supplementary Figure S3) 
and below under modeled metabolic rates.

In summary, the pore water profiles obtained in October 2018 
were overall similar to those observed in March 2019. However, 
hydrogen sulfide concentrations above 12 cm were generally lower 
in March 2019 than in October 2018 and the surface sediment 
(0–1 cm) was non-sulfidic and characterized by a peak in dissolved 
Fe in March 2019 (Figures  1A–C; 
Supplementary results and discussion). Thus, redox conditions in 
surface sediments were less reducing in March 2019 which is in 
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accordance with higher bottom water oxygen concentrations 
(Supplementary Figure S1). Less reducing conditions in March 
2019 are also reflected in slightly lower abundances of culturable 
Fe(III)-reducing microorganisms that degrade OM or oxidize H2 
in the sediments in March than in October (see 
Supplementary Figure S8; Supplementary results and discussion). 
In contrast to previous years, where hydrogen sulfide enrichment 
(>1 mM) did not start until about 10 cm sediment depth (Preisler 
et al., 2007; Dale et al., 2013), hydrogen sulfide already accumulated 
considerably (>1 mM) in the uppermost 2.5 cm in October 2018 
and 5.5 cm in March 2019 (Figures 3A,C) suggestive of a higher 
sulfide flux relative to the years before. The alkalinity gradient in 
surface sediments was highest in October 2018 (Figures 1D,F) and 
may point to elevated SRR and AOM, since these processes 
produce considerable amounts of alkalinity (Meister et al., 2022 
and references therein). More so, the alkalinity gradient particularly 
for 2018 but also 2019 was considerably steeper in shallower 
regions than in sediments monitored in 2010 (Dale et al., 2013).

Modeled sedimentary metabolic rates
A sediment transport-reaction model was applied to relate the 

observed seasonal variability to changing boundary conditions (i.e., 
bottom water oxygen, temperature and salinity, 
Supplementary Figure S1) and to derive microbial turnover rates of 
carbon and sulfur. Generally, the model achieved a good fit for 
October 2018 and March 2019 (Supplementary Figures S9, S10). 
However, in individual cores taken in October 2018 chloride 
depletion, dissolved sulfate and sulfide concentrations were not 
reproduced by the model (Figures 1D–F, Supplementary Figure S9) 
suggesting a strong small-scale spatial variability and rapid 
microbial processes restoring the diffusion-controlled sulfate 
profile. Possibly, the core was affected by deep-reaching 
bio-irrigation, since previous bromide tracer studies with Boknis 
Eck cores revealed that bottom water may be pumped down to 
sediment depths of up to 15 cm by benthic biota or other transport 
processes such as gas bubble ascent (Dale et  al., 2013). These 
additional transport processes provide an episodic supply of oxygen 

A B C

D E F

FIGURE 1

Pore water chemistry for MIC1 (Deployment, D1) for October 2018 (A,D), MIC2 (D2) for October 2018 (B,E), and for MIC1 (D1) for March 2019 (C,F).

https://doi.org/10.3389/fmicb.2022.1096062
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Perner et al. 10.3389/fmicb.2022.1096062

Frontiers in Microbiology 05 frontiersin.org

and sulfate for deep sediment layers that are usually not exposed to 
these electron acceptors. They probably induce microbial oxidation 
of reduced species at large depth that is not considered in the model 
due to the transient and locally restricted nature of these events. 
Transient re-oxidation of reduced substances is also indicated by 
elevated concentration of Fe(III)HCl (i.e,, poorly crystalline Fe 
oxide minerals) in subsurface sediments (Supplementary Figure S3) 
and from the enrichment of microaerophilic Fe(II)-oxidizing 
bacteria from the sediments (Supplementary Figures S11, S12). 
Poorly crystalline Fe(III) minerals undergo rapid conversion to 
pyrite (Canfield et al., 1992) and are, thus, not stable under the 
highly sulfidic conditions prevailing at this depth.

Reaction rates were plotted in Supplementary Figures S4, S5 
and listed in the Supplementary Table S2. Depth-integrated POC 
degradation, SRR, SOR, AOM and rates for methanogenesis were 
in the same order of magnitude as those previously reported for 
Boknis Eck sediments, albeit some differences were noted (Treude 
et al., 2005; Preisler et al., 2007; Bertics et al., 2013; Dale et al., 2013; 
Maltby et al., 2018). Considerably higher rates modeled for October 
2018 relative to March 2019 sediments were in line with higher 
bottom water temperatures (Supplementary Figure S13). The 
picture that emerges from the rate vs. depth plot indicates that the 
highest rates are encountered in the surface layer where POC is 
degraded and sulfide is oxidized by a range of processes (see 
Supplementary Results and Discussion). This result is consistent 
with a large range of observations showing that fresh phytoplankton 
biomass deposited at the sediment surface is much more reactive 
than sedimentary OM buried below. The model also predicts that 
SR and methanogenesis occurred in the surface layer, which is again 
due to the high reactivity and large depositional POC flux at the 

surface that allows for an overlap of different processes that are 
otherwise spatially separated. SR is the dominant process in the 
underlying sediment section followed by methanogenesis in the 
sulfate-depleted section at the base of the model column. AOM rates 
exceeded rates of methanogenesis since large amounts of methane 
appear to be delivered across the lower boundary of the model via 
upward diffusion. Hence, most of the AOM is driven by upwards 
diffusing methane rather than methanogenesis within the model 
column (reaching down to 40 cm) and is likely fueled by the large 
stock of sedimentary POM that has accumulated during higher 
eutrophication periods in the past. Noticeable is also that the peaks 
of modeled SOR, SRR, AOM and methanogenesis are shallower for 
sediments from October 2018 than for those from March 2019 
(Figures  3, 4; see also Supplementary Results and Discussion). 
Moreover, higher sediment temperatures in October 2018 compared 
to March 2019 induced an increase in SR and methanogenesis such 
that more reduced metabolites (hydrogen sulfide and methane) 
were formed and transported towards the sediment surface.

Vertical zonation of active prokaryotes 
(RNA-profiling) in sediments

As expected, cell numbers in sediments of both studied 
seasons and years decreased with depth (Figure 2A). For October 
2018, less bacterial cells were active in the deeper sediments than 
in the surficial sediment regions, for March 2019 this was not the 
case (Figure 2B). According to CARD-FISH, in October 2018 
active bacterial cells decreased considerably from 74% (2–3 cm) to 
58% (20–22 cm), while active archaeal cells increased from 3 to 
11% with depth (Figure 2B). The same approach demonstrated 
only minor changes between the relative abundance of Bacteria 

A B

FIGURE 2

(A,B) Cell numbers for sediment depths according to DAPI staining, CARD-FISH and qPCR data. Cells counted are the sum of cells from pore 
water and those detached from sediment particles by ultrasonication.
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(71 to 70% for the same depth horizons) for March 2019 but an 
increase of the archaeal proportion from 3 to 9% (Figure 2B). The 
relative abundance between Bacteria and Archaea, as documented 
by qPCR, showed the same trend: Archaea increased with depth 
from 1 to 11% for October 2018 and to 4% in March 2019.

The microbial community compositions and the metabolic 
potentials identified for the different taxa in the Boknis Eck 
sediments largely followed the vertical stratification guided by the 
redox cascade commonly observed in marine sediments (cf. 
Middelburg, 2018). According to changes in community 

A B

C D

FIGURE 3

Taxonomy plots of RNA-based 16S tags of potential sulfate-reducing Bacteria (A,B) and anaerobic methane oxidizers (C,D) alongside modeled 
rates of SR and AOM for October 2018 (A,C) and March 2019 (B,D).
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compositions based on 16S tags from transcripts, three depth 
zones were distinguished (Supplementary Figures S6A–D, S7A,B, 
details in Supplementary results and discussion): Zone 1 marked 
the highly reactive surface layer hosting a wide range of aerobic 
and anaerobic microorganisms, the underlying anoxic zone 2 was 
dominated by fermenting and sulfate reducing microbes, while the 
deepest zone 3 hosted microbial consortia conducting AOM. Zone 
1 (0–2 cm) was typically hallmarked by autotrophic sulfide-
oxidizing Beggiatoales (primarily Candidatus Isobeggiatoa, 
Candidatus Parabeggiatoa) (Bacteria) (missing in MIC1 10/2018) 
and aerobic ammonia-oxidizing Nitrosopumilales (Archaea) as 

prominent clades (Supplementary Figures S6A–D, S7A,B). In the 
October 2018 sediments Nitrosopumilales and Beggiatoales 
composed up to 32 and 13% of the archaeal and bacterial 16S tags 
of transcripts, respectively. In contrast, in the 2019 sediments 
Beggiatoales were a very prominent bacterial clade (46%) and 
Nitrosopumilus reached maxima of 18%. This layer, as well as zone 
2 was accompanied by a mix of organotrophs, including mostly 
fermenters producing H2, CO2, and acetate, sulfate-reducing 
Bacteria (SRB) (primarily SRB-SEEP1 of the Desulfobacteria) as 
well as a phylogenetically diverse mix of potential sulfide-
oxidizing (autotrophic) Bacteria (Supplementary Figures S6A–D). 

A B

C D

FIGURE 4

Taxonomy plots of RNA-based 16S tags of Bacteria potentially oxidizing reduced sulfur compounds (A,B) and Archaea (C,D) alongside modeled 
rates for SOR and methanogenesis for October 2018 (A,C) and March 2019 (B,D).
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These Bacteria probably rely on oxygen that is episodically 
transported to large sediment depth - as indicated by the disturbed 
chloride profile in MIC2 (Supplementary Figure S9) and the 
presence of poorly crystalline Fe (oxyhydr)oxides in subsurface 
sediments (Supplementary Figure S3). In zone 3 the potential SRB 
shifted from mostly uncultured SRB-SEEP1 (prevailing in zone 1 
and 2) to Desulfatiglans (up to 20%; Supplementary Figures S6A–D).

Based on 16S tags from transcripts, considerably less 
archaeal than bacterial taxa were involved in the vertical 
shifts. In all depth horizons Archaea of the Bathyarchaeia, 
Methanofastdiosa, Woesearchaeota, Lokiarchaeota, and 
marine benthic Group D/DHVEG-1 were identified in 
different proportions (Supplementary Figures S7A,B). These 
members are potentially associated with versatile metabolisms 

including thiosulfate oxidation, acetogenesis, fermentation, 
methylotrophic methanogenesis, hydrogen-dependent carbon 
dioxide fixation as well as dissimilatory nitrite and SR 
(Supplementary results and discussion). Candidatus 
“Methanofastidiosa” seemed to be  displaced by potential 
ammonia-oxidizing Nitrosopumilus in zone 1 and by  
ANME-1 and ANME-2 (ANaerobic MEthane oxidizers) 
in zone 3.

The above-described vertical zones 2 and 3 were found in 
all sediment cores but varied in depth depending on the time 
of the year and likely environmental conditions. The zone 3, 
where modeled AOM rates peaked, was generally shallower in 
the October 2018 than the March 2019 samples 
(Supplementary Figures S6A–D, S7A,B).

A B

FIGURE 5

Differential abundance analyses for Bacteria (A) and Archaea (B) on family and order level, respectively. Gray bars show the value for “Mean 
decrease Gini,” which is a measure for the importance of the taxon for the difference between the samples. Colored bars show the relative 
abundance per sediment core (averages and standard deviation) for the different taxonomic groups. Stars illustrate the significance of the 
difference between cores. Bacteria: A: Pirellulaceae, B: Latescibacterota, C: Bacteroidetes_BD2–2, D: Arenicellaceae, E: Anaerolineaceae, F: 
Sandaracinaceae, G: Flavobacteriaceae, H: Sulfurovaceae, I: OM190, J: Woeseiaceae, K: Thiotrichaceae, L: Sulfurimonadaceae, M: Calditrichaceae, 
N: Sva0485, O: SB − 5, P: Desulfobulbaceae, Q: Ectothiorhodospiraceae, R: Methylomonadaceae, S: Clostridiaceae, T: B2M28. Archaea: A: 
Micrarchaeales, B: Woesearchaeales, C: Methanofastidiosales, D: Aenigmarchaeales, E: Bathyarchaeia, F: Marine Benthic Group D and DHVEG−1, 
G: Odinarchaeia, H: Thermoplasmatota, I: Iainarchaeales, J: Methanosarcinales.
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Seasonal dynamics of biologically 
controlled sulfide and methane turnover 
rates and RNA-profiling for October 2018 
and March 2019

When comparing the modeled rates with the taxa distributions 
(Figures 3, 4) and cell numbers (Figure 2) two things stand out: (i) 
the modeled rates were considerably higher for October 2018 than 
for March 2019 sediments, matching markedly higher cell 
numbers for 2018 and (ii) the modeled maxima for SOR, SRR, 
rates of AOM, and methanogenesis were shallower for October 
2018 than for March 2019, consistent with vertical shifts of taxa 
defining vertical zones.

Higher sulfide and methane production and 
oxidation rates in October 2018 than in March 
2019

Modeled SRR maxima in the first 2 cm were about 10-fold 
higher for October 2018 than for March 2019 (Figures 3A,B). In 
these depth ranges 16S tags of transcripts related to SRB were up 
to 3-fold higher and total cell numbers up to 20% higher for the 
October 2018 core. The estimated per cell SRR for October 2018 
were 6-fold higher in the surface and 2-fold higher in zone 3 
relative to the March 2019 sediment (Supplementary Figure S14) 
supporting a higher sulfide flux from sediments in fall 2018. 
Relative to previously measured SRR (Treude et al., 2005; Bertics 
et al., 2013), the more recent modeled SRR (Figures 3A,B) appear 
to be up to 30% higher.

Modeled maxima of SOR were about 3-fold higher in October 
2018 (Figures 4A,B), matching the higher suggested sulfide fluxes. 
The estimated per cell SOR were 20-fold higher in October 2018 
than in March 2019 in the 0–1 cm sediment horizons, but below 
1 cm were quite comparable for the two seasons 
(Supplementary Figure S14). Hence, with the higher sulfide flux 
in October 2018, it is not surprising that below 1 cm, sulfide was 
accumulating in October 2018 faster and in shallower sediment 
regions than in March 2019 (Figures  1A,C). In March 2019, 
Beggiatoaceae dominated the top 2 cm sediment layers, while in 
October they only made up 4% of the 16S tags from transcripts 
(Figures 3A,B; Supplementary Figure S6). Work at Boknis Eck 
dating back 16 years, already suggested that the abundant 
Beggiatoaceae only accounted for a comparatively small fraction 
of the sulfide removal in the sediments (Preisler et  al., 2007). 
However, Beggiatoaceae also actively avoids too high sulfidic 
conditions (Dunker et al., 2011), albeit requiring sulfide as an 
electron donor. This compares with their presence linked to lower 
sulfide fluxes in March 2019, while higher sulfide fluxes in October 
2018 were reflected rather by a phylogenetically more diverse 
potential sulfide oxidizing community as indicated by the presence 
of, e.g., uncultured Thiotrichaceae, Ectothiorhodospiraceae, 
Sulfurospirillaceae, Sulfurovaceae and Sulfurimonadaceae 
(Figure 4). In summary, this indicates that in October 2018 the 
sulfide oxidizing community was phylogenetically more diverse 
and exhibited higher SO turnover rates than in March 2019.

Methanogenesis rates were roughly 11-fold (Figures 4C,D) 
higher in October 2018 than in March 2019 sediments. The 
methanogenesis peaks coincided with an enrichment of 
Woesarchaeota and Nitrosopumilus 16S tags of transcripts 
(Figures  4C,D). Neither taxon is known to catalyze 
methanogenesis. Although Woesearchaeota co-occurrence 
network analyses have implied a syntrophic relationship of 
Woesearchaeota with methanogens (Liu et al., 2018). Interestingly, 
modeled methanogenesis peaks also co-occurred with modeled 
SRR peaks (discussion on competitive and non-competitive 
substrates in Supplementary Material).

Modeled AOM rates peaking in and below 20 cm were 
two-fold higher in October 2018 (Figures 3C,D). At this depth 
range total cell numbers for the two seasons were relatively similar, 
but ANME-1b 16S tags of transcripts had a nearly two-fold higher 
relative abundance in the October 2018 sediments at 20–22 cm 
depth (Figures 3C,D). Estimated per cell AOM rates remained 
comparable for both tested years and depths 
(Supplementary Figure S14) but given that more methane 
consuming Archaea were present in October 2018, the total 
methane consumption can be  considered higher. For more 
discussions on estimated per cell rates see the 
Supplementary Material. The higher modeled rates for the 
October 2018 sediments were likely related to elevated sediment 
temperatures (Supplementary Figure S15) and the fresh supply of 
POC following the phytoplankton bloom.

A shallower biological sulfide and methane 
filter in October 2018 than in March 2019

The maxima of the modeled SOR, SRR, AOM, and 
methanogenesis rates were shallower in October 2018 than in 
March 2019 (Figures  3, 4; Supplementary Figures S4, S5). 
Correspondingly, taxa known to catalyze the respective chemical 
reactions, i.e., SRB and ANME were also in shallower depth 
horizons (Supplementary Figures S6, S7). Temperature plays a 
major role for stimulating metabolic processes and 
methanogenesis derived methane emission is markedly increased 
with temperature (e.g., Yvon-Durocher et al., 2014; Jansen et al., 
2022). Bottom water temperatures for October 2018 were higher 
(t = 13°C) than in March 2019 (t = 5°C; Supplementary Figure S1) 
and likewise were modeled sediment temperatures 
(Supplementary Figure S15), stimulating methane production. 
The higher methane concentration in the sediments fuel AOM, 
which in turn stimulates SRR, producing more sulfide, which can 
be  utilized by sulfide oxidizing Bacteria. For Boknis Eck, this 
scenario results in potential sulfate reducing and sulfide oxidizing 
Bacteria and methane oxidizing Archaea as well as their respective 
modeled rates (Figures  3, 4) alongside with more produced 
alkalinity being located in shallower regions in October 2018 than 
in March 2019 (Figures  1D,F). Similarly, a recent study has 
suggested that increased temperature amplified negative effects at 
the base of coastal biogeochemical cycling (Seidel et al., 2022). In 
that study elevated temperatures, reduced oxygen concentrations 
alongside with decreased electron acceptor availability and higher 
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SRR, moved anaerobic reactions and more diversified microbes 
closer to the sediment-water-interface (Seidel et al., 2022).

Despite these obvious dynamics between the two tested 
seasons, we did not observe significant differences (value of p 
<0.01) between the overall bacterial communities from October 
2018 and March 2019 based on 16S tags from transcripts. Yet, 
analyses only consider the community across the core as a whole, 
but not the vertical changes within the cores. However, a 
significant difference was observed between the archaeal 
communities based on RNA-profiling for the two seasons (value 
of p <0.01) suggesting that the Archaea reacted to environmental 
changes by altering their community, while the Bacteria appeared 
to primarily act by shifting vertically.

Effects of biologically controlled 
emissions based on RNA- and 
DNA-profiling

There were several significant differences (value of p <0.001) 
between the RNA- and DNA-based 16S tag communities. These 
likely also reflected the different degrees of stability of microbial 
DNA (hours to days and up to years and even millennia under 
favorable conditions) and RNA (minutes) once released from the 
cells into the environment (Torti et  al., 2015; Ottesen, 2016). 
Additionally, DNA-based profiling targets living and dead cells as 
well as extrachromosomal DNA, whereas RNA detects only 
metabolically active and dormant cells (see 
Supplementary results and discussion). However, when comparing 
data derived from DNA-profiling with that of RNA-profiling, 
some general uncertainties need to be considered, which include 
the ratio between rRNA and DNA encoding rRNA genes in the 
environmental sample, expression levels and copy number of 16S 
rRNA genes, and different genome sizes.

16S tag enrichments in RNA
The most abundant Bacteria and Archaea marking significant 

differences between the DNA-based and RNA-based community 
profiling are highlighted in Figure 5. The 16S tags enriched from 
transcripts relative to those from DNA likely reflect the current 
advantageous environmental conditions for members of these 
phylotypes. For Bacteria, these primarily included members of the 
organotrophic Pirellulaceae, methane oxidizing 
Methylomonadaceae and potentially autotrophic sulfide oxidizers 
like Thiotrichaceae, Sulfurimonadaceae, Ectothiorhodospiraceae 
and to a lesser extent also Chromatiaceae (Figure  5A). This 
suggests that environmental conditions have changed over time to 
support phylogenetically more diverse sulfide oxidizing microbes 
apparently (as shown above) turning over more sulfide.

The Archaea that were significantly enriched in RNA over DNA 
included mostly Methanofastidiosales, putatively operating as 
obligate H2-dependent methylotrophic methanogens 
(Vanwonterghem et  al., 2016), Odinarchaeia, anaerobic 
heterotrophs (MacLeod et al., 2019), Bathyarchaeia (Zhou et al., 

2018) and anaerobic methane oxidizing Methanosarcinales (ANME; 
Kendall and Boone, 2006; Figure 5B; Supplementary Figure S7). The 
versatile metabolisms of the anaerobic Bathyarchaeia include 
acetogenesis, methane metabolism, as well as dissimilatory nitrite 
and SR (Zhou et  al., 2018). They can utilize detrital proteins, 
polymeric carbohydrates, fatty acids, aromatic compounds, 
methane (or short chain alkane) and methylated compounds. The 
enrichment of ANME in the RNA-profiling supports the above-
mentioned strengthening of the biological methane turnover in 
these sediments.

16S tag enrichments in DNA
In contrast, the 16S tags strongly enriched in DNA but 

depleted in the RNA were likely relicts from a previous phase 
where environmental conditions were more beneficial for 
respective taxa. These DNA based 16S tags resembled mainly 
organotrophs, i.e., Anaerolineaceae (Chloroflexi), 
Desulfobulbaceae, Calditrichaceae, Woesiaceae, and 
Flavobacteriaceae as well as one group of sulfur oxidizers, i.e., 
Sulfurovaceae (Figure 5A). According to RNA based 16S tags, 
members of different Desulfobacteriaceae primarily dominated 
the SRB in the sediment cores. DNA based 16S tags from zone 
2, identified additionally Desulfuromonadia (an elemental 
sulfur reducer), Desulfocapsa (disproportionates elemental 
sulfur and thiosulfate) and uncultured Desulfobulbaceae for 
October 2018 and Desulfobulbaceae in March 2019 on a level 
of significance (data not shown). This discrepancy between 
16S tags derived from RNA and DNA could be explained by 
temporal modifications in environmental conditions, not just 
reflected by seasonality, favoring different organic degradation 
metabolisms of distinct SRB. For example, Desulfobulbaceae - 
recognized in both seasons and by RNA and DNA  - can 
directly oxidize substrates released from extracellular 
hydrolysis like sugars and amino acids (Kuever, 2014) and 
have to compete with fermenters for these substrates. 
Flavobacteriaceae utilize macromolecules such as 
polysaccharides and proteins (Mcbride, 2014). Most members 
of Anaerolineaceae fermentatively utilize sugars and 
proteinaceous compounds. Although external electron 
acceptors are not observed for their growth they can use 
hydrogenotrophs as a hydrogen(electron)-scavenging system 
(Yamada and Sekiguchi, 2018). Calditrichaceae ferment 
peptides or implement nitrate reduction with acetate or 
molecular hydrogen as electron donors (Kublanov et  al., 
2017). One interpretation of this DNA–RNA data comparison 
can be that over longer time scales the sedimentary community 
has changed from phylogenetically diverse organotrophic 
microbes to phylogenetically diverse autotrophic 
sulfide oxidizers.

The reduced eutrophication at Boknis Eck during the last 
decades has caused lower primary production (Lennartz et al., 
2014) and may result in less POM reaching the sediments. Also, 
POM composition appears to have changed in the years 2015 to 
2019 (Supplementary Figure S2). In parallel, in the last decades 
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bottom water temperatures have risen and oxygen concentrations 
declined (Lennartz et al., 2014), likely stimulating temperature-
dependent methanogenesis (e.g., Yvon-Durocher et  al., 2014; 
Jansen et  al., 2022). Elevated methane production promotes 
higher SRR, which in fact appear to have increased since 2000 
(Treude et al., 2005). Stimulated sulfide production, causes the 
system to exhibit a high sulfide flux and an increase in SOR. The 
environmental changes of the Boknis Eck system over longer than 
seasonal time scales could explain the significant differences 
(value of p is 0.001) between the microbial communities based on 
DNA-and RNA-profiling. More work including in situ and 
laboratory experiments alongside with long-term monitoring of 
the sedimentary community will be necessary to better understand 
how the observed increase in benthic methane and sulfide 
turnover may affect the release of these reduced substances into 
the overlying bottom water.

Conclusion

Benthic production and oxidation of sulfide and methane 
were accelerated in October 2018 relative to March 2019. These 
seasonal trends can be largely explained by elevated bottom water 
and sediment temperatures during October that stimulated POM 
degradation via SR and methanogenesis. The increase in methane 
production induced a corresponding rise in AOM, while sulfide 
oxidation was accelerated since more sulfide was formed via POM 
degradation and AOM.

The long-term trends in local pelagic environment conditions 
are in line with the differences observed between benthic 
DNA-and RNA-profiling of 16S tags. Although such DNA/RNA 
comparisons entail potential limitations, as discussed above, the 
differences in benthic microbial community compositions can 
be  interpreted as a marked response induced by temporal, 
non-seasonal environmental modifications. The observed decline 
in pelagic productivity is responsible for less reactive POM 
delivered to the sediment by local phytoplankton such that a 
relative decline in 16S tags of transcripts related to organotrophs 
could reflect diminishing activity of microbes degrading 
fresh phytoplankton.

Coeval bottom water warming enhanced microbial 
processing of the large stock of sedimentary POM that 
accumulated during the previous eutrophication phase. This 
led to an increase in sulfide production and a corresponding 
rise in sulfide oxidation that is observed as a relative increase 
in 16S tags of transcripts related to sulfide oxidizing 
microorganisms. Sulfide producing processes may have been 
further accelerated by the decline in dissolved oxygen in 
ambient bottom waters favoring anaerobic POM degradation 
processes. The overall shift from POM degrading to sulfide 
oxidizing Bacteria could reflect, a decline in fresh POM 
availability, a temperature-driven acceleration in sedimentary 
POM turnover and an increase in sedimentary anoxia induced 
by bottom water deoxygenation.

The upward shift of the sulfide oxidation layer towards the 
sediment surface suggested by historic pore water profiles 
probably reflects the general increase in sulfide production 
discussed above that induced an increase in the upward diffusive 
flux of sulfide and, thereby, a shoaling of the sulfide oxidation 
layer. If these trends would continue into the future, they may 
induce a rise in toxic sulfide release from sediments with 
potentially harmful consequences for pelagic ecosystems.
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