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The overlap of microbiology and electrochemistry provides plenty of opportunities
for a deeper understanding of the redox biogeochemical cycle of natural-abundant
elements (like iron, nitrogen, and sulfur) on Earth. The electroactive microorganisms
(EAMs) mediate electron flows outward the cytomembrane via diverse pathways
like multiheme cytochromes, bridging an electronic connection between abiotic and
biotic reactions. On an environmental level, decades of research on EAMs and the
derived subject termed “electromicrobiology” provide a rich collection of multidisciplinary
knowledge and establish various bioelectrochemical designs for the development of
environmental biotechnology. Recent advances suggest that EAMs actually make
greater differences on a larger scale, and the metabolism of microbial community and
ecological interactions between microbes play a great role in bioremediation processes.
In this perspective, we propose the concept of microbial electron transfer network
(METN) that demonstrates the “species-to-species” interactions further and discuss
several key questions ranging from cellular modification to microbiome construction.
Future research directions including metabolic flux regulation and microbes–materials
interactions are also highlighted to advance understanding of METN for the development
of next-generation environmental biotechnology.

Keywords: electroactive microorganisms, electromicrobiology, biological treatment, synthetic microbiome,
microbial electron transfer networks

INTRODUCTION: MICROBIAL ELECTRON TRANSFER
NETWORK

Near one hundred and a half years ago when Thomas Edison devoted himself to the improvement
of light bulbs, he would probably never imagine that some of the bulbs could be powered
by a bunch of tiny microbes named electroactive microorganisms (EAMs). After a rapid
development in the past decade, scientists have contributed worthwhile endeavors to establish
the scientific basis of potential microbial electrochemical technologies such as microbial fuel cells
or microbial electrolytic cells to deal with various environmental issues (Zhang and Angelidaki,
2014; Gude, 2016). Up to this day, the scope of “electromicrobiology” is far beyond microbial
electron exchange with electrodes, but extended significantly to the microbe-mediated redox
reactions between microbes, as well as between microbial cells and the ecosphere, driving both
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biotic and abiotic natural element cycles (Nichols et al.,
2015; Marzocchi et al., 2022). For instance, methanogens as
ancient microbes were suggested to be responsible for annually
producing one billion metric tons of methane in the global carbon
cycle, taking micromolecular carbon chemicals (i.e., acetate) as
terminal electron acceptors (Prakash et al., 2019). Furthermore,
some methanogens were recently evidenced to transfer electrons
to exogenous Fe(III) for conserving energy, which was important
in the early evolution of respiration (Lueders and Friedrich,
2002; Seckbach, 2004; Prakash et al., 2019). Beyond that, there
are other EAMs unintentionally influencing and shaping our
blue planet Earth in totally different ways like mineral diffusion
in soil or sediments (Lovley et al., 2011). In particular, the
recent findings on cable bacteria and filamentous bacteria have
revolutionarily expanded the wide spectrum of bio-electron flow
from micrometer to centimeter scale, cooperatively connecting
assorted biochemical reactions [e.g., sulfate oxidation, reduction
of dissolved oxygen, and Fe(II)/Fe(III) transformation] from
anoxic to oxic conditions in sediments (Liu et al., 2021a; Yang
et al., 2021). On this topic, a microbial electron transfer network
(METN), which is a three-dimensional collection of extracellular
electron transfer (EET) behaviors among aggregative microflora
of the phylogenetically diverse EAMs and even non-electroactive
ones, is certainly evident and ubiquitous in both natural and
engineering environments. In the viewpoint of environmental
bioremediation, it continues to make us wonder if it is possible
that the development of biotreatments could be guided by the
theories of METN, which had been less focused on previously.
We hope that this idea of METN could help the scientific
community bring a deeper understanding to answer the following
two fundamental questions: (1) How does one modify and
optimize functional microbiome including EAMs and non-
electroactive ones in a real environment? (2) To what extent could
this artificial modification be regulated for the environmental
biotechnology development?

DISCUSSION

Why Is Microbial Electron Transfer
Network Important?
On a cross-sectoral scale, environmentalists may be more
interested in how the METN works in some biological treatment
processes, e.g., membrane bioreactor and anaerobic digestion,
especially for granular sludge-based structures in which
microbiome shares micro-niche intimately and intensive
mass-transfer flow both individually and collectively. Taking
anaerobic digestion as an example, besides either H2 or
acetate as electron donors for methanogenesis processes,
direct interspecies electron transfer (DIET) is recognized
as a highly efficient and stable process connecting both
respiratory and fermentative bacteria/archaea for bioconversion
from (macro-molecular) organics to methane (Lovley and
Holmes, 2021). Speaking of which, the fast development
and broad application scenarios of genomics could provide
plenty of correlative information from other transboundary
research. For instance, a two-species microbial coculture
was established for value-added chemical evolution driven

by bio- and light energy (Huang et al., 2022). In this case,
Rhodopseudomonas palustris harvested and transferred
solar energy into bioenergy (bio-electrons) while the other,
Methanosarcina barkeri, conducted CO2-to-CH4 conversion
powered by the bio-electron flow. The key question was
how those bio-electrons passed through cytomembranes.
Revealed by metatranscriptomic analyses, both multihaem
cytochrome c and nanofilaments (direct contact) and electron
shuttles (indirect connect) wired two species to construct a
biological hybrid system (Huang et al., 2022). Coincidentally,
a model of DIET between acetate-consuming bacteria and
methanogens was recently established via genome-centric
metatranscriptomics analysis; either electrically conductive pili
(e-pili) and cytochromes or artificial materials (hydrochar)
were evident as available electric conduits for DIET (Shi et al.,
2021). Those intriguing findings, of course, would be helpful
and constructive for environmentalists to optimize related
environmental biotechnology.

Now, back to the question of whether METN is important
for future environmental biotechnology. More than 400 scientific
papers per year have been published within the broad scope of
“biological treatment” and “electron transfer” in the past 5 years
(based on the web search results1). The answer is obvious.
New scientific discoveries and insights have expanded upon
new electroactive species and novel electric bridges; however, a
coherent and comprehensive picture or framework of METN
on how it works in biological applications and its associated
environmental implications is still not available. It would be
of great significance to formulate this concept to guide the
construction and operation of biological treatments from lab-
scale to real application, in a multidiscipline view.

In What Area Could Microbial Electron
Transfer Networks Be Improved?
As a manifestation of functional microflora behaviors, cell
performance in METN is paid more attention prior to METN
improvement in the eyes of environmentalists. For example, it is
known that the electric conduits of EAM are arrayed disjunctively
on the cell surface (Lovley and Holmes, 2021). This fact,
however, makes the bioelectric connection of e-pili or other EET-
related proteins with extracellular electron barriers/terminals
become random behaviors that require close contact and more
active interfacial area. In this sense, METN is fundamentally
an issue of mathematic probability. The fast-growing literature
has suggested “top-down” strategies. Theoretically, the inactive
electric conduits on a single-EAM cell could be wired up
by covering abiotic conductive electron collectors (e.g., FeS
or polydopamine), achieving record-high EET efficiency (Yu
et al., 2020). In this way, it is an encouraging story in which
EET had been evolved from natural “dot-to-dot” contact to
artificial “cell sphere-to-cell sphere” connection. Recently, this
story is enriched by another article published in Science. The
Shewanella sp., a famous EAM model strain, was in vivo
embedded with silver nanoparticles for excellent fuel-utilization
efficiency in microbial fuel cells (Cao et al., 2021). Although
they are followed by universal controversies, the presented

1webofscience.com
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FIGURE 1 | METN development for next-generation environmental biotechnology.

findings strongly imply that the cytomembrane-level deficits
are responsible for the sluggish electron transfer efficiency.
However, the cytomembrane-level modification is still not
“three-dimensional” enough before its competing mechanisms
on “species-to-species” connections in METN uncovered from
mysteries. To this end, some redox-active substances (e.g.,
elemental sulfur) are suggested to be useful for mediating
fundamental interactions on the species level (Zhang et al.,
2021). Those redox-active substances (or generally called electron
shuttles) could act as driving forces for indirect interspecies
electron transfer (IIET). IIET was also intensively researched in
fields like iron cycle in sedimentary environments, anaerobic
digestions, and microbial electrosynthesis (Weber et al., 2006;
Rabaey and Rozendal, 2010; Shi et al., 2016). It could be a critical
framework of METN that makes the “microcosm-to-microcosm”
communication possible. However, unlike DIET, progress on
IIET has been slow to sufficient, considering that the vast
candidates for electron shuttles ranged from artificial additives
(e.g., H2, biochar, and flavins) to microbial secreta (e.g., soluble
c-type cytochromes) (Liu et al., 2020; Wu et al., 2020; Zavarzina
et al., 2020). Overall, such “top-down” strategies mainly focus on
modifying and optimizing the natural-given properties of EAM,
whereas how to piece together those nature-given properties is
still a fundamental question awaiting an answer.

Though great strides have been made, an ideal niche for
METN remains difficult to maintain in real biotreatments. It
was found that the interspecific competition even within the
same genus (i.e., Geobacter spp.) would largely alter the electron
transfer networks in complicated microbial consortia (Yan et al.,
2021). Here, we also propose bottom-up strategies on research
of the eco-niches and microbial interaction of METN in artificial
and engineering biosystems for fundamental and practical
interests. For example, the synthetic microbiome, a rationally
programmed microbial consortia with engineering strategies (i.e.,
quantification, standardization, and modularization) into the
assembly of functional microbiome, opens a modular toolbox
for scientists to break the limitation of natural evolution

of METN (Lawson et al., 2019; Jaiswal and Shukla, 2020).
In other words, we can now create a synthetic METN
microcosm with known microbial consortia (Figure 1). Recently,
a synthetic METN microcosm within a three-species microbial
consortium (engineered Escherichia coli, Bacillus subtilis, and
Shewanella oneidensis) was constructed following a “division-
of-labor” principle, resulting in better bioenergy generation
during which the production of electron donors/shuttles and
bioenergy recovery were separately allocated in the three-species
microbial consortium (Liu et al., 2017). The principle was
generally exerted and tested through a cross-feeding strategy
in most research. For example, it was found that chromate
[Cr(VI)] could be reduced in an anaerobic digestion sludge
coupled with elemental sulfur [S(0)] or zerovalent iron [Fe(0)]
as the electron donor (Shi et al., 2019). This process was
mediated by a typical cross-feeding strategy. The volatile
fatty acids produced by S(0)- or Fe(0)-oxidizing bacteria (like
Thiobacillus spp. and Ferrovibrio spp., respectively) could be
used to further metabolize the chromate-reducing bacteria (like
Geobacter spp. or Desulfovibrio spp.). This finding was quite
important as it provided a potential microbial consortia design
for Cr(VI) removal in groundwater and other water streams
where proper organic electron donors are insufficient and
any treatments that potentially bring secondary pollution are
strictly forbidden. Though promising, the scientific community
may expect a database-like toolbox recording interspecific
synergy or even competition to better advise the research
and application attempts of the synthetic METN microcosm.
Ignoring immense technology transfer issues, it is not surprising
to expect that the METN effectiveness could be largely improved
and dynamically controlled by means of constructing synthetic
microbial consortia with designed objectives.

Future Research Directions
Though successful examples have been introduced above,
the metabolic pathway segregation for establishing rational
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“division of labor” should be noted for further verification
and implementations. Taking METN as a whole bio-unit in
biological treatments, how to regulate metabolic flux (mass,
energy, and information flows) in METN to avoid unwanted
selection bias is a huge challenge. To answer this, cytocompatible
EET circuits and eco-compatible strains should be carefully
constructed, selected, and assembled in the METN microcosm.
Though most proposals of “cytocompatible EET” establishment
are based on the modifications of electroactive species, the
unique EET capability of EAMs may place themselves as
potential chassis cells for “eco-compatible strains” construction
to deeply modify the metabolic flux (especially energy flow) in
such biotechnology (synthetic biology). In this case, biosafety
should be carefully noted in the research to avoid the diffusion
of modified genes into the natural gene pool. Nevertheless,
intensive “Design–Build–Test–Learn cycles” should be both
essentially and iteratively conducted for objective-driven and
precise optimization. Strategies including competition-related
elements (e.g., toxin secretion systems) and cross-feeding can
be applied to maintain the balance of this synthetic METN
microcosm. Though it seems impossible to universally know the
specific functions of each microorganism, piecing together clues
behind the mechanisms of METN would be a potential shortcut.
Speaking of which, quorum sensing (QS) could be probably
taken into consideration on the microbial compatibility control.
QS is basically an interspecies communication process during
microbial aggregation, biofilm formation, and granulation,
induced by a series of QS signals like homoserine lactones
and autoinducing peptides (Maddela et al., 2019). Of most
interest, the signals could increase the concentration and redox
activities of extracellular polymeric substances from electroactive
biofilm (Chen et al., 2017). Here, we appeal for more efforts on
microbial interactions (synergy, mutualism, competition, etc.) of
METN, especially on connections between key functional METN
microbiomes and non-electroactive species.

Microbial electron transfer network is clearly not an
exclusive concept of EAMs or other microorganisms; more
innovative research on the microbes–materials interactions
should be conducted both technically and economically to
increase the knowledge base and the competitiveness of related
environmental biotechnologies. In particular, questions on how
to expand the influence range of METN and to what extent
could METN be domesticated still perplex environmental
researchers. Energy taxis, as a key branch of chemotaxis, was
recently proposed to control the transport and motility of
S. oneidensis MR-1 in porous media (Liu et al., 2021b). It
is important as the migration of those functional microbes

could hopefully be controlled toward (micro)pollutant sources
along gradient redox-active material surfaces. Such effectiveness
provides a complementary balance strategy between two
major contradictions: excessive population growth and biomass
running off. Either overpopulation or flushing loss of biomass is
disfavored in environmental biotechnology since it would cause
severe sludge accumulation and inexorable crash in efficiency,
resulting in added complications on reactor operation. Thus,
harnessing energy taxis to different redox materials could be
effective for METN regulation, but relevant research is still in
its infancy. Biochar is also an excellent candidate for METN
regulation as its sources are earth-abundant, and importantly,
it is highly redox-active with sufficient micro- and macropores
(Mohanty and Boehm, 2014; Zhou et al., 2019). Attempts
have been made to substantially expand the electronic reach
of METN by wheat straw-derived biochar for bioremediation
of pentachlorophenol-contaminated soils (Cai et al., 2020).
On the other hand, once it involves usage of materials, the
operation cost should be calculated and reported (Zhang and
Angelidaki, 2016). We are expecting more voices and more
research activities on this topic for further advances made in
the near future.
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