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Antimicrobial susceptibility testing (AST) should be fast and accurate, leading to
proper interventions and therapeutic success. Clinical microbiology laboratories rely
on phenotypic methods, but the continuous improvement and decrease in the cost
of whole-genome sequencing (WGS) technologies make them an attractive alternative.
Studies evaluating the performance of WGS-based prediction of antimicrobial resistance
(AMR) for selected bacterial species have shown promising results. There are,
however, significant gaps in the literature evaluating the applicability of WGS as a
diagnostics method in real-life clinical settings against the range of bacterial pathogens
experienced there. Thus, we compared standard phenotypic AST results with WGS-
based predictions of AMR profiles in bacterial isolates without preselection of defined
species, to evaluate the applicability of WGS as a diagnostics method in clinical
settings. We collected all bacterial isolates processed by all Danish Clinical Microbiology
Laboratories in 1 day. We randomly selected 500 isolates without any preselection
of species. We performed AST through standard broth microdilution (BMD) for 488
isolates (n = 6,487 phenotypic AST results) and compared results with in silico
antibiograms obtained through WGS (Illumina NextSeq) followed by bioinformatics
analyses using ResFinder 4.0 (n = 5,229 comparisons). A higher proportion of AMR
was observed for Gram-negative bacteria (10.9%) than for Gram-positive bacteria
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(6.1%). Comparison of BMD with WGS data yielded a concordance of 91.7%,
with discordant results mainly due to phenotypically susceptible isolates harboring
genetic AMR determinants. These cases correspond to 6.2% of all isolate-antimicrobial
combinations analyzed and to 6.8% of all phenotypically susceptible combinations.
We detected fewer cases of phenotypically resistant isolates without any known
genetic resistance mechanism, particularly 2.1% of all combinations analyzed, which
corresponded to 26.4% of all detected phenotypic resistances. Most discordances were
observed for specific combinations of species-antimicrobial: macrolides and tetracycline
in streptococci, ciprofloxacin and β-lactams in combination with β-lactamase inhibitors
in Enterobacterales, and most antimicrobials in Pseudomonas aeruginosa. WGS has
the potential to be used for surveillance and routine clinical microbiology. However,
in clinical microbiology settings and especially for certain species and antimicrobial
agent combinations, further developments in AMR gene databases are needed to
ensure higher concordance between in silico predictions and expected phenotypic
AMR profiles.

Keywords: whole-genome sequencing (WGS), antimicrobial resistance (AMR), antimicrobial resistance genes
(ARGs), genotype, phenotype, concordance, in silico antibiogram

INTRODUCTION

Antimicrobial susceptibility testing (AST) is one of the main
components of clinical microbiology diagnostics. With the
emergence of new antimicrobial resistance (AMR) mechanisms
and multi- or pan-drug resistant organisms, it becomes
increasingly important to ensure that adequate antimicrobial
susceptibility profiles are available in a fast and accurate
manner, leading to proper interventions, drug prescriptions, and
therapeutic success (Cassini et al., 2019).

Broth microdilution (BMD) is the AST method endorsed by
the European Committee on Antimicrobial Susceptibility Testing
(EUCAST), performed according to the recommendations from
the International Organization for Standardization [ISO
20776-1:2006 (International Organization for Standardization,
2006) and ISO 20776-1:2019 (International Organization
for Standardization, 2019)]. BMD requires relatively simple
techniques and limited costs for well-developed laboratories
(Jorgensen and Ferraro, 2009; Benkova et al., 2020). However,
the reproducibility of BMD and other phenotypic AST protocols,
such as disk diffusion, remains a concern. Small variations in,
for example, operators’ methodology, laboratory materials and
reagents, machinery, and culture conditions may translate into
different results and respective interpretations (Wiegand et al.,
2008). Furthermore, the agreement between results derived from
different phenotypic methods and cross-interpretation of the
same is not perfect (Jean et al., 2017; Matuschek et al., 2018;
Mojica et al., 2020).

Studies have been performed to compare classical phenotypic
AST results with in silico antibiograms obtained through whole-
genome sequencing (WGS) technologies. Notably, EUCAST
performed an in-depth review of phenotype–genotype AMR
concordance in important human pathogens, concluding that
for certain bacterial groups (such as Enterobacteriaceae and
staphylococci), results have been promising with high levels

of concordance, while for other species (e.g., Pseudomonas
aeruginosa) prove much more difficult to interpret (Ellington
et al., 2017). These findings are corroborated by other projects
that have shown good concordance between WGS-based
antimicrobial susceptibility predictions and minimum inhibitory
concentration (MIC) determinations for Enterobacterales
(Zankari et al., 2012; Stoesser et al., 2013; Pecora et al., 2015;
Clausen et al., 2016; Do Nascimento et al., 2017; Shelburne
et al., 2017; Ruppé et al., 2020), enterococci, staphylococci,
and streptococci (Aanensen et al., 2016; Metcalf et al., 2016,
2017; Hammerum et al., 2017; Mason et al., 2018; Stewart et al.,
2020), while remaining more variables for P. aeruginosa (Kos
et al., 2015; Subedi et al., 2018; Cortes-Lara et al., 2021). The
main caveat of these and other similar projects is their focus
on selected bacterial species, thus not reflecting the diversity
observed during routine testing (Tagini and Greub, 2017; Su
et al., 2018). Studies evaluating WGS data of non-preselected
bacterial isolates collected in a clinical setting exist but are
comprised of small collections or mainly focus on species
identification and epidemiological analyses, without exploring
the use of genomic data for AMR prediction (Long et al.,
2013; Hasman et al., 2014; Roach et al., 2015; Galata et al.,
2019).

This study was conducted to compare AST results obtained
with reference laboratory MIC determinations and WGS
predictions, based on a random selection of clinical isolates
obtained during a single day from all clinical microbiological
laboratories in Denmark.

MATERIALS AND METHODS

Bacterial Isolates
We collected all clinically relevant isolates (n = 2,073) processed
by the 11 Danish Clinical Microbiology Laboratories (DCM)
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(Herlev and Gentofte Hospital, Herlev; Hvidovre Hospital,
Hvidovre; Nykøbing F. Sygehus, Nykøbing F; Odense
Universitetshospital, Odense; Rigshospitalet, København;
Slagelse Sygehus, Slagelse; Sydvestjysk Sygehus, Esbjerg; Sygehus
Lillebælt, Vejle; Sygehus Sønderjylland, Sønderborg; Aalborg
Universitetshospital, Aalborg; and Aarhus Universitetshospital,
Skejby) on January 10, 2018, as previously described (Rebelo
et al., 2022). According to the accompanying metadata, 2,024
of these corresponded to bacterial isolates. Before any analyses
or laboratory proceedings, we performed a random selection of
500 isolates using the “=RAND” function on Microsoft Excel to
attribute a random number to each of the 2,024 presumptive
bacterial isolates, locking the obtained values, sorting them by
value from lowest to highest, and selecting the first 500.

Phenotypic Antimicrobial Susceptibility
Testing
Antimicrobial susceptibility testing was performed at European
Union Reference Laboratory for Antimicrobial Resistance
(EURL-AR), at the Technical University of Denmark (DTU)
by BMD using Thermo ScientificTM SensititreTM panels, in
particular GN3F (n = 266), GPALL1F (n = 35), EUSTAPF
(n = 103), STP6F (n = 70), HPB1 (n = 14), and FRCOL (n = 265,
of which 251 were used in combination with GN3F and 14
in combination with HPB1), and performed through agar
dilution for anaerobic bacteria (n = 7) according to international
standards [ISO 20776-1:2006 (International Organization
for Standardization, 2006), EUCAST guidelines (European
Committee on Antimicrobial Susceptibility Testing, 2017), and
CLSI M11-A8 (Clinical and Laboratory Standards Institute,
2012)] and according to the manufacturer’s specifications.

Interpretation of MIC results was performed using EUCAST
clinical breakpoints version 12.0. When different breakpoints
existed for “meningitis” and “indications other than meningitis,”
the latter was applied due to the absence of isolates from
cerebrospinal fluid in this collection. When breakpoints
only referred to urinary tract infections, they were still
applied to allow for phenotype–genotype comparison. For
easier description and discussion of results, we grouped the
“susceptible, standard dosing regimen” (S) and “susceptible,
increased exposure” (I) categories under the term “susceptible,”
as currently recommended by EUCAST (European Committee
on Antimicrobial Susceptibility Testing, 2021). All cut-off values
are described in Supplementary Table 3.

Whole-Genome Sequencing-Based
Antimicrobial Susceptibility Testing
Whole-genome sequencing and bioinformatics analyses were
performed at DTU. Genomic DNA was extracted from all
bacterial isolates using the Easy-DNATM Kit (Invitrogen,
Carlsbad, CA, United States), and DNA concentrations were
determined using the QubitTM dsDNA high-sensitivity (HS)
and/or broad-range (BR) assay kits (Invitrogen, Carlsbad, CA,
United States). Genomic DNA was prepared for Illumina
paired-end sequencing using the Illumina (Illumina, Inc., San
Diego, CA, United States) NexteraXT R© DNA Library Prep

Reference Guide (Document #15031942, v03, February 2018)
and NextSeq System Denature and Dilute Libraries Guide
(Document #15048776, v03, April 2018). The libraries were
sequenced using the Illumina NextSeq 500 platform. The raw
reads were de novo assembled using the Centre for Genomic
Epidemiology FoodQCPipeline1 for assembly and quality control.
Quality thresholds were set at maximum 500 contigs per genome
and maximum 0.5 million base pairs of deviation from the
expected genome size. Species identification was performed as
previously described (Rebelo et al., 2022) through matrix-assisted
laser desorption/ionization – time-of-flight mass spectrometry
(MALDI-TOF MS), KmerFinder2 (Larsen et al., 2014; Clausen
et al., 2018), and rMLST3 (Jolley et al., 2012).

In silico AST was performed using ResFinder 4.04 (Bortolaia
et al., 2020). The program was run in batch by grouping the
isolates per species, using the Danish National Supercomputer for
Life Sciences5 and using the default threshold values found in the
corresponding online tool (minimum accepted alignment of 60%
and minimum accepted identity of 90%). Results were manually
curated for trimethoprim/sulfamethoxazole in all relevant species
(because resistance genes for each antimicrobial are provided
separately using the ResFinder 4.0 tool).

We classified WGS results as “resistant” when one or several
antimicrobial resistance genes (ARGs) or chromosomal point
mutations (PMs) were identified by ResFinder and allocated
as the mechanism of AMR to that antimicrobial, and as
“susceptible” when no ARG or PM was found.

Raw sequence data have been submitted to the European
Nucleotide Archive6 under study accession no.: PRJEB37711.
A complete list of genomic sequence data is available in the
Supplementary Material.

Comparison of Phenotype and Genotype
We compared MIC results and WGS results for all bacterial
species-antimicrobial combinations where EUCAST clinical
breakpoints were available and included in the SensititreTM panel
range (excluding intrinsic resistances), while simultaneously
being present in the ResFinder 4.0 database (n = 5,229).

The antimicrobials present in the BMD panels but missing
from the ResFinder 4.0 database, and thus automatically excluded
from the comparison, were as follows: ampicillin/sulbactam,
cefaclor, cefazolin, cefpodoxime, ceftaroline, cefuroxime,
clarithromycin, daptomycin, levofloxacin, moxifloxacin,
nitrofurantoin, norfloxacin, oxacillin, sparfloxacin, and
telavancin. The antimicrobials present in the panels and
in the ResFinder database but not analyzed due to lack of
breakpoints or due to these values being outside of the panel
range are available on a species-antimicrobial basis in the
Supplementary Material.

1https://bitbucket.org/genomicepidemiology/foodqcpipeline/src/master/
2https://cge.food.dtu.dk/services/KmerFinder/
3https://pubmlst.org/rmlst/
4https://cge.food.dtu.dk/services/ResFinder/
5https://www.computerome.dk
6http://www.ebi.ac.uk/ena
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RESULTS

Bacterial Isolates
Of the 500 randomly selected bacterial isolates, two were non-
viable from the beginning of laboratory work (presumptive
Neisseria gonorrhoeae isolates) and one died during laboratory
work (presumptive Aerococcus sp. isolate). For one isolate, no
MIC values were obtained (Anaerococcus hydrogenalis), and for
another, they were not interpretable (undetermined species).
Seven anaerobic isolates were excluded due to failure to obtain
MIC values in the admitted range for the ATCC control strains.

The MIC and WGS results were obtained and interpreted
for a total of 488 bacterial isolates, of which the main species
were Escherichia coli (n = 171, 35%) and Staphylococcus aureus
(n = 89, 18.2%). The complete distribution of isolates by genera
and species can be found in Table 1 and in Supplementary
Table 1. Most isolates had been recovered from urine samples
(n = 257, 52.7%) or skin/soft tissue samples (n = 61, 12.5%). The
complete distribution of the isolated source is found in Figure 1.

Classical Methods for Antimicrobial
Susceptibility Testing
For the 488 bacterial isolates, the total number of obtained
MIC results was 10,874, including cefoxitin, gentamicin, and
streptomycin screens and D-tests. The total number of MIC
values interpreted was 6,487 (Tables 2, 3). The remaining
MIC values were not interpreted due to lack of breakpoints
or due to intrinsic resistance of the respective species to the

TABLE 1 | Distribution by genera of the 488 bacterial isolates analyzed in
this study.

Genera Number of isolates Percentage

Escherichia 171 35.0

Staphylococcus 103 21.1

Streptococcus 55 11.3

Klebsiella 34 7.0

Enterococcus 32 6.6

Pseudomonas 21 4.3

Haemophilus 14 2.9

Moraxella 10 2.0

Proteus 10 2.0

Enterobacter 10 2.0

Citrobacter 10 2.0

Aerococcus 5 1.0

Corynebacterium 3 0.6

Stenotrophomonas 2 0.4

Serratia 2 0.4

Erwinia 1 0.2

Morganella 1 0.2

Providencia 1 0.2

Raoultella 1 0.2

Salmonella 1 0.2

Yersinia 1 0.2

Grand total 488 100

respective antimicrobial but are provided in the Supplementary
Material. The screens and D-tests were interpreted for relevant
species. In summary, from the 6,487 isolate-antimicrobial
combinations interpreted, 91% (n = 5,901) corresponded
to susceptible phenotypes (S or I) and 9% (n = 586) to
resistance phenotypes (R).

Gram-positive bacteria presented lower proportions
of phenotypical resistance (6.1%) than Gram-negative
bacteria (10.9%).

Comparison of Phenotype and Genotype
Out of the 5,229 isolate-antimicrobial combinations for which
MIC and WGS data were compared, 434 (8.3%) had discordances
in phenotypic and genotypic antimicrobial susceptibility
profiles. The remaining 4,795 combinations (91.7%) showed a
concordance between phenotype and genotype (Figure 2). Of
the observed discordances, 75 were observed in Gram-positive
bacteria, which corresponded to 3.8% of all 1,969 combinations
analyzed in those isolates. Among Gram-negative bacteria,
there were 359 discordances, or 11% of the 3,260 combinations
analyzed in those taxa (Figure 2).

The discordant cases were not equally distributed. For 326
isolate-antimicrobial combinations, ARGs or PMs were detected
but the isolate was phenotypically susceptible (major errors).
This number corresponded to 6.2% of all combinations analyzed
and to 6.8% of all phenotypically susceptible combinations
(n = 4,820). The remaining 108 discordances were phenotypically
resistant isolates in which no genetic determinants of AMR
were detected (very major errors), corresponding to 2.1% of all
combinations analyzed and 26.4% of all the detected phenotypic
resistances (n = 409) (Figure 2).

In staphylococci, we analyzed 103 isolates with 12
antimicrobials, yielding a total of 1,226 isolate-antimicrobial
combinations. In total, 1.6% (n = 20) of results were discordant.
Notably, 25% of these discordances occurred for fusidic
acid (n = 5 or 4.9% of 102 combinations analyzed for this
antimicrobial). Furthermore, we observed one, two, or three
discordances for all remaining antimicrobials tested except
vancomycin and erythromycin, which presented none.

For streptococci, we analyzed 55 isolates with 15
antimicrobials (a total of 570 combinations). The worst
phenotype–genotype concordance was observed for macrolide
antimicrobials. Of all isolate-macrolide combinations (n = 102),
34.3% (n = 35) corresponded to discordances, mainly due to
phenotypic susceptibility with the presence of ARGs (n = 30).
Furthermore, we detected eight discordances for tetracycline
(15.7% of tetracycline results). These two classes were responsible
for 91.5% of all discordances observed in streptococci. The
remaining discordances were found in clindamycin (n = 3 or
5.5% of results for clindamycin) and chloramphenicol (n = 1 or
2% of chloramphenicol results). In total, 8.2% (n = 47) of results
were discordant.

In enterococci, we analyzed the results of 32 isolates
and four antimicrobials, as well as quinupristin/dalfopristin
results in nine Enterococcus faecium isolates, with a total
of 137 isolate-antimicrobial combinations. Discordances were
only observed for quinupristin/dalfopristin (n = 2 or 22.2%
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FIGURE 1 | Distribution by sample source of the 488 bacterial isolates analyzed in this study.

of quinupristin/dalfopristin results), with one resistant isolate
missing dalfopristin resistance genes and one susceptible (I)
isolate harboring quinupristin and dalfopristin resistance genes.
Although this percentage is high, in total, only those two results
were discordant (1.5% of all results).

Of the remaining Gram-positive bacteria, no discordances
were found in the 15 isolate-antimicrobial combinations analyzed
for the five isolates of Aerococcus spp. The three isolates of
Corynebacterium spp. were analyzed with seven antimicrobials
(n = 21 combinations), and we observed six discordances
(28.6% of all results). All these discordances corresponded to
phenotypically resistant isolates with no known resistance genes,
for penicillin (n = 3, 100%), clindamycin (n = 2, 66.6%),
and ciprofloxacin (n = 1, 33.3%). Tetracycline, vancomycin,
rifampicin, and linezolid results were concordant in this genus.

In Enterobacterales, 243 isolates were analyzed with 12
antimicrobials (except when certain species were intrinsically
resistant or lacked breakpoints), yielding a total of 2,839
combinations. In total, 9.6% (n = 273) of results were discordant.
Ciprofloxacin concordance was poor, with discordances observed
in 28.5% of results for this antimicrobial, which corresponded to
25.3% of all detected discordances. The remaining discordances
were mainly observed for the β-lactam antibiotics (n = 187) and
together were responsible for 68.5% of all discordances observed
in Enterobacterales. In particular, combinations of penicillins
with β-lactamase inhibitor results were discordant in 28.8%
of cases (n = 70 of 243 results), followed by cephalosporins
(12.3% or n = 90 of 729 results) and aztreonam (12.1% or
n = 26 of 243 results). These issues were mainly due to
phenotypic susceptibility profiles with the presence of ARGs (139
out of 186 discordances in these antimicrobials). However, no
discordances were observed for meropenem and only one (0.5%)
for ampicillin. Only 17 other cases of discordances were observed
for this bacterial group, with no other antimicrobial exceeding
2.5% of discordant results.

Pseudomonas aeruginosa had the highest percentage of
discordant results. Concordance was analyzed for 21 isolates with
nine antimicrobials (n = 189 combinations), and 44.4% of results
showed discordance between phenotype and genotype (n = 84).
Several antimicrobials showed over 50% of phenotype–genotype
discordance, in particular ceftazidime (100%), cefepime (95.2%),
meropenem (61.9%), and ciprofloxacin (52.4%), with genetic
determinants present in phenotypically susceptible isolates, and
ticarcillin/clavulanic acid (81%) with resistant isolates harboring
no known genetic AMR determinants. The remaining β-lactam
antibiotics, namely, piperacillin/tazobactam and aztreonam also
had poor results, with 4.8% of discordances each. Only amikacin
and colistin showed full genotype–phenotype concordance.

Of the 140 combinations analyzed for Haemophilus influenzae
(14 isolates with 10 antimicrobials), two (1.4%) were discordant,
observed for trimethoprim/sulfamethoxazole. Due to the small
number of isolates, these corresponded to 14.3% of the results
for this antimicrobial. All other combinations (n = 138)
were concordant.

No discordances were found for Moraxella catarrhalis (10
isolates with nine antimicrobials, yielding 90 combinations)
nor Stenotrophomonas maltophilia (two isolates with
one antimicrobial).

All individual and grouped genotype–phenotype comparison
results are available as Supplementary Material.

DISCUSSION

In this study, we analyzed both phenotypic and genotypic AMR
profiles of a random subset of clinically relevant bacterial isolates
obtained from an original collection containing all isolates
processed during one day in all Danish Clinical Microbiology
Laboratories, without any a priori selection of bacterial species
nor biological sample type.
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TABLE 2 | Phenotypic antimicrobial susceptibility testing (AST) results obtained through broth microdilution (BMD) for the main Gram-positive bacterial taxa in this study.

Bacteria Antimicrobials Nr. of tests Nr. (%) of susceptible1

isolates
Nr. (%) of

resistant isolates

Staphylococci (n = 103) Erythromycin 103 97 (94.2%) 6 (5.8%)

Clindamycin 103 100 (97.1%) 3 (2.9%)

Tetracycline 103 96 (93.2%) 7 (6.8%)

Trimethoprim/sulfamethoxazole 103 100 (97.1%) 3 (2.9%)

Gentamicin 103 99 (96.1%) 4 (3.9%)

Tobramycin 103 96 (93.2%) 7 (6.8%)

Fusidic acid 102 80 (78.4%) 22 (21.6%)

Linezolid 103 102 (99%) 1 (1%)

Teicoplanin 103 102 (99%) 1 (1%)

Vancomycin 103 103 (100%) 0 (0%)

Rifampicin 103 101 (98.1%) 2 (1.9%)

Cefoxitin 94 92 (97.9%) 2 (2.1%)

Ceftaroline 90 90 (100%) 0 (0%)

Daptomycin 103 102 (99%) 1 (1%)

Levofloxacin 103 95 (92.2%) 8 (7.8%)

Norfloxacin 90 83 (92.2%) 7 (7.8%)

Moxifloxacin 103 94 (91.3%) 9 (8.7%)

Total 1,625 1,549 (95.3%) 76 (4.7%)

Streptococci (n = 55) Erythromycin 51 39 (76.5%) 12 (23.5%)

Azithromycin 51 40 (78.4%) 11 (21.6%)

Clindamycin 55 50 (90.9%) 5 (9.1%)

Tetracycline 51 32 (62.7%) 19 (37.3%)

Tigecycline 44 44 (100%) 0 (0%)

Trimethoprim/sulfamethoxazole 51 51 (100%) 0 (0%)

Chloramphenicol 51 50 (98%) 1 (2%)

Penicillin 55 55 (100%) 0 (0%)

Ceftriaxone, cefotaxime, cefepime, ertapenem, and
meropenem

55 55 (100%) 0 (0%)

Linezolid 51 51 (100%) 0 (0%)

Vancomycin 55 55 (100%) 0 (0%)

Daptomycin 44 44 (100%) 0 (0%)

Levofloxacin 51 50 (98%) 1 (2%)

Total 665 616 (92.6%) 49 (7.4%)

Enterococci (n = 32) Quinupristin/dalfopristin 9 8 (88.9%) 1 (11.1%)

Tigecycline 32 32 (100%) 0 (0%)

Ampicillin 32 23 (71.9%) 9 (28.1%)

Linezolid 32 32 (100%) 0 (0%)

Vancomycin 32 32 (100%) 0 (0%)

Levofloxacin 32 21 (65.6%) 11 (34.4%)

Nitrofurantoin 23 23 (100%) 0 (0%)

Total 192 171 (89.1%) 21 (10.9%)

Corynebacterium spp. (n = 3) Penicillin and clindamycin 6 0 (0%) 6 (100%)

Linezolid, vancomycin, and rifampicin 9 9 (100%) 0 (0%)

Ciprofloxacin and moxifloxacin 6 4 (66.7%) 2 (33.3%)

Tetracycline 3 2 (66.7%) 1 (33.3%)

Total 24 15 (62.5%) 9 (37.5%)

Aerococcus spp. (n = 5) Penicillin, meropenem, vancomycin, and levofloxacin 20 20 (100%) 0 (0%)

Grand total 2,526 2,371 (93.9%) 155 (6.1%)

1Susceptible isolates include those classified as susceptible, standard dosing regimen (S) and susceptible, increased exposure (I) according to the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints version 12.0.

Only 9% (n = 586) of all phenotypic AST results (n = 6,487)
determined by the standard BMD corresponded to phenotypical
resistance, which can be considered as a low occurrence of AMR

when compared with results observed in similar settings, such
as other countries in the European Union (European Centre
for Disease Prevention and Control [ECDC], 2020). The AMR
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TABLE 3 | Phenotypic AST results obtained through BMD for the main Gram-negative bacterial taxa in this study.

Bacteria Antimicrobials Nr. of tests Nr. (%) of
susceptible1

isolates

Nr. (%) of
resistant
isolates

Enterobacterales (n = 243) Ampicillin 183 113 (61.7%) 70 (38.3%)

Ticarcillin/clavulanic acid, ampicillin/sulbactam 471 358 (76%) 113 (24%)

Cefazolin 205 168 (82%) 37 (18%)

Cefuroxime 216 181 (83.8%) 35 (16.2%)

Ceftazidime and ceftriaxone 486 458 (94.2%) 28 (5.8%)

Cefepime 243 238 (97.9%) 5 (2.1%)

Meropenem 243 243 (100%) 0 (0%)

Aztreonam 243 227 (93.4%) 16 (6.6%)

Ciprofloxacin 242 214 (88.4%) 28 (11.6%)

Trimethoprim/sulfamethoxazole 243 198 (81.5%) 45 (18.5%)

Gentamicin 242 231 (95.5%) 11 (4.5%)

Amikacin 242 238 (98.3%) 4 (1.7%)

Colistin 229 226 (98.7%) 3 (1.3%)

Total 3,488 3,093 (88.7%) 395 (11.3%)

Pseudomonas aeruginosa (n = 21) Piperacillin/tazobactam 21 20 (95.2%) 1 (4.8%)

Ticarcillin/clavulanic acid 21 4 (19%) 17 (81%)

Ceftazidime 21 21 (100%) 0 (0%)

Cefepime 21 20 (95.2%) 1 (4.8%)

Meropenem 21 21 (100%) 0 (0%)

Aztreonam 21 20 (95.2%) 1 (4.8%)

Ciprofloxacin 21 17 (81%) 4 (19%)

Amikacin 21 21 (100%) 0 (0%)

Colistin 21 21 (100%) 0 (0%)

Total 189 165 (87.3%) 24 (12.7%)

Haemophilus influenzae (n = 14) Ampicillin 14 9 (64.3%) 5 (35.7%)

Amoxicillin/clavulanic acid, ampicillin/sulbactam 28 25 (89.3%) 3 (10.7%)

Cefuroxime, cefixime, ceftriaxone, and cefepime 56 54 (96.4%) 2 (3.6%)

Imipenem and meropenem 28 28 (100%) 0 (0%)

Chloramphenicol, tetracycline, and levofloxacin 42 42 (100%) 0 (0%)

Trimethoprim/sulfamethoxazole 14 12 (85.7%) 2 (14.3%)

Total 182 170 (93.4%) 12 (6.6%)

Moraxella catarrhalis (n = 10) Cefuroxime, ceftriaxone, cefotaxime, cefepime,
ertapenem, meropenem, erythromycin,
azithromycin, tetracycline,
trimethoprim/sulfamethoxazole

100 100 (100%) 0 (0%)

Stenotrophomonas maltophilia (n = 2) Trimethoprim/sulfamethoxazole 2 2 (100%) 0 (0%)

Grand total 3,961 3,530 (89.1%) 431 (10.9%)

1Susceptible isolates include those classified as susceptible, standard dosing regimen (S) and susceptible, increased exposure (I) according to the EUCAST clinical
breakpoints version 12.0.

profiles observed in this study are mostly in agreement with
what has been observed in surveillance results for urine and/or
invasive isolates analyzed in the last decade, country-wide
(Statens Serum Institut and National Food Institute, 2018,
2019, 2020). Noteworthy observations are that Staphylococcus
epidermidis and Streptococcus agalactiae were the species with
the highest prevalence of AMR in the Staphylococcus and
Streptococcus genera, respectively (Supplementary Tables 2,3).
Furthermore, the occurrence of ampicillin resistance in
Enterococcus spp. corresponded to 100% of resistance in
E. faecium isolates and full susceptibility in Enterococcus faecalis
(Supplementary Tables 2,3). In both Enterobacterales and

P. aeruginosa, resistance to combinations of β-lactams with
β-lactamase inhibitors and to ciprofloxacin was high, and other
prevalent resistance phenotypes were detected (Table 3 and
Supplementary Tables 2,3).

The main focus of this study was the comparison of BMD
AST results with in silico antibiograms obtained through
WGS followed by bioinformatics analysis. WGS-based
AMR predictions were discordant from BMD results in
8.3% of all species-antimicrobial combinations analyzed,
from which 6.2% corresponded to major errors and 2.1%
to very major errors. Most of these discordances were restricted
to particular species-antimicrobial class combinations, in
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FIGURE 2 | Percentage and number of genotype–phenotype concordances and discordances observed for all bacteria analyzed in this study, when comparing MIC
and WGS results. Numbers in brackets for each taxon correspond to the number of isolates, and to the number of isolate-antimicrobial combinations tested.
Numbers on top of the bars correspond to the respective number of results. MIC-S cases correspond to S and I phenotypes according to EUCAST clinical
breakpoints v12.0, and MIC-R cases correspond to R phenotypes according to the same guideline. WGS-S correspond to cases where no acquired ARGs nor
chromosomal PMs have been detected, and WGS-R correspond to cases where they have.

particular, macrolides and tetracycline in streptococci, penicillins
in association with β-lactamase inhibitors, ciprofloxacin in
Enterobacterales, and most antimicrobials in P. aeruginosa.

Most of the streptococci-macrolide discordances (n = 30)
were due to the presence of the ARG mre(A) in phenotypically
susceptible isolates. The gene was also observed in phenotypically
resistant isolates but in combination with erm, mef, or msr
genes, which are associated with macrolide resistance (Garland
et al., 2011; Metcalf et al., 2017). As such, it appears that
mre(A) by itself is unable to increase the macrolides’ MIC above
resistance thresholds in streptococci, in opposition to what had
been previously suggested (Clarebout et al., 2001). Tetracycline
resistance genotypic determinants tet(M) and tet(O) were more
heterogeneously distributed: of the 21 isolates harboring these
ARGs 16 were phenotypically resistant, but five were susceptible.
Furthermore, three isolates with tetracycline MIC values in
the resistant range presented no known genes associated with
resistance, indicating that further studies are necessary to
elucidate the correlation between genetic determinants and
phenotypes, as well as to discover other genetic mechanisms
potentially responsible for tetracycline resistance in streptococci.
The poor correlation between the presence or absence of tet
genes and phenotypic tetracycline-resistance has been observed
in other instances (Stewart et al., 2020).

In Enterobacterales, the discordances observed in
piperacillin/tazobactam were equally distributed between
the presence of ARGs in phenotypically susceptible isolates
(n = 35) and the opposite situation of phenotypic resistance
without any known AMR determinants (n = 35). Predicting the
activity of these combinations through genomic analyses has
proven difficult in the past, as alterations in gene expression,
mutations in promoter regions, and number of gene copies,

among other factors, can contribute to altered phenotypes
while being difficult to detect through these WGS methods
(Stoesser et al., 2013; Schechter et al., 2018; Ruppé et al.,
2020). Ciprofloxacin discordances were mainly due to the
presence, in phenotypically susceptible isolates, of single PMs
in gyrase and topoisomerase genes and to the presence of
oqx genes. The oqxA and oqxB ARGs increase MIC when
compared with values observed in wild-type isolates but
are not always responsible for an increase that would lead
to a classification of clinical resistance. However, they can
lead to such an increase and thus cannot be discarded from
in silico antibiograms (Hansen et al., 2007; Wong et al., 2015).
Furthermore, it has been previously shown that the number of
gyrase and topoisomerase point mutations is correlated with
the observed increase in quinolone-MIC values: accumulation
of more mutations leads to higher MICs (Vila et al., 1994;
Everett et al., 1996; Sáenz et al., 2003; Hopkins et al., 2005). As
such, we would suggest that it is necessary to use a different
approach for predicting ciprofloxacin resistance than the usual
detection of the presence/absence of genotypic determinants.
Although the absence of PMs or ARGs is a good predictor of
susceptibility, algorithms should consider both the type and
number of mutations detected in each isolate, as well as the
association with acquired ARGs when attempting to predict
phenotypic resistance.

In P. aeruginosa, discordances were abundant and distributed
throughout several different antimicrobial classes. Against
what should be expected according to previous studies,
the presence of β-lactamases from the blaOXA and blaPAO
families and of the crpP gene did not correlate to phenotypic
resistance to β-lactam drugs and ciprofloxacin, respectively
(Rodríguez-Martínez et al., 2009;Chávez-Jacobo et al., 2018;
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Subedi et al., 2018; Madaha et al., 2020). AMR is often
exacerbated or mediated by complex genetic mechanisms
leading to overexpression of ampC-encoded β-lactamases
and efflux pumps in this species, which confounds genotypic
detection of resistance without resorting to, for example,
transcriptomics or proteomics analyses (Tam et al., 2007; Lister
et al., 2009; Cabot et al., 2011).

We have shown that WGS can potentially be applied
as a diagnostic method for AST in clinical microbiology
settings. There are clear limitations when considering certain
species-antimicrobial combinations where mechanisms related
to increased gene expression are involved, but the phenotype–
genotype concordance for most isolates processed in the
clinical microbiology laboratories was very high. However, as
previously pointed out, this study was conducted in a collection
presenting relatively low percentages of phenotypic AMR. We
observed very major errors in 26.4% of all phenotypically
resistant isolate-antimicrobial combinations, but these cases
only represented 2.1% of all our results. Thus, phenotype–
genotype concordance might be lower in settings with a
higher prevalence of AMR; therefore, a future perspective is
to employ this methodology of data comparison in bacterial
collections with more challenging phenotypes. This approach
will elucidate which species-antimicrobial combinations should
be further investigated regarding currently unknown genetic
determinants of AMR. For these combinations, analyzing large
datasets of MIC distributions and comparing those with the
genome sequences can reveal new ARGs or PMs of interest,
and their contribution to phenotypic resistance profiles can be
then confirmed in vitro through, for example, transformation
experiments (Hadjirin et al., 2021). This procedure can also be
used to confirm if specific genetic determinants that apparently
do not confer phenotypic resistance can be removed from
bioinformatics databases, despite previous literature suggesting
that association. Machine learning approaches can also be
employed to identify further genetic candidates associated
with AMR (Peiffer-Smadja et al., 2020; Anahtar et al.,
2021).

Besides the need to improve our understanding of
phenotypic–genotypic correlations for the discordant cases
and curate bioinformatics databases according to the state of the
art, it is necessary to create an adequate framework that allows
for the use of these results in a clinical setting. In this study,
the choice of clinical breakpoints referring to “indications other
than meningitis” and the inclusion of breakpoints exclusive
for uncomplicated urinary tract infection were made to allow
the inclusion of larger amounts of data for phenotype and
genotype comparison, due to the most common sample sources
observed in this collection of bacterial isolates. However, in
a clinical setting, the difference in breakpoints cannot be
ignored, and data analysis systems must take into account
sample sources and other important clinical manifestations
of the disease. One potential solution is to associate warning
messages to antimicrobial-species combinations for which
there is a meningitis breakpoint, when the breakpoint only
applies to urinary tract infection or other specific situations.
Furthermore, current data are insufficient to effectively predict

differences between S and I categories through genotypic
characterization, thus systems must also warn users when the
susceptibility categories include both S and I ranges (or only I
ranges). These details must be confirmed and updated any time
the breakpoints are revised, similarly to the current practice
of updating the interpretation of phenotypic results. In this
study, we have provided the MIC distributions in addition
to their interpretation, so it is possible to review phenotype–
genotype concordance when breakpoints are revised, or new
breakpoints are included.

Implementation of in silico prediction of AMR profiles in
clinical settings must be gradual. Laboratories should start
with benchmarking their WGS and bioinformatics approaches,
by employing the technology in parallel with their currently
used diagnostics methods for well-described bacterial species,
from uncomplicated infections, and with simple expected
phenotypes. Only after optimizing all processes related to
WGS, bioinformatics analysis, and data management, should
laboratories consider an exclusive WGS-based characterization
of isolates (Florian Fricke and Rasko, 2014; Gargis et al.,
2016). Depending on the specific local bacterial epidemiology
patterns, laboratories can choose to proceed with the inclusion
of all isolates processed in their settings, or apply WGS
technologies only in selected cases (such as for species included
in national surveillance systems, species associated with frequent
nosocomial or community outbreaks, or species with emerging
epidemiological relevance in neighboring settings).

It is furthermore important to note that a major caveat of
performing genotypic predictions of antimicrobial susceptibility
profiles is the lack of detection of new resistance determinants.
Bioinformatics tools screen for ARGs or chromosomal PMs
included in their databases and are thus unable to detect
any unknown AMR determinants. Therefore, it is likely that
some national laboratories must continue to perform sentinel
or routine phenotypic AST so that variations in incidence or
prevalence of phenotypic resistance can serve as a warning
that new mechanisms of resistance might have been acquired
or might be emerging. Together, these limitations make it
unlikely that phenotypic methods can be completely replaced by
in silico antibiograms. However, the possibility of applying WGS
technologies to other steps of the clinical diagnostics pipeline
(such as species identification, serotyping, and sequence typing,
among others) and for infection control purposes (through
phylogenetic or cluster analyses), the constantly decreasing
cost of sequencing machines and reagents and the ease of
storing, processing, and transferring data make it an attractive
option in clinical settings that should be further explored
and optimized (Didelot et al., 2012; Deurenberg et al., 2017;
Parcell et al., 2021).
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