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Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant 

physiological importance than the other major SCFAs (acetate and propionate). 

Most butyrate producers belong to the Clostridium cluster of the phylum 

Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, 

Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize 

carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and 

butyrate kinase terminal enzymes to produce most of butyrate. Although, 

in minor fractions, amino acids can also be  utilized to generate butyrate 

via glutamate and lysine pathways. Butyrogenic microbes play a vital role 

in various gut-associated metabolisms. Butyrate is used by colonocytes to 

generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic 

environment in the gut, maintains gut barrier integrity by regulating Claudin-1 

and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), 

and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic 

butyrate producers shape the gut microbial community by secreting various 

anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, 

and maintain gut homeostasis by releasing anti-inflammatory molecules, such 

as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, 

butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, 

such as shikimic acid and a precursor of conjugated linoleic acid. In this 

review, we summarized the significance of butyrate, critically examined the 

role and relevance of butyrate producers, and contextualized their importance 

as microbial therapeutics.
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Role of butyrate-producing 
gut-commensals

The human gut harbors an enormous number of microbes, 
approximately 38 × 1012 in total (Sender et al., 2016), comprising 
genetic material that is comparable to the human genome itself 
(Manson et al., 2008). This complex gut microbiome contains 
both aerobic and anaerobic commensal microbes, but anaerobic 
microbes constitute 99% of the gut microbiota (Nagpal et al., 
2017). The gut environment is predominantly anaerobic, 
providing a suitable ecological niche for anaerobic commensals. 
The gut microbiome is host-specific, and even among healthy 
individuals, it varies with geographical location, race, ethnicity, 
and diet (Gupta et  al., 2017). These host-specific gut 
communities interact with each other through a number of 
metabolites, which in turn promote gut health (Lin and Zhang, 
2017; Krautkramer et al., 2021). Gut microbes also affect the 
overall health of the host by participating in various metabolic 
pathways, regulating gene expression, and synthesizing 
beneficial bioactive compounds, such as short-chain fatty acids 
(SCFAs), amines, secondary bile acids, and vitamins. In the gut, 
SCFAs are the major beneficial metabolites produced by gut 
microbes through metabolizing indigestible dietary fibers. 
SCFAs are fatty acids with fewer than six carbon atoms and 
comprise three major forms, i.e., acetate (60%), propionate 
(20%), and butyrate (20%) (Chambers et  al., 2018). Among 
them, butyrate has been considered of significant importance, 
as it is involved in several functions of physiological importance, 
such as trans-epithelial transport, amelioration of mucosal 
inflammation, alleviation of oxidative stress, enforcement of the 
epithelial barrier, and protection against colorectal cancer 
(CRC) (Hamer et al., 2008). The microbial origin butyrate is 
mainly synthesized by certain anaerobic commensal microbes 
belonging to the Clostridium cluster (Clostridium_IV and 
Clostridium_XIVa) of the phylum Firmicutes (Manson et al., 
2008). In addition, it is also known that certain commensals 
convert bacterial metabolites such as lactate and acetate into 
butyrate via the acetyl-CoA pathway (Bui et al., 2015; Belzer 
et al., 2017).

In the gut, colon is the primary site of fermentation of 
indigestible fibers by fibrolytic, butyrate-producing microbes, such 
as Roseburia intestinalis, Faecalibacterium prasunitzi, and 
Eubacterium, which are sensitive to the presence of oxygen 
(Manson et al., 2008). Colonic butyrate is actively transported to 
colonocytes by monocarboxylate transporters, where the majority 
(~70%) of transported butyrate is used to generate energy via the 
citric acid cycle. Non-metabolized butyrate, on the other hand, is 
transported to the hepatic portal system (Zheng et al., 2017) where 
butyrate acts as an energy source for hepatocytes, and from there, 
it is transported to peripheral tissue and systemic circulation. The 
concentration of butyrate in portal circulation is around 30 μM, 
and falls near 0.2–15 μM in the systemic circulation, which is 
almost 2% of the colonic butyrate concentration (Dalile 
et al., 2019).

The lower level of butyrate producers is continuously found to 
be associated with various ailments, such as Roseburia in colorectal 
cancer and inflammatory bowel disease (Sun et al., 2020; Wu et al., 
2022), butyrate-producing Coprococcus in pregnant preeclampsia 
patients (Altemani et  al., 2021), and Faecalibacterium in gut 
inflammation (Fujimoto et  al., 2013). Therefore, the level of 
butyrate producers should be  considered to be  of therapeutic 
importance, which has even promoted its oral administration in 
various studies (Vieira et al., 2012; Chen et al., 2018; Liu et al., 
2019). Additionally, butyrate producers are present in the human 
gut, and their proportion can be enhanced by selecting a suitable 
diet and healthy lifestyle, thus facilitating the maintenance of 
overall gut health.

Microbial butyrate and its fate in 
the gut

Studies suggest that initial butyrate-producing communities, 
i.e., initial butyrate producers in infant gut, such as 
Clostridiaceae, Lachnospiraceae, and Ruminococcaceae spp., 
might be introduced into the human gastrointestinal tract via 
resistant microbial endospores (Appert et al., 2020). A recent 
study on a Swiss-cohort confirmed that Eubacterium hallii, a 
member of the family Lachnospiraceae, is one of the earliest 
butyrate producers in the gut of infants (Schwab et al., 2017). 
This is also supported by a study on Swiss, Venezuela, Malawi, 
and USA populations, which confirmed the human milk 
oligosaccharide metabolizing ability of Eubacterium Hallii 
(Schwab et al., 2017). The majority of butyrate producers are 
gram-positive and come under Clostridium clusters IV and 
XIVa of the phylum Firmicutes (Manson et al., 2008; Table 1). 
These microbial communities comprise a significant population 
of butyrate-producers, including various butyrogenic species of 
Eubacterium, Faecalibacterium, and Roseburia (Manson et al., 
2008; Louis and Flint, 2009). Among all butyrate producers, 
Faecalibacterium prausnitzii is most abundant in fecal samples 
(~ 5%) (Miquel et al., 2013), and its proportion can increase up 
to 13–17.6% (Manson et  al., 2008). Other major butyrate 
producers in fecal gut microbiota are Eubacterium rectale, 
Eubacterium Hallii, and Roseburia intestinalis, which can 
constitute up to ~13% (Rivière et al., 2016), 2.4% (mean, 0.6%), 
and 0.9–5% (mean, 2.3%), respectively (Hold et al., 2003). In 
smaller fractions, various other butyrate producers are also 
present in the gut, which produce butyrate by utilizing different 
dietary oligosaccharides, polysaccharides, and metabolic 
intermediates (Table  1). Although the majority of butyrate-
producing microbes belong to the phylum Firmicutes, studies 
have suggested that certain members of the phyla 
Actinobacteria, Bacteroidetes, Fusobacteria, and Proteobacteria 
can also produce butyrate (Vital et  al., 2014). During 
fermentation, butyrate producers cause substrate-level 
phosphorylation of the dietary substrate to generate energy in 
the form of ATP, which results in the formation of multiple 
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TABLE 1 Major butyrate producers in the human gut and their relevance.

Butyrate producer

Phylum Sub-cluster Genus Species Relevance Reference

Firmicutes Clostridium IV Or Clostridium 

leptum group

Faecalibacterium F. prasunitzi Most abundant butyrate producer Louis and Flint (2009)

Subdoligranulum S. variabile Metabolizes calprotectin Kamp et al. (2022)

Anaerotruncus A. colihominis Degrade mucin Raimondi et al. (2021)

Ruminococcus R. bromii Key fermenter of resistant starch Ze et al. (2012)

R. callidus Degrades complex polysaccharides such as starch or xylan Chassard et al. (2012)

R. champanellensis Most efficient cellulolytic bacterium in human colon Chassard et al. (2012)

Clostridium XIVa or Clostridium 

coccoides group

Roseburia R. intestinalis Major Xylan degrader in human gut Leth et al. (2018), Mirande et al. (2010)

R. faecis Utilizes fructose, glucose, maltose, cellobiose, raffinose, xylose, sorbitol, melibiose and 

amylopectin starch; but not Arabinose, and sucrose

Duncan et al. (2006)

R. hominis Utilizes arabinose, fructose, glucose, maltose, cellobiose, xylose and glycerol; but not 

Sucrose, sorbitol, oat spelt xylan, amylopectin starch and inulin (dahlia)

Duncan et al. (2006)

R. inulinivorans Utilizes inulin (dahlia), fructose, glucose, and maltose cellobiose, and amylopectin; 

but not rabinose, raffinose, xylose, glycerol, sorbitol and oat spelt xylan

Duncan et al. (2006)

Anaerostipes A. caccae Utilizes Lactate to produce butyrate Duncan et al. (2004)

A. hadrus Utilizes D-Lactate (not L-Lactose) and acetate to produce butyrate Allen-Vercoe et al. (2012)

A. butyraticus Utilizes fructooligosaccharide (FOS) to produce butyrate Endo et al. (2022)

A. rhamnosivorans Utilizes lactate and acetate for butyrate generation Bui et al. (2019)

Butyrivibrio B. fibrisolvens Utilizes cellulose Rodríguez Hernáez et al. (2018), 

Paillard et al. (2007)

Eubacterium E. rectale Metabolizes sulfonated monosaccharide (sulfoquinovose) present in green vegetables; 

Dahlia inulin is specifically catabolized

Hanson et al. (2021)

E. ramulus Metabolizes variety of flavonoids Schneider and Blaut (2000), Braune 

et al. (2001)

E. hallii Utilizes glucose and the intermediates acetate and lactate, for butyrate generation Engels et al. (2016a)

E. limosum Transformation of 8-prenylanringenin (phyto-estrogen) from iso-xanthohumol Possemiers et al. (2008)

Coprococcus C. cactus Metabolizes fructose; cross-feed on fermentation products (acetate, lactate) to 

produce butyrate

Reichardt et al. (2014), Alessi et al. 

(2020)

C. eutactus Metabolizes β-glucan, cellobiose and lichenan Alessi et al. (2020)

C. comes Metabolizes glucose Alessi et al. (2020)

Anaerobutyricum A. soehngenii Utilizes D-and L-lactate and acetate to produce butyrate Gilijamse et al. (2020)
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end-products, including butyrate (Louis and Flint, 2009). In the 
human gut, the majority of microbial butyrate is synthesized 
from carbohydrate metabolism via butyryl-CoA: acetate 
CoA-transferase pathway (but) and butyrate kinase (buk) 
pathway, of which the but-pathway is predominant (Vital et al., 
2013); (but) and (buk) are derived from the genes encoding 
enzymes involved in the terminal steps of microbial butyrate 
synthesis (Altemani et al., 2021). Radioisotope analysis of human 
fecal microbiota has shown that the majority of butyrate in the 
gut is produced from carbohydrates through the Embden-
Meyerhof-Parnas pathway (glycolysis) via acetyl-CoA (Miller 
and Wolin, 1996; Louis and Flint, 2009; Figure 1). During this 
process, two molecules of acetyl-CoA combine to form a butyrate 
molecule (Miller and Wolin, 1996), and the transformation of 
crotonyl-CoA to butyryl-CoA is the main energy generation 
step (Tsukuda et al., 2021; Figure 1). In addition to carbohydrates, 
in minor fraction, butyrate can also be synthesized from proteins 
via glutamate, lysine, glutarate, and 4-aminobutyrate pathways 
(Louis and Flint, 2017; Vital et al., 2017; Mallott and Amato, 
2022). Furthermore, butyrate is transported into colonocytes in 
the gut epithelium via monocarboxylate transporter 1 (MCT1) 
(Cuff et al., 2002), where it participates in various activities, 
including stabilization of hypoxia-inducible factor (HIF), 
inhibition of histone deacetylase (HDAC), and regulation of 
specific G-protein coupled receptors, which will 
be discussed later.

Impact of butyrate producers on 
neighboring gut microbial 
communities

In the gut, butyrate-producing microbial communities play a 
crucial role in maintaining a healthy gut environment as they 
restrict the entry and establishment of other microbes, especially 
pathogenic microbes. Butyrate is used by colonocytes to generate 
energy which increases epithelial oxygen consumption (Litvak 
et  al., 2018). As a result, the presence of butyrate producing 
bacteria helps maintain an anaerobic environment in the gut, 
which further prevents the colonization of opportunistic aerobic 
pathogens, such as Salmonella and E. coli (Manson et al., 2008; 
Parada Venegas et al., 2019). Butyrate also regulates the production 
of cathelicidins, a polycationic peptide that participates in 
mammalian innate immunity and exhibits broad-spectrum 
antimicrobial activity against potential gut pathogens (van Vliet 
et  al., 2010; Kościuczuk et  al., 2012; van Harten et  al., 2018). 
Moreover, butyrate-producing bacteria such as E. hallii produces 
reuterin, a broad-spectrum antimicrobial agent with yeast 
inhibition activity (Engels et  al., 2016b) while metabolizing 
glycerol to 3-hydroxypropionaldehyde (Figure  2). These anti-
microbial agents limit the incursion or abundance of potential 
pathogens and thus, help maintain a healthy gut microbiome.

Butyrate produced in the gut shapes the gut microbial 
community via regulating IgA secretion and by limiting the 
hyperresponsiveness of macrophages toward colonic commensals 
to maintain their abundance (Chang et  al., 2014; Isobe et  al., 
2020). Butyrate regulates colonic macrophages present in the 
lamina propria by inhibiting HDAC, and limits the generation of 
proinflammatory IL-12 and IL-6, as well as antimicrobial nitric 
oxide from lipopolysaccharide-stimulated macrophages (Chang 
et al., 2014; Kibbie et al., 2021). Butyrate enhances the GPCR-
independent antimicrobial activity of macrophages via 
metabolites, as evidenced by a study that showed that macrophages 
grown in the presence of microbial butyrate upregulated the 
expression of antimicrobial protein calprotectin but showed 
lowered expression of anti-inflammatory IL-10 (Schulthess et al., 
2019; Jukic et al., 2021; Figure 2). Additionally, microbial butyrate 
significantly enhances the ability of macrophages to eliminate 
possible pathogens, such as Salmonella enterica and Citrobacter 
rodentium (Flemming, 2019). Thus, butyrate bolsters gut defense 
against invasive pathogens without causing tissue-damaging 
inflammation or hyper-responsiveness. Butyrate-induced 
macrophages also exhibit higher levels of AMP, an inducer of 
AMP-kinase (AMPK), which inhibits mammalian target of 
rapamycin (mTOR), the master regulator protein kinase of 
autophagy, which is associated with cancer, insulin resistance, and 
other diseases (Schulthess et al., 2019; Figure 2).

In vitro and in vivo studies have also shown that butyrate 
producers participate in vitamin biosynthesis, especially vitamin 
B complex biosynthesis. For example, Eubacterium hallii produces 
vitamin B12, which is symbiotically utilized by Akkermansia to 
produce propionate (Belzer et  al., 2017; Pham et  al., 2021; 

FIGURE 1

Microbial pathway to generate butyrate in gut: Majority of 
butyrate in the colon is generated by the metabolization of 
dietary fibers, primarily of carbohydrate origin (BHBD, 
β-hydroxybutyryl-CoA dehydrogenase; Bcd, butyryl-CoA 
dehydrogenase; But, butyryl-CoA: acetate CoA-transferase; Buk, 
butyrate kinase).
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Figure 2). The vitamin B complex acts as an essential cofactor in 
various metabolic activities and is also associated with the 
regulation of immunological homeostasis in the host (Yoshii et al., 
2019). A cross-feeding relationship is also reported between 
butyrogenic genera, such as Faecalibacterium, Roseburia, 
Anaerostipes, Eubacterium, and probiotic Bifidobacterium (Rivière 
et al., 2016). For example, Bifidobacterium produces lactate and 
acetate, which are further utilized by butyrogenic microbes, such 
as E. Hallii, to generate butyrate; this in turn supports the 
abundance of Bifidobacterium (Louis and Flint, 2009; Schwab 
et al., 2017). Similarly, Anaerostipes hadrus and Anaerobutyricum 
hallii, members of the family Lachnospiraceae, utilize lactate and 
acetate to produce butyrate in the gut (Duncan et al., 2004).

Importance of butyrate producers 
in maintaining the gut epithelial 
barrier

The intestinal epithelium is a single-layer structure covered by 
a mucous layer and functions as the first line of defense against gut 

pathogens. The cells of intestinal epithelium are interconnected 
with tight junctions. The intestinal epithelium contains mucous-
secreting goblet cells that provide barrier protection by secreting 
mucus, which also functions as a reservoir of immunoglobulin 
IgA and antimicrobial peptides (Martens et al., 2018). The mucous 
layer is composed of mucin, and in colon MUC2 is the primary 
mucin-producing gene (Martens et al., 2018). The mucous layer 
adhering to the gut epithelium is thick and limits the microbial 
growth near the epithelial layer, whereas the outer mucous layer is 
less dense and suitable for the growth of different commensals, 
such as Akkermansia muciniphila, Faecalibacterium, and 
Eubacterium rectale (Maier et al., 2015; Martens et al., 2018). Some 
harmful microbes can decrease mucus thickness by degrading it, 
thereby allowing pathogens to enter the gut; for example, Vibrio 
cholerae secretes hemagglutinin protease that possesses mucolytic 
activity. Cholera-causing bacteria also secrete zonula occludens 
toxin, which further hampers epithelial integrity by acting on tight 
junctions (Martens et al., 2018). Another microbe, Clostridium 
perfringens, disrupts tight junctions by secreting endotoxins 
(Saitoh et al., 2015). Additionally, decreased abundance of butyrate 
producers leads to compromised defense and dysfunctional gut 

FIGURE 2

Dynamic role of butyrate producing microbial communities in gut: Along with butyrate, butyrate-producing communities also produce various 
bioactive molecules that are anti-microbial, anti-inflammatory, and anti-carcinogenic in nature. These molecules are of therapeutic importance in 
alleviating gut-associated disorders and maintaining gut-homeostasis (CLA, Conjugated Linoleic Acid; IL, Interleukin; MAM, Microbial Anti-
inflammatory Molecule).
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epithelium as observed in the case of Clostridium difficile infection 
(Antharam et al., 2013).

Faecalibacterium, a major butyrate producer in the human 
gut, enhances mucus formation by increasing goblet cell 
differentiation and expression of genes related to mucin 
glycosylation (Wrzosek et al., 2013). Furthermore, clinical studies 
have demonstrated rapid recovery in patients with cholera after 
oral administration of resistant starch, a butyrate precursor 
(Canani et al., 2011). In addition, butyrate produced by bacteria 
in the gut accelerates mitochondria-dependent oxygen 
consumption in gut epithelial cells, which stabilizes HIF. Butyrate 
itself also inhibits HIF-prolyl hydroxylase that degrades HIF 
(Wang et al., 2021). Stabilized HIF regulates the tight junction 
protein claudin-1, MUC2 expression, and generation of 
antimicrobial peptide beta defensin-1 (DEFB1) (Zheng et  al., 
2017; Wang et al., 2021). Butyrate also regulates the immunological 
aspect of barrier function as it tightens the intestinal epithelial cell 
barrier via inducing anti-inflammatory cytokine IL-10RA-
dependent suppression of claudin-2 protein, which forms 
paracellular channels in tight junctions and increases gut 
permeability (Zheng et al., 2017; Zhu et al., 2019). A recent study 
also demonstrated the role of butyrate in the regulation of actin-
binding protein synaptopodin (SYNPO), which is expressed in gut 
epithelial tight junctions and is crucial for gut-barrier integrity 
(Wang et al., 2020).

Protective role of butyrate 
producers against bowel 
inflammation

Based on their severity, inflammatory diseases of the gut can 
be  categorized into irritable bowel syndrome (IBS) and 
inflammatory bowel disease (IBD). IBS is characterized by cramps, 
bloating, diarrhea, and/or constipation (Camilleri et al., 2016). 
There are no biological markers to confirm it; moreover, this 
condition does not pose major discomfort to the patients. 
Normally, IBS patients are identified using a questionnaire 
prepared by medical staff (Werlang et al., 2019). In contrast, IBD 
is a generic term for more severe conditions, such as Crohn’s 
disease and ulcerative colitis (Franzosa et al., 2019), which cause 
inflammation and ulcers in the intestine, rectal bleeding, anemia, 
and diarrhea. Incidentally, decreased butyrate levels have often 
been reported in both IBS and IBD. In the case of IBD, butyrate 
producers play important roles as they increase mucus production 
from goblet cells to strengthen the intestinal mucous barrier and 
regulate the expression of tight junction proteins via butyrate to 
restrict the harmful penetration through the gut (Pozuelo et al., 
2015; Pascal et al., 2017; Dalile et al., 2019; Schirmer et al., 2019). 
Similarly, in the case of IBS lower number of butyrate producers 
result in a reduced availability of butyrate and thus decrease the 
gut permeability (Camilleri et al., 2016).

Butyrate maintains the anaerobic environment in the colon by 
enhancing colonocyte oxygen consumption and stabilizing HIF, 

while its absence facilitates the buildup of potentially harmful 
bacteria and molecules, such as Salmonella, E. coli, and nitric 
oxide (NO), respectively (Parada Venegas et  al., 2019). The 
reduced proportion of butyrate producers is also associated with 
a decreased count of methanogens, which disposes of the excess 
hydrogen (H2) produced in the form of CH4 during dietary 
fermentation, one of the possible reasons for the bloating 
experienced by IBS and IBD patients (Pozuelo et al., 2015; Chong 
et al., 2019). Studies have reported that among SCFAs, butyrate 
alone is responsible for gut motility, possibly via regulating 
serotonin, and can be used to increase propulsive gut movement, 
making it a suitable microbial therapeutic for patients with IBS 
(Vincent et al., 2018). An induced-colitis study in a murine model 
confirmed the decrease in butyrate-producing Clostridium 
clusters and reduced butyrate levels in the gut, which facilitated 
gut epithelial oxygenation and growth of Salmonella enterica 
serovar Typhimurium (S. Typhimurium), a known cause of 
foodborne gut inflammation and diarrhea (Rivera-Chávez et al., 
2016; Anderson and Kendall, 2017; Litvak et al., 2019). Similarly, 
a reduced proportion of butyrate producers in the gut increases 
the expansion of aerobic Enterobacteriaceae, which is a common 
marker of gut dysbiosis (Matamouros et al., 2018; Parada Venegas 
et  al., 2019). Studies have demonstrated a decreased count of 
butyrate-producing Faecalibacterium and Roseburia in the gut of 
ulcerative colitis patients (Sartor, 2011; Franzosa et al., 2019). On 
the other hand, the culture supernatant of Faecalibacterium was 
reportedly effective against IBD (Crohn’s disease) and colitis in 
murine models, and Faecalibacterium was found to secrete an 
anti-inflammatory peptide (MAM, m.wt. 15 KDa), which inhibits 
pro-inflammatory NF-κB signaling to arrest colitis (Quévrain 
et  al., 2016). Additionally, Faecalibacterium inhibits colitis by 
producing anti-inflammatory shikimic and salicylic acids (Miquel 
et  al., 2015). In another study, a combination of six different 
butyrate producers (B. pullicaecorum 25–3 T, F. prausnitzii, 
Roseburia hominis, Roseburia inulinivorans, Anaerostipes caccae, 
and E. hallii) reportedly enhanced butyrate production in IBD 
fecal microbiota by 5–10% and enhanced higher gut-barrier 
integrity, as examined in the Caco-2 cell line (Geirnaert et al., 
2017). Similarly, patients with Clostridium difficile infection, 
which has a high mortality rate and increases the chances of 
acquiring hospital-acquired diarrhea, also exhibited a significant 
depletion in butyrate producers such as Roseburia, Anaerostipes, 
Blautia, and Faecalibacterium, along with lowered butyrate levels 
(Antharam et al., 2013). By contrast, in the case of mucositis, 
microbial butyrate enhances mucosal healing to accelerate the 
recovery of inflamed gut epithelium by stimulating the migration 
of gut epithelial cells (van Vliet et al., 2010).

By acting as a ligand, microbial butyrate participates in anti-
inflammatory reactions to cease the inflammation and maintain 
gut homeostasis through the aryl hydrocarbon receptor (AhR) 
and various G-protein coupled receptors (GPCRs) such as 
GPR109a, GPR43, and GPR41 (Marinelli et al., 2019; Yip et al., 
2021). AhR and GPCRs are transcription factors that control the 
transcriptional machinery of various immunoregulators following 
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their activation. AhR exhibits the anti-inflammatory effect by 
enhancing anti-inflammatory IL-10 secreting B and Th2 cells, 
with a decline in pro-inflammatory Th1 and Th17 cells (Dong and 
Perdew, 2020; Abdulla et al., 2021). Among GPCRs, butyrate-
activated GPR109a promotes differentiation of Treg cells and 
enhances anti-inflammatory IL-10 producing Th2 cells and 
plasma levels of IL-10, which in turn inhibits pro-inflammatory 
IL-17 (Akitsu and Iwakura, 2018; Martens et al., 2018). Upon 
butyrate activation, GPR43 reduces CD4 T-cell proliferation and 
limits the secretion of pro-inflammatory cytokines such as IL-17 
and IL-22 (Kibbie et al., 2021). In addition, butyrogenic clostridia 
such as Clostridium butyricum limit IBD-associated inflammation 
by increasing Treg cell differentiation through microbial butyrate, 
which exerts its effects via transforming growth factor-β (TGF-β) 
(Ihara et al., 2017).

Relevance of butyrate producers 
in CRC and tumorigenesis

Colorectal cancer (CRC) begins with a growth of the inner 
lining of the colon and rectum, which can later transform into 
cancerous polyps (Das et al., 2017; Salmerón et al., 2022). Evidence 
has shown that alterations in the gut microbiota are closely associated 
with CRC progression (Xie et al., 2020). Microbiome profiles of CRC 
patients exhibit a decrease in major butyrate-producing genera, 
including Roseburia, Clostridiales, Faecalibacterium, and members 
of the Lachnospiraceae family, and administration of butyrate-
producing Clostridium butyricum was effective in decreasing the 
proliferation of cancerous cells and enhancing cancer cell apoptosis 
(Zou et al., 2018; Stoeva et al., 2021). Similarly, a lower abundance of 
Eubacterium ventriosum is a potential biomarker for CRC patients 
(Mukherjee et al., 2020), and its administration in CRC patients has 
been patented,1 indicating its significant therapeutic importance. 
Additionally, gut commensals such as Butyricicoccus pullicaecorum, 
Butyrivibrio fibrisolvens, Ruminococcus bromii, and members of the 
family Lachnospiraceae also produce sodium butyrate upon 
fermenting dietary fibers, which inhibits CRC cell proliferation by 
regulating immune cells such as natural killer cells and macrophages, 
and causes apoptosis (Xi et al., 2021).

Luminal butyrate inhibits CRC mainly through HDAC 
inhibition by inactivating oncogenic pathways, such as mitogen-
activated protein kinase (MAPK), Akt/ERK signaling, Wnt signaling 
pathway, and TGF-β signaling (Li et al., 2017; Geng et al., 2021). 
Butyrate-mediated inhibition of HDAC3 blocks the activation of Akt 
and ERK1/2, which are required for CRC cell migration and invasion 
(Li et al., 2017). Similarly, Wnt is a hydrophobic glycoprotein ligand 
that participates in various cellular processes, and aberration in Wnt 
signaling can cause CRC (Patel et  al., 2019). An aberrant Wnt 
pathway can be suppressed by the butyrate-dependent activation of 
GPR109, as exhibited by Clostridium butyricum, but further 

1 https://patents.google.com/patent/WO2016019506A1/en

investigation is required to confirm its direct or indirect role  
(Chen D. et al., 2020). Similarly, TGF-β is an immunosuppressive 
cytokine that regulates cell proliferation, differentiation, growth, and 
apoptosis, and any decrease in the inhibitory activity of TGF-β can 
lead to cancer, including CRC (Ku et  al., 2007). Recent in vivo 
findings have reported significant expression of TGF-β after 
ingestion of dietary sodium butyrate, which can help combat CRC 
(Liu et al., 2014). Usually, cancer cells have a higher glucose demand 
and metabolic rate to support accelerated cell growth, which makes 
glycolysis inhibitors a promising anticancer drug candidate 
(Figure 3). Besides being an HDAC inhibitor, microbial butyrate 
differentially inhibits glucose transport, glycolysis, and DNA 
synthesis in cancerous colonocytes via inhibiting GLUT1 and 
glucose-6-phosphate dehydrogenase (G6PD) through the 
GPR109a-AKT pathway (Geng et al., 2021). GLUT1 is a glucose 
transporter, while G6PD is a key enzyme that produces ribose-5-
phosphate for nucleotide synthesis (Geng et al., 2021). Microbial 
butyrate also inhibits CRC by increasing the 2-oxoglutarate level, 
which in turn downregulates proinflammatory cytokines such as 
IL-6, IL-22, IL1-β, and TNF-α (Wang et al., 2021). Furthermore, 
colonic butyrogenic microbes such as Roseburia and Butyrivibrio 
metabolize linoleic acid to produce the precursor of conjugated 
linoleic acid (CLA) (Devillard et al., 2007; Louis and Flint, 2009), 
which induces apoptosis and has been reported as an effective anti-
carcinogenic molecule in various studies, including CRC (den 
Hartigh, 2019). Roseburia species, which are among the most active 
linoleic acid metabolizers, also produce vaccenic acid, which is 
known to be beneficial for the host (Devillard et al., 2007).

In contrast, some studies have reported an association between 
microbiota-derived butyrate and CRC upregulation (Okumura et al., 
2021). This is a butyrate-paradox, wherein butyrate can act differently 
in normal and cancerous colonocytes. This is due to a metabolic shift 
of cancerous cells toward glycolysis, also called Warburg effect. In 
colonocyte mitochondria, butyrate is not metabolized to the same 
extent as in normal cells, and therefore, accumulates in the nucleus 
where it inhibits HDAC (Bultman and Jobin, 2014; Bultman, 2016; 
Hajjar et al., 2021; Figure 3). A similar paradox was observed in the 
microbial regulation of the PI3/Akt pathway, which is a major 
signaling cascade involved in the regulation of normal cellular 
activities, such as cell proliferation, growth, motility, and survival; 
however, its aberrant activation is associated with cancer (Luo et al., 
2003; Prossomariti et  al., 2020). Studies have reported that the 
PI3-Akt pathway is activated in 60–70% of CRC patients, and 
inhibitors of this pathway are considered therapeutic (Malinowsky 
et al., 2014). In the dysbiotic gut of CRC patients, the abundance of 
rare Porphyromonas species, such as P. gingivalis and 
P. asaccharolytica, may promote CRC via butyrate-mediated 
activation of the PI3/Akt pathway (Okumura et al., 2021).

Relevance in gut-organ axis

Butyrate producers are associated with various gut-organ axes, 
such as the gut-brain, gut-lung, gut-liver, gut, kidney, and gut-heart 
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axes (Ahlawat and Asha, 2021). In such complex relationships, 
butyrate producers act as microbial regulators and exert their 
effects through their metabolites. As in the gut-brain axis, 
microbiota-induced expression of AhR in gut neurons allows them 
to respond to the environment of the gut lumen while 
simultaneously connecting their functional output to the gut 
(Obata et al., 2020). As stated earlier, butyrate acts as a ligand for 
AhR, making butyrate producers a relevant community in the 
gut-brain axis. Studies have identified the antidepressant effects of 
the butyrate-producing genera Butyricimonas and Coprococcus and 
their depletion in depressed individuals (Yang et  al., 2017; 

Valles-Colomer et  al., 2019). Similarly, Faecalibacterium and 
Coprococcus are robustly associated with better mental health 
(Valles-Colomer et  al., 2019). Metagenomic analysis of fecal 
samples from a Belgian cohort identified butyrate-producing 
Alistipes and Roseburia as potential producers of serotonin (Valles-
Colomer et  al., 2019), which is a neurotransmitter expressed 
abundantly in the gut where it regulates bowel movement, secretion 
(McLean et al., 2007), and glucose homeostasis (Singh et al., 2022). 
Studies also confirmed the gut-lung axis, as it’s been found that gut 
dysbiosis is closely related to the occurrence of asthma and 
pulmonary diseases. In infants reduced gut microbial diversity is 

FIGURE 3

Warburg Effect: Inefficient butyrate metabolization by mitochondria of cancerous colonocytes leads to accumulation of butyrate, which in turn 
acts as an HDAC inhibitor and induces cancer. Additionally, majority of glucose is converted into lactate in cancerous colonocytes owing to their 
higher glycolysis rates, which is less energy efficient compared to phosphorylation of pyruvate in mitochondria via the TCA cycle. Therefore, 
cancerous colonocytes need higher glucose inflow and a higher rate of glycolysis to survive (MCT, Monocarboxylate Transporter; GLUT, Glucose 
Transporter; HDAC, Histone deacetylase, HAT; Histone acetyltransferase).

https://doi.org/10.3389/fmicb.2022.1103836
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Singh et al. 10.3389/fmicb.2022.1103836

Frontiers in Microbiology 09 frontiersin.org

reported to increases the risk of asthma and infectious respiratory 
diseases (Bisgaard et al., 2011; Abrahamsson et al., 2014). Specially, 
reduced abundance of butyrogenic Faecalibacterium in the gut is 
closely related with the increased risk of atopy and asthma (Dang 
and Marsland, 2019). In addition, during a viral infection such as 
influenza, through GPCR41 receptors, microbial butyrate enhances 
the Ly6C-monocytes in the lungs, which differentiate into 
alternatively activated macrophages (AAMs) that alleviate the 
immunopathological response in the lungs by limiting the 
neutrophil influx into the airways (Dang and Marsland, 2019).

The gut microbiome is also involved in the gut-liver axis 
because the liver receives approximately 70% blood supply from 
the gut, and even shows the presence of higher microbial 
liposaccharide (LPS) levels in the portal and hepatic circulation 
during chronic liver ailments (Compare et al., 2012). Microbial 
butyrate maintains the integrity of the gut barrier and inhibits the 
inflow of antigens (LPS). In murine studies, butyrate 
supplementation in the form of tributyrin was found to be effective 
in alleviating alcohol-induced liver injury (Cresci et  al., 2017; 
Singhal et  al., 2021). Alcohol-induced dysbiosis significantly 
reduces the members of Firmicutes and Lachnospiraceae with a 
lower abundance of butyrate-producing genera such as 
Anaerostipes, Coprococcus, and Roseburia (Singhal et al., 2021). A 
study based on a large human population (n = 1,148) also identified 
a significantly lower abundance of the genus Faecalibacterium in 
patients with non-alcoholic fatty liver disease (NAFLD) (Iino et al., 
2019). Additionally, the butyrate-producing strain (MIYAIRI 588) 
of Clostridium butyricum reportedly suppresses oxidative stress 
and hepatic inflammatory indices in NAFLD (Endo et al., 2013).

Metabolites of protein fermentation, such as choline, 
phosphatidylcholine, and carnitine, are metabolized by the gut 
microbiota into trimethylamine, which is further converted into 
trimethylamine-N-oxide (TMAO) in the liver by hepatic flavin-
containing monooxygenase (FMO) (Tong et al., 2022). TMAO is 
known to cause chronic kidney disease (CKD) and induces 
cardiovascular diseases such as atherosclerosis and coronary heart 
disease (Evenepoel et al., 2017). Although, a study also suggested 
that a low dose of TMAO might reduce cardiac dysfunction (Huc 
et al., 2018). Other than that, butyrate can lower the circulating 
cholesterol through reverse cholesterol transport by stimulating 
secretion of apoA-IV-containing lipoprotein (Chen W. et al., 2020). 
In addition, butyrate also enhances the secretion of glucagon-like 
peptide-1 (GLP-1) from the gut, which decreases blood pressure 
(Yadav et al., 2013). While, in CKD, the levels of uremic toxins such 
as indoxyl sulfate and p-cresyl sulfate are abnormally high, which 
can also lead to hypertension (Chen et al., 2019). Studies have 
reported decreased abundance of major butyrate producers such 
as Roseburia, Faecalibacterium, and Coprococcus in CKD patients 
(Jiang et  al., 2017; Yang et  al., 2018). In a murine study, CKD 
treatment with traditional medicine was found to be mediated by 
the butyrate-producing microbe Lachnospiraceae-NK4A136 via 
the gut-kidney axis (Tong et al., 2022). In addition to maintaining 
gut integrity to limit the level of uremic toxins, butyrate improves 
renal inflammation and dysfunction in patients with CKD.

Impact of selective dietary 
interventions to enhance butyrate 
producers

Prebiotic administration positively affects butyrate producers, 
as they metabolize prebiotics into butyrate. Prebiotics are also 
beneficial in treating diarrhea and cholera, as prebiotic (e.g., 
resistant starch) administration accelerates recovery via microbial 
butyrate (Canani et  al., 2011). Indigestible dietary fibers are 
commonly used as prebiotics, but other bioactive molecules, such 
as polyphenols, can also function as prebiotics to generate 
butyrate. Polyphenol intervention significantly increases the 
abundance of butyrate producers such as Faecalibacterium and 
members of the Ruminococcaceae family (Del Bo et al., 2021). 
Among other polyphenols, the impact of catechins, anthocyanins, 
and proanthocyanidins as prebiotics is more evident because they 
increase the abundance of Roseburia and Faecalibacterium spp. 
(Alves-Santos et al., 2020). Other phenolic compounds such as 
caffeic acid, chlorogenic acid, and rutin are also reported to 
increase microbial butyrate (Catalkaya et al., 2020). Additionally, 
the microbial accessibility of different prebiotics also varies among 
butyrate producers; therefore, the administration of different 
prebiotics can selectively enrich specific butyrate producers 
(Table 2). Other than prebiotics, synbiotic treatments can also 
be  administered to promote butyrate production in the gut 
(Gurry, 2017). Synbiotics contain a combination of prebiotics and 
probiotics, and their synergistic effects are more prominent than 
those of prebiotics and probiotics used individually (Singh et al., 
2021). Synbiotic treatment with Bacillus subtilis DSM 32315 and 
L-Alanyl-L-glutamine improved butyrate levels and enhanced the 
major butyrate producers such as Faecalibacterium prausnitzii, 
both in vitro and in humans (tom Dieck et al., 2022). Similarly, 
another study reported the prevalence of butyrate-producing 
Eubacterium and Pseudobutyrivibrio upon synbiotic 
administration of fiber-enriched yogurt (Jaagura et al., 2022).

Strain and strategies for tomorrow

Butyrate-producing gut microbes are of significant 
therapeutic importance and are believed to be  niche-specific 
next-generation probiotics. Multiple butyrate-producing 
probiotic strains of Clostridium butyricum (Stoeva et al., 2021) 
and Butyricicoccus pullicaecorum (Geirnaert et  al., 2014; 
Boesmans et al., 2018) have been used as they exhibit good bile 
tolerance, viability, and metabolic activity (Table 3). Microbes of 
interest or butyrate producers can also be genetically manipulated 
to increase their butyrate-producing capacity. For example, 
heterologous genes required for butyrate production from 
acetyl-CoA can be introduced by inactivating the gene encoding 
the conversion of acetyl-CoA to acetate and the gene encoding 
the aldehyde/alcohol dehydrogenase for ethanol production or 
simply disrupting a CoA transferase gene, which may be  an 
alternative route for acetate production (Ueki et al., 2014; Suo 
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et  al., 2018). Additionally, a co-culture strategy, that is an 
interactive microbial population of more than two microbes, can 
also be  implemented to achieve higher levels of butyrate and 
increased abundance of butyrate producers in the gut. Co-culture 
of F. prausnitzii and Bifidobacterium catenulatum with 
fructooligosaccharides as an energy source resulted in a higher 
viable cell count and butyrate production (Kim et  al., 2020). 
Moreover, butyrate producers of animal origin (ruminants), such 
as cellulose-degrading Ruminococcus albus and R. flavefaciens 
(Flint et al., 2008; Chassard et al., 2012), can also be considered 
to study their impact on human hosts.

Conclusion

The present review critically examined all aspects of 
butyrate-producing gut microbial communities and their 
possible impact on host health to better understand their 
therapeutic significance. We  considered the significance of 
butyrate producers and butyrate in the gut to understand their 
importance as microbial therapeutics. Although butyrate is an 
important metabolite, butyrate producers are much more 
important as they actively control the gut microbiome via 
various anti-microbial and anti-inflammatory molecules, and 

TABLE 2 Impact of different fiber and bioactive metabolites on various gut butyrate producers.

Dietary substance Monomer unit Affected microbe Model Reference

Human milk oligosaccharides 

(HMOs)

β-d-galactose (Gal), β-d-

glucose (Glc), β-d-N-

acetyglucosamine (GlcNAc), 

α-l-fucose (Fuc), and the sialic 

acid α-d-N-acetylneuraminic 

acid (Sia)

Roseburia↑ Eubacterium↑ Human Pichler et al. (2020)

Inulin D-Fructose Faecalibacterium ↑; Human; Humanized 

mice

  Healey et al. (2018), Van 

den Abbeele et al. (2011)Roseburia intestinalis ↑

Eubacterium rectale ↑

Anaerostipes caccae ↑

Xylan D-xylose Roseburia intestinalis ↑ In vitro Leth et al. (2018)

Fructooligosaccharide D-fructose Faecalibacterium ↑ Human   Tandon et al. (2019)

Ruminococcus ↑

Oscillospira ↑

Galacto-oligosaccharides Galactose Anaerostipes caccae ↑ Murine Sato et al. (2008)

Polyphenols Phenol Anaerobutyricum hallii↑ Human   Del Bo et al. (2021)

Butyricicoccus spp.↑

Faecalibacterium prausnitzii↑

Pectin Galacturonic acid Faecalibacterium↑ In vitro   Bang et al. (2018), Chung 

et al. (2016)Eubacterium eligens

Guar gum (Galactomannan 

polysaccharide)

Galactose and Mannose Clostridium coccoides group↑ Human   Ohashi et al. (2015)

Roseburia/Eubacterium rectale 

group↑

Anaerobutyricum halli↑

Butyrate-producing bacterium 

strain SS2/1↑

Alginate D-mannuronic acid and 

L-guluronic acid

Bacteroides ovatus ↑ In vitro   Li et al. (2016)

Bacteroides xylanisolvens ↑

Arabinoxylan D-xylosyl Roseburia/Eubacterium rectale 

group↑

Murine Damen et al. (2011)

Stachyose Galactose, Glucose, and 

Fructose

Faecalibacterium In vitro Zhao et al. (2021)

Lactulose Galactose and Fructose Anaerostipes In vitro Bothe et al. (2017)
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by synthesizing vitamin B. Butyrate-producing microbial 
communities inhibit cancer growth by secreting anti-
carcinogenic substances and regulate tumorigenesis via 
butyrate. Butyrate producers are promising next-generation 
probiotics, and their counts in the gut can be  regulated by 
dietary interventions to benefit the host. Moreover, butyrate 
producers can also be  genetically manipulated to enhance 
butyrate synthesis, making them suitable microbial therapeutic 
agents. We also see the possibility of introducing new butyrate 
communities to the gut, which are alien to the human gut, to 
study their impact and to analyze any possible health effects. 
However, detailed studies are required to cease all safety 
concerns regarding the introduction of animal or soil origin 
butyrate producers in the human gut.
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TABLE 3 Butyrate producers that can be used as microbial therapeutic to maintain microbial homeostasis and gut health.

Microbes Model Reference

Butyricicoccus pullicaecorum 25-3T Human Boesmans et al. (2018)

Faecalibacterium prausnitzii A2-165 Murine Martín et al. (2015)

Eubacterium Hallii DSM 3353 Human Engels et al. (2016a)

Eubacterium Hallii DSM 17630 Human Engels et al. (2016a)

Eubacterium limosum KIST612 Bio-fermenter Litty and Müller (2021)

Co-culture of Clostridium hylemonae DSM 15053; or Coprococcus comes ATCC 

27758; or Roseburia hominis A2-183; or Eubacterium rectale ATCC 33656; or 

Eubacterium biforme DSM 3989 and Clostridium ljungdahlii

Dynamic metabolic modelling Li and Henson (2021)

Butyricicoccus pullicaecorum 1.20; Roseburia hominis DSM 16839; Roseburia 

inulinivorans DSM 16841; Anaerostipes caccae DSM 14662; Eubacterium hallii 

DSM 3353

Fed batch fermenter and Caco-2 cell line Geirnaert et al. (2017)

Clostridium butyricum (CGMCC0313.1) Murine Pan et al. (2019)

Clostridium butyricum (MIYAIRI 588) Murine Endo et al. (2013), Pan et al. (2019)

Clostridium butyricum Prazmowski Murine Wu et al. (2022)

Ruminococcus albus Caco-2 cell line Park et al. (2017)
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