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Structure, and Advanced Bacterial
Community Diversity

Ya Zhao, Caibin Yan, Fuchu Hu, Zhiwen Luo, Shiqing Zhang, Min Xiao, Zhe Chen and
Hongyan Fan*

Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Ministry of Agriculture and Rural Affairs/Haikou Tropical Fruit
Tree Scientific Observation and Experimental Station, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural
Sciences, Haikou, China

Intercropping is widely used in agricultural production due to its capability of raising
land productivity and providing an opportunity to achieve sustainable intensification of
agriculture. In this study, soil samples from 10 to 20cm depth of intercropping Pinto
peanut in litchi orchard and litchi monoculture mode were established to determine
soil attributes, enzyme activities, as well as the effect on soil bacterial diversity. On
this basis, 16S rBNA V4-V5 region of soil bacterial communities in litchi/Pinto peanut
intercropping (LP) mode and litchi monoculture mode (CK) was detected by the lllumina
MiSeq sequencing platform. The results showed that the content of available potassium
(AK) in LP was significantly higher than that in CK by 138.9%, and the content of available
nitrogen (AN) in LP was significantly lower than that in CK by 19.6%. The soil enzyme
activities were higher in LP as a whole, especially sucrase (SC) and acid protease (PT)
were significantly higher by 154.4 and 76.5%, respectively. The absolute abundance
and alpha diversity of soil microbiota were significantly higher in the intercropping group.
Most importantly, endemic species with a significant difference in LP was higher by ~60
times compared to CK treatment. In the aspect of soil bacterial community structure,
the dominant phyla of the two groups were Acidobacteria, Proteobacteria, Chloroflexi,
and Actinobacteria. At the genus level, the absolute abundance of Flavobacterium and
Nitrososphaera was significantly higher by 79.20 and 72.93%, respectively, while that of
Candidatus_Koribacter was significantly lower with an amplitude of 62.24% in LP than
in CK. Furthermore, the redundancy analysis (RDA) suggested that AK, which was highly
associated with the dominant genera and phyla, is the vitally dominating environmental
factors in LP groups, while in CK groups, it is AN and pH. In addition, PICRUSt2 analysis
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indicated that intercropping improved the metabolic activity of bacteria which can be
correlated to the resistance of litchi root systems to soil-borne diseases. Overall, this
study is expected to provide a theoretical basis and technical support for the healthy
intercropping cultivation of litchi.

Keywords: intercropping Pinto peanut in litchi, soil properties, soil enzyme activity, soil bacterial community

structure, soil bacterial diversity

INTRODUCTION

Litchi (Litchi chinensis Sonn.) is a kind of south subtropical fruit,
which is rich in nutrition, and native to China (Hu et al., 2021;
Jiang et al.,, 2021). L. chinensis Sonn. cv. “Feizixiao,” an early
maturing litchi variety, is widely planted in Hainan Province
(Feng et al., 2015). The flower quantity of this variety is large
at the flowering stage, leading to preserve the fruit hardly as it
consumes too much soil nutrients, and the normal growth of
flowers and leaves is seriously affected by the lack of calcium
and water in the soil (Lu et al., 2017). Arachis pintoi, also known
as the Pinto peanut, is a tropical and subtropical leguminous
perennial creeping herbaceous plant (Zhang et al., 2021). Some
studies have shown that it is an excellent intergrowth plant in
ecological orchard that can improve not only microclimate and
control weed growth but also fruit quality (Vu et al., 2019; Phan
et al., 2021).

Intercropping is an agroecological practice of simultaneously
growing two or more crops near the same field (Bedoussac
et al., 2014), which is widely used in crop production. A meta-
analysis shows that exploiting species complementarities by
intercropping maize and soybean enables major increases in land
productivity with less N fertilizer use (Xu Z. et al., 2020), and
the increased N use efficiency in intercropping can reduce the
requirements for fossil-based N fertilizer by about 26% on a
global scale (Jensen et al., 2020). Recently, intercropping has
received an increasing attention due to its potential advantages
in increasing yield stability and yield per unit area, reducing pest
problems and requirements for agrochemicals, while stimulating
biodiversity (Ma et al, 2017; Maitra et al., 2021). Rodriguez
et al. (2020) reported that intercropping could increase the use
of N-sources and reduce the external inputs of N fertilizers for
simultaneous production of both cereals and grain legumes with
cropping systems’ diversification. Studies have shown that the
absolute yield gains were the greatest for mixtures of maize with
short-grain cereals or legumes compared with monocultures (Li
et al, 2020a). Tang et al. (2021) suggested that sugarcane/peanut
intercropping significantly boosted the content of total nitrogen
(TN), available phosphorus (AP), and total potassium (TK)
and enhanced the activity of acid phosphatase compared to
monoculture. Moreover, soil properties, nutrient use efficiency,
and soil microbial diversity were significantly improved in the
intercropping system (Zhao et al., 2022).

Soil nutrient and soil enzyme activities are critical factors
in ecosystem productivity (Brooker et al., 2015). Soil enzymes,
as an indicator of soil quality, are essential to organic matter
synthesis and degradation in soils (Burns et al, 2013), and
play critical roles in catalyzing biochemical reactions during the

decomposition of microorganisms and plants, where their debris
and subsequent release of nutrients into the soil is made available
to the plants (Ma et al., 2017). Intercropping is generally deemed,
could improve species diversity, and might have increased overall
ecosystem productivity and nutrient retention (Cong et al.,
2015), as it is reported that activities of enzymes associated with
decomposition were highly increased in intercropping pattern
soil (Hauggaar-Nielsen and Jensen, 2005). Soil microorganisms
are vital in the processes of soil nutrient cycling (Gao et al.,
2021) and nutrient transformation (Gul et al., 2015), which
is also highly correlated with soil enzyme (Acosta Martinez
et al,, 2003). In addition, plant growth and soil elemental C:N:P
ratios are linked to soil microbial diversity (Yang et al., 2021).
Although many studies of intercropping have been conducted
which put emphasis on crop yield and its effect on soil properties,
few studies have clearly demonstrated the interactions between
the microbial community structure and the soil environment;
especially, the effects of intercropping Pinto peanut in litchi
orchard on soil nutrient, enzyme activities, and soil bacterial
community structure and diversity remain unclear yet. In this
paper, soil samples of litchi intercropped with Pinto peanut and
of litchi monoculture from 10 to 20 cm soil layers were collected
to elucidate the effect of intercropping on soil properties, enzyme
activities, and soil bacterial community structure and diversity,
using high-throughput sequencing on the Illumina MiSeq
platform. In addition, the correlation between soil properties
and soil microbial community was further analyzed to provide
scientific theoretical guidance for compound cultivation mode.

MATERIALS AND METHODS

Plant Materials

Litchi cv. “Feizixiao,” planted in 1998 with plant spacing of 4 x
5m, was used as plant materials. The intercrop in this study,
A. pintoi cv. “Reyan No. 12, is one of the varieties of A. pintoi,
which was introduced by the Center of International Agriculture
Tropical (CIAT) in 1991 by the Chinese Academy of Tropical
Agricultural Sciences (CATA), and it has the characteristics of
acid resistance, adaptability, shading tolerance, and nutritional
value (Bai et al., 2019). Pinto peanut was planted at 1.5m from
the base of the litchi stem in 2015 with a dense of 36 Pinto peanut
seedlings per square meter of land.

Site Description and Experimental Design

The experimental site is located in the litchi demonstration
orchard of Yongfa Fruit Tree Base, Chengmai, Hainan Province,
China (109°45 ~110°15 E, 19°23'~20°01'N). This region is a
tropical monsoon climate with abundant rainfall and sunshine,
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with an annual average temperature of 23.7°C, an extremely
high temperature of 38°C, an extremely low temperature of
7°C, and a frost-free period throughout the whole year. The
test site is red loam soil, the annual sunshine time is 2,060.6 h,
and the annual average rainfall is 1,756 mm. The experiment
was designed for two treatments, namely, the intercropping of
litchi and Pinto peanut (LP) and monoculture of litchi (CK)
(Supplementary Figures 1-5). All treatments were fertilized as
the below management: Fertilized once in florescence stage
(in January to March) by ENTEC (Germany) compound
fertilizer with DMPP(3,4-dimethylpyrazole phosphate): include
9.8% NOJ, 12.2% NH; , 4.0% total S, 7.0% P, 05 and 11.0% K,O,
the same as below), 1 kg per tree; the secondary fertilization
was applied in fruit-set period (in March to April): compound
fertilizer (ENTEC), 1 kg per tree; the last time of fertilization
was applied in June after the fruit was harvested, which there
was a heavy compound fertilizer application in this stage:
compound fertilizer (ENTEC), 2.5 kg per tree; and organic
fertilizer (chicken dung), 20kg per tree; all plots underwent
other identical standardized management practices. There was no
fertilization on the day of sampling.

Soil Sampling and Analyses

Soil Sampling

The soil samples were collected in the vegetative period of A.
pintoi in December of 2019. Briefly, soil samples from 10 to 20 cm
depths were randomly collected from the junction of litchi root
system and Pinto peanut (about 1.5m from the base of the litchi
stem) on four plots (i.e., from the east, west, south, and north of
litchi stem) of 4 m? (2 x 2m) in intercropping and monoculture
areas using the five-point sampling method. For each sample plot,
the samples were replicated three times, resulting in a total of
12 soil samples (three replications for 4 sample plots) in each
treatment. Subsequently, each plot soil sample was fully mixed
to filter out impurities, such as plant roots and stones, using
1 mm mesh, and then finely grounded and shifted to ensure a
uniform sample. The soil samples from the east, west, south,
and north of the same litchi stem were mixed to a composite
soil sample, and each treatment was replicated three times and
grouped into LP and CK, respectively. The above samples were
divided into three parts, namely, one was stored at —80°C for
16S rRNA gene analysis, one was air-dried for determining the
soil chemical properties and soil enzyme activity, and the rest was
stored at 4°C.

Soil Properties Analyses

Total soil organic carbon (SOC) was determined by the
dichromate oxidation method (Gao et al.,, 2021; Wang X. et al,,
2021), and TN was analyzed by the semi-micro Kjeldahl digestion
method (Kachurina et al., 2000). The total phosphorus (TP) of
the soil was extracted using HySO4-HClO4 and then measured
by the molybdenum blue method (710 nm) using an ultraviolet
spectrophotometer (Hitachi UV2300) (Olsen and Sommers,
1982); TK and available nitrogen (AN) of soil were measured by
the alkali fusion-flame photometer method (Xi et al., 2019); soil
nitrate nitrogen (NO37-N) and ammonium nitrogen (NH4™-
N) concentrations were measured in a 1-M potassium chloride

(KCI) solution [soil: solution = 1:10 (w/v)] using a segmented-
flow analyzer after extraction (Wang X. et al,, 2021). Soil AP
and available potassium (AK) were measured via the NaHCO3-
molybdenum antimony colorimetric method and NH4OAc-
flame photometer method (Bao, 199), respectively. The soil
moisture was measured by the traditional 105° drying weighing
method (Xu D. et al., 2020). Soil pH was determined at a soil-to-
water ratio of 1:2.5 using an S200 K pH meter (Mettler-Toledo
International Inc., Shanghai, China).

Determination of Soil Enzyme Activities

The activities of soil sucrase (s-SC) were determined by the 3,5-
dinitrosalicylic acid (DNSA) method (Sun et al., 2020), soil urease
(s-UE) was determined by the sodium hypochlorite colorimetric
method (Chen and Huang, 2020), soil catalase (s-CAT) was
determined by the photometer colorimetric method (Alef and
Nannipieri, 1995), soil polyphenol oxidase (s-PPO) was detected
with the autoxidation of pyrogallol method, and soil protease
(s-PT) was determined by casein hydrolysis (Sun et al., 2020).

Soil DNA Extraction, Absolute Amplification, and
Pyrosequencing of 16S rRNA

The total genomic DNA was extracted using the FastDNA®
SPIN Kit for Soil DNA Extraction (MP Biomedicals, Santa Ana,
CA) according to the manufacturer’s instructions. The DNA
was purified through Agencourt AMPureXPPCR Purification
Beads (Beckman Coulter, USA). The integrity of genomic
DNA was detected through agarose gel electrophoresis, and
the concentration and purity of genomic DNA were detected
via Qubit 3.0 Spectrophotometer. The V3-V4 hypervariable
regions of the 16S rRNA gene and spike-ins were amplified with
the primers 341F (5 -CCTACGGGNGGCWGCAG-3')/805R (5 -
GACTACHVGGGTATCTAATCC—?:,) (Kataoka et al., 2019). The
PCR amplification reaction was performed in triplicate in a total
volume of 10pl. The reaction mixture consisted of 1 pl of 10
x Toptaq Buffer, 0.2 pl of Toptaq DNA Polymerase, 0.2 pl of
each primer (10 wM), and 3 pl of template DNA. The following
thermal cycling conditions were used: initial denaturation at
94°C for 2 min, 25 cycles of denaturation at 95°C for 30's, primer
annealing at 55°C for 30s, extension at 72°C for 1min, and a
final extension at 72°C for 10 min. The 16S rRNA gene amplicon
was sequenced on the Illumina MiSeq platform at Genesky
Biotechnologies, Inc. (Shanghai, China).

Statistical Analysis

The raw sequencing data were processed and trimmed using
Quantitative Insights Into Microbial Ecology (QIIME) and
usearch software to remove the low-quality sequences (quality
score < 20); primers, barcodes, adaptors (Caporaso et al.,
2010), and chimeras were detected and removed using the
UCHIME algorithm (Edgar et al.,, 2011). The remaining high-
quality sequences were clustered into operational taxonomic
units (OTUs), with a 97% similarity cutoff value. Alpha diversity,
including the Chaol, ACE, Shannon, Simpson, and coverage
indices, was calculated using the Mothur software and R
software version 3.3.1 based on the obtained OTUs. The beta
diversity analysis consisted of a principal coordinate analysis
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TABLE 1 | Soil properties of LP soils and CK soils.

Group SOC (g/kg) TN (9/kg) TP (9/kg) TK (9/kg) AP (mg/kg) AN (mg/kg) AK (mg/kg) SA pH
CK 0.05 + 0.00 1.19+£0.13 0.86 + 0.01 2.21+0.19 159.0 £5.93 59.50 + 2.182 247.4 + 23.49° 0.97 + 0.00 5.75 + 0.06
LP 0.05 £ 0.00 1.26 £0.14 0.71 £0.04 2.28 +£0.23 145.8 +5.23 47.83 + 0.93° 591.0 + 26.02° 0.98 £ 0.00 5.63 + 0.08

The different letter in the same column represents significant difference (Duncan test, p < 0.05, n = 3) between groups. The number behind the plus-minus sign represents SE. CK,
monoculture of litchi; LR, intercropping of Litchi and Pinto peanut; SOC, soil organic carbon; TN, total nitrogen; TF, total phosphorus; TK, total potassium; AN, available nitrogen; AR,

available phosphorus; AK, available potassium; SA, soil moisture.

TABLE 2 | Soil enzyme activities in the LP soils and CK soils.

Group Sucrase Urease Catalase Polyphenol oxidase Acid protease Neutral protease Alkaline protease
(mg/d/g) (ng/d /g) (nmol/d/g) (mg/d/g) (mg/d/g) (mg/d/g) (mg/d/g)

CK 419 +£0.272 899.7 £ 24.042 52.66 + 2.602 49.59 + 3.942 0.98 + 0.032 3.35 £ 0.08 2.33 +0.08

LP 10.66 & 0.91° 1034.7 4 22.55° 61.57 £ 0.67° 65.75 + 0.43° 1.73 +£0.15° 3.41 £ 0.19 2683 +£0.22

The different letter in the same column represents significant difference (Duncan test, p < 0.05, n = 3) between groups. The number behind the plus-minus sign represents SE. CK,

monoculture of litchi; LR, intercropping of Litchi and Pinto peanut.

(PCoA) and non-metric multidimensional scaling (NMDS). The
R software version 3.3.1 (vegan package) was used in PCoA and
NMDS analysis based on the Bray-Curtis distance, Jaccard, and
unweighted and weighted UniFrac metrics. Linear discriminant
analysis (LDA) effect size (LEfSe) was performed to identify the
biomarkers between groups where the threshold score of LDA
was 2. The functions of species in the gut microbiota of both the
groups were predicted and analyzed on the basis of amplified
sequence data, using the PICRUSt2 analysis tool and Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (https://
www.genome.jp/kegg/pathway.html).

Correlations between the soil properties and soil enzyme
activities were determined using SPSS version 20.0 (SPSS
Inc. Chicago, IL, USA). Canonical correspondence analysis
(CCA) was used to analyze the relationships between the
bacterial community and environmental factors by Canoco 5
in conjunction with the chi-square test. Statistical significance
differences among the samples were calculated via two-way
analysis of variance (ANOVA) in conjunction with a t-test, and
a value of P < 0.05 was considered to be statistically significant.

RESULTS
Effect of Intercropping on Soil Attributes

Soil attributes of the treatments are shown in Table 1. In general,
there were no significant differences between LP and CK in terms
of soil parameters, except for AN, which was higher by 19.6% in
CK, and AK, which was significantly higher in LP by 138.9% (p <
0.05) (Table 1).

Effect of Intercropping on Soil Enzyme
Activities

Compared to CK treatment, the soil enzyme activities were
significantly higher in the intercropping group, especially in SC
and acid PT, which was significantly higher by 154.4 and 76.5%,
respectively (p < 0.05). As shown in Table 2, the s-PPO, s-
UE, and s-CAT in the intercropping group, compared to the

CK group, were significantly higher by 32.6, 15.0, and 16.9%,
respectively (p < 0.05); meanwhile, the neutral PT and alkaline
PT were not significantly different between LP and CK.

Effects of Intercropping on Soil Bacterial

Community

Effects of Intercropping on the Abundances of Soil
Bacteria

The results of PCoA are displayed in Figure 1, in which the
bacterial communities of the monoculture soil (CK) were clearly
separated from those of intercropping treatment, indicating
that the two groups exhibited obviously distinct clustering of
microbiota composition and the microbial structure showed a
significant difference between the intercropping treatment and
the monoculture treatment. In addition, the phylogenetic tree
showed that the absolute abundance of bacterial community
of three intercropping soil samples was significantly higher
than that of monoculture at all classification levels (Figure 2),
suggesting that the total species absolute abundance in soil
was highly increased in the intercropping group. The above
conclusion is also confirmed by the analysis results of OUT copies
(Table 3).

Diversity Analysis of Soil Bacterial Community
Alpha diversity analysis of soil bacterial communities in the two
planting patterns indicated that intercropping Pinto peanut in
litchi orchard could significantly improve soil bacterial richness
and diversity (Table 3). Compared with the control group, Chaol
and ACE indices, representing the community richness of the
sample, were significantly higher in the intercropping group,
with the amplitude of 3.7 and 3.5%, respectively. In addition, the
Simpson index, which was negatively correlated with the diversity
of community structure, was significantly lower by 6.6%. These
results suggested that intercropping could promote the richness
and diversity of soil community structure of microbiota.

The LEfSe analysis was performed to identify the specific
taxa with consistently altered abundance in constipation. A
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FIGURE 1 | Principal coordinate analysis (PCoA). Axes 1 and 2 are two main components with the most interpretation of differences between samples. CK:
monoculture of litchi; LP: intercropping of litchi and Pinto peanut.

cladogram for all the taxonomic levels’ abundance is shown
in Figure3A, in which species with significantly higher
abundance (endemic species with a significant difference) in
the intercropping group were higher than that in CK treatment
in all the taxonomic levels. A total of 353 taxa (from phylum
to species) were identified with LDA scores of >2 and P-
value of > 0.05 in the intercropping group, which increased
~60 times compared to CK treatment that only 6 taxa (from
phylum to species) were identified. The top 10 taxa with the
highest LDA scores in each group are shown in Figure 3B,

indicating that the intercropping group was representatively
enriched with species Hymenobacter deserti, Azoarcus-sp-KH32C
and Nocardioides alkalitolerans, genus Cetobacterium and
Moheibacter, order Coriobacteriales, and class Fusobacteriia,
while the monoculture groups were enriched with species
Cystobacteraceae-bacterium,  Chloroflexales_bacterium,  soil-
bacterium-PBS-81, actinobacterium-YJF2-33, genus Tissierella,
and phylum Euryarchaeota. The diversity of the above species
composition with significantly high abundance might be
the crucial player involved in causing community structure
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TABLE 3 | Richness and diversity indices of different treatment groups.

Groups Indexes

Observed/OTUs Chao1 ACE Shannon Simpson Coverage
CK 5922.0 + 528.80 6398.7 + 499.292 6367.4 + 478.882 6.82 £ 0.15 0.0032 + 0.00? 0.998 + 0.00
LP 6058.0 + 312.65 6637.9 + 189.63° 6590.6 + 212.19° 6.90 + 0.08 0.0030 = 0.00° 0.996 + 0.00

The different letter in the same column represents significant difference (Duncan test, p < 0.05, n = 3) between groups. The number behind the plus-minus sign represents SE. CK,
monoculture of litchi; LR, intercropping of Litchi and Pinto peanut.
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FIGURE 3 | Taxa with different abundances according to linear discriminant analysis (LDA) effect size (LEfSe) analysis in the intercropping and CK groups. (A)
Cladogram generated by LEfSe. Statistically significant differences (LDA scores >2) in absolute abundance of top 50 taxa with the minimum P-value between the
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different bacterial composition at the phylum level.

differences between groups. The above results indicated that
intercropping litchi with peanut could greatly improve the
diversity of bacterial community structure in the soil.

Bacterial Community Structure of Soil Under
Intercropping Treatment

Compositional Analysis of Bacterial Community at the
Phylum Level

As shown in Figure4, there are 12 phyla groups with the
average absolute abundance of soil bacterial community >1%
in both intercropping and CK groups. The dominant bacterial
phyla across all soil samples were the same, which included
Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria,
with absolute abundances ranging from 22.78 to 28.38%, 20.63
to 27.26%, 8.81 to 12.23%, and 8.33 to 11.21% (Figure 4A).
There are 6 phyla, having significant differences in their absolute
abundances, between two groups (Figure 4C); Proteobacteria,
Acidobacteria, Actinobacteria, Chloroflex, Bacteroidetes, and
Planctomycetes were significantly higher in the intercropping
group when compared with CK treatment (Figure 4B).

Compositional Analysis of Bacterial Community at the
Genus Level

There were 16 genera with an average absolute abundance
>1% of the tested bacterial flora, including 12 in the CK group
and 14 in the intercropping group (Figure 5A). The dominant
bacterial genera across all soil samples were the same, which
included Acidobacteria_Gpl (8.5-4.72%), _Gp6 (3.98-5.82%),
_Gp2 (5.03-1.95%), _Gp4 (1.44-2.33%), _Gp3 (1.64-1.36%),
Gaiella (2.12-3.17%), Bacillus (2.16-1.58%), Nitrososphaera
(1.3-2.78%), Nitrospira (1.22-1.22%), and Gemmatimonas
(1.87-2.2%). Furthermore, Gpl had the highest absolute
abundance in the CK group, while in the intercropping group,
it was Gp6. As shown in Figure5C, a total of 98 bacterial
genera for the intercropping group were higher in absolute
abundance, among which Flavobacterium, Nitrososphaera,
Pseudolabrys, GP4, Gaiella, and Gp6 were significantly higher
by 79.20, 72.93, 66.17, 64.25, and 61.35%, respectively; but
Candidatus_Koribacter, Gp2, and GP1 were significantly lower,
with a difference of 62.24, 32.97, and 4.02% compared to the CK
group (Figure 5B).
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Correlations of Soil Properties With Soil
Bacterial Communities and Enzyme
Activities

The effects of soil properties on the microbial communities
were analyzed using redundancy analysis (RDA) (Figure 6). At
the genus level, the first axes (RDA1) explained 74.61% of
the variation, and the second axes (RDA2) explained 15.87%
of the variation, which totally explained as high as 90.48%

of the variation in bacterial communities. Similarly, the first
axes (RDA1) explained 80.01% of the variation, and the second
axes (RDA2) explained 12.11% of the variation, which totally
explained as high as 92.12% of the variation in bacterial
communities at the phylum level (Table 4). According to the
conditional effects, the explanation of the variation of AK was
the highest in both genus and phylum levels, with the amplitude
of 61.0 and 71.7%, respectively. In summary, AK is the vitally
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TABLE 4 | Indexes of RDA analysis at phylum and genus levels.

Statistic Genus Phylum

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4
Eigenvalues 0.7461 0.1587 0.0536 0.0037 0.8001 0.1211 0.0405 0.0056
Explained variation (cumulative) 74.61 90.48 95.83 96.20 80.01 92.12 96.17 96.73
Pseudo-canonical correlation 0.9999 1.0000 0.9861 0.9052 0.9984 0.9977 0.9975 0.6314
Explained fitted variation (cumulative) 77.56 94.05 99.62 100.00 82.71 95.23 99.42 100.00

dominating environmental factors, followed by pH, AP, and TK,
in which these four indexes accounted for 96.80% of the total
shift in microbial communities, which affected the soil microbial
structure (Table 5). At the genus level, the dominating genera,
namely, Flavobac, Nitrosos, Rhodopln, Gaiella, Gp6, Pseudolb,
Gp5, and Gp4, were positively associated with AK but negatively
correlated with pH. In addition, Bacillus, Gp1, Gp2, Gp3, and Gp7
were positively associated with pH but negatively correlated with
AK (Figure 6B). At the phylum level, the results of RDA analysis
are consistent with those at the genus level (Figure 6A).

The soil samples of monoculture treatment (CK) were mainly
distributed in the second and third quadrants, which indicated
that the difference in bacterial community structure was mainly
caused by the changes in pH and TP, while it is in the
first and fourth quadrants of the soil sample distribution of
intercropping group (LP) that the bacterial community structure
was mainly affected by AK and TK (Figures 6A,B). All the above
results were highly consistent with the previous studies on soil

properties, which implied that bacterial community structures
were significantly affected by intercropping treatment.

Furthermore, the Pearson correlation coeflicients were also
calculated between the soil properties and the soil enzyme activity
in which AK was significantly positively correlated with PPO, and
UE and alkaline PT were significantly positively correlated with
SOC and TN, respectively. Furthermore, AN was significantly
negatively correlated with SC, UE, and CAT. In addition, the rise
of soil pH significantly decreases the activity of UE and alkaline
PT (Table6). To sum up, intercropping could affect the soil
microbial environment to augment the soil enzyme activity, and
may be capable of improving the AK contents of soil.

Functional Predictions for Soil Microbiota

To identify the differences in the functional prediction between
the two groups, the absolute abundances of functional genes in
the two groups were compared using the PICRUSt2 analysis tool
based on the amplified sequencing data. The KEGG database
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TABLE 5 | The RDA analysis of soil properties.

Item Genus Phylum
AK pH TP TK AK AN TN TK
Conditional effects Explains (%) 61.0 21.0 9.2 4.9 rans 9.4 9.2 6.5
pseudo-F 6.3 3.5 21 1.3 10.1 1.5 1.9 2.0
P 0.056 0.042 0.176 0.368 0.066 0.258 0.24 0.346

AK, available potassium; TF, total phosphorus; TK, total potassium; AN, available nitrogen; TN, total nitrogen.

TABLE 6 | Correlations of soil properties with soil enzyme activity.

Item Sucrase Urease Catalase Polyphenol oxidase Acid protease Neutral protease Alkaline protease
SOC 0.600 0.714 0.371 0.600 0.257 0.314 0.886*

TN 0.771 0.714 0.600 0.486 0.371 —0.029 0.829*

AN —0.943* —0.886" —0.886" -0.771 —-0.771 0.029 —0.543

TP —0.600 —0.543 —0.486 —0.371 —-0.314 0.200 —0.429

AP —-0.257 —0.086 —0.486 —0.143 —0.543 0.086 0.486

K 0.371 0.543 0.143 0.486 0.086 0.486 0.771

AK 0.771 0.886* 0.714 0.943** 0.771 0.486 0.371

SA 0.543 0.429 0.600 0.371 0.543 —0.257 0.257

pH —-0.771 —0.829* —0.543 —0.657 —0.371 —0.200 —0.943**

*and **represent the significant correlation at p < 0.05 and p < 0.01, respectively. SOC, soil organic carbon; TN, total nitrogen; TR, total phosphorus; TK, total potassium; AN, available

nitrogen; AR, available phosphorus; AK, available potassium; SA, soil moisture.

annotated 68 KEGG orthologs (KOs), showing significant
differences between the two groups (p < 0.05; Figure?7).
There are 58 functional genes (5, 23, and 30, respectively) at
the three levels (L1, L2, and L3) which were affected, with
higher absolute abundances in the intercropping soil sample,
especially those responsible for the metabolism, transporters,
ABC transporters, general function prediction only, and DNA
repair and recombination proteins (Figures 7A,C). Meanwhile,
we observed the difference in increased functional genes that
were counted a high percentage of metabolism categories at
the L3 level, namely, amino acid metabolism, carbohydrate
metabolism, nucleotide metabolism, lipid metabolism, energy
metabolism, and metabolism of cofactors and vitamins
(Figure 7B), whose results showed that intercropping improved
the function of soil bacteria, especially the metabolic activity
of bacteria.

The pathway of biosynthesis of type II polyketide backbone
and melanogenesis were significantly higher in the intercropping
group (Figure 7D). Polyketides are a large class of secondary
metabolites with diverse chemical structures and rich biological
activities, including many antibiotics, antifungal agents, cell
inhibitors, anticholinergic binders, antiparasitic agents, animal
growth promoters, and natural pesticides, which were widely
used in clinical or other fields. The significant difference in
the biosynthesis of type II polyketide skeleton between LP
and CK may be closely associated with the resistance to soil-
borne disease under intercropping treatment. Similarly, the
remarkable difference in replication and repair genes in absolute
abundance between two treatments performed the same trend
(Figure 7B).

DISCUSSION

Effect of Intercropping on Soil Properties

A large number of research confirmed that N can be transferred
to host plants by legumes in intercropping patterns (Salgado
etal., 2020). Itis reported that nearly 2.0% N was transferred from
Trifolium repens to citrus via common mycorrhizal networks
(CMNs) with the tracer method (Fang et al., 2020). Kessel and
Roskoski (1988) proved the N-transfer from Glycine max to
Zea mays with the 'N-labeled method. Ledgard et al. (1985)
found that 2.2% N was transferred directly from T. repens
to Lolium perenne. During the growth period of crops, the
application of N fertilizer could lead to the phenomenon of
“Nitrogen repression (inhibitory effect of nitrogen application on
N, fixation),” namely, the reduction of nodulation and biological
nitrogen fixation (BNF) in the legume (Li et al., 2009; Chai et al.,
2017). However, a series of studies have shown that intercropping
could improve the N fixation ability of legume crops, increase N
transfer, reduce the “Nitrogen repression,” and achieve efficient
N use to offset the negative effect of N application (Chu et al,
2004; Fan et al., 2006). It is deemed that graminaceous crops
can stimulate the nodulation and N fixation of legume crops
due to the competitive utilization of NO3™-N or NH4"-N in
the rhizosphere of legume crops by gramineous plants (Corre-
Hellou et al., 2005). There is an academic perspective that in
the intercropping system, the soil mineral N is maintained at a
low level due to the massive absorption of nitrate by gramineous
plants, and the inhibition of N fixation by legumes is decreased by
reducing the soil mineral N, which is considered the subtractive
effect of N-repression (Xiao et al., 2003). In our study, the LP
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resulted in a significantly low value of AN content, considering
that the N fertilizer we used was compound fertilizer (including
9.8% NO; and 12.2% NH;) for only 3 periods of time in which
NO3 N performed a larger inhibitory effect on nodulation of
legumes compared to NH; -N, and the plausible hypothesis may
be due to the reduction of mineral N contents by “Nitrogen
transfer” from Pinto peanut to litchi tree via CMNs; hence, the
inhibition of legume N fixation could be lessened.

Soil K plays an indispensable role in increasing yield,
improving fruit quality, and maintaining soil fertility (Sherif,
2018; Hamdy et al., 2019; Kheder and Abo- Elmagd, 2021;
Wang W. et al., 2021). Microorganisms play a central role in the
natural K cycles (Diép and Hieu, 2013) and the K solubilizing
microorganisms (KSMs), namely, Bacillus mucilaginosus,
Bacillus edaphicus, Bacillus circulans, Paenibacillus spp., and
Acidithiobacillus ferrooxidans (Singh et al., 2010; Rajawat et al.,
2011; Basak and Biswas, 2012) are a rhizospheric microorganism
which solubilizes the insoluble K to soluble forms of K for

plant growth and yield (Meena et al., 2014). Researchers found
that some bacterial strains could exhibit K-solubilization,
promoting the absorption of K by plants (Subhashini, 2015;
Kaur et al., 2021). Moreover, it is generally accepted that the
major mechanism of mineral K-solubilization is the action
of organic acids synthesized by rhizospheric microorganism
(Aleksandrov et al., 1967; Meena et al., 2014). In our study, the
absolute abundance of Acidobacteria, Bacillus, Pseudomonas,
and Burkholderia was higher in LP (Figure 5), and the content
of AK was significantly higher in intercropping treatment due
to the influence of root system of A. pintoi by KSMs, which
promoted the solubilization of soil insoluble K and absorption of
AK by litchi.

In our previous research, we compared the soil nutrient and
soil enzyme activities of the soil layer of 0-10, 10-20, and 20-
30 cm in the intercropping soil of A. pintoi in Areca catechu L.
Since we found that the 10-20 cm soil layer performed the most
significant increase in soil nutrients and soil enzyme activities
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among the 3 soil layers (Yan et al., 2021), we had chosen the
soil layer from 10 to 20 cm in this study. The difference of other
soil properties, such as TP and AP between LP and CK, needs
to be further verified considering the standard error number in
Table 1 due to the deficiency of replication of samplings, which
furthermore experiments should be established.

Effect of Intercropping to Soil Enzyme
Activities

Soil enzyme, a kind of biocatalyst produced in the soil, which take
part in the process of transforming soil organic compounds and
decomposing animal and plant residues, is one of the essential
indexes of soil fertility (Li et al., 2018; Zhang et al., 2020). Among
them, SC participates in the degradation of soil organic matter,
acid PT accelerates the N cycle of the soil, UE participates in the
transformation of N, CAT can decompose harmful substances,
and PPO is involved in the aromaticity cycle (Acosta et al., 2003;
Chen et al., 2018; Kuscu et al., 2018; Thapa et al., 2021). In this
experiment, as the activities of SC, acid PT, UE, CAT, and PPO
in litchi orchard intercropped with A. pintoi were significantly
higher, especially in relation to the activities of SC and acid PT,
we speculated that the interpenetration of peanut root system
affected soil porosity and aeration (Rodriguez et al., 2020) that
caused soil microbial environment changes by root exudates
which enhanced soil enzyme activities. Combining with the vital
role of soil K in maintaining soil fertility, we speculated that
intercropping may be capable of improving soil fertility and
transferring N into the soil.

Effect of Intercropping to Soil Microbiota
Diversity

Intercropping in orchard provides a novel method of weeds
control, which could reduce or avoid the use of chemical
herbicides and improve microbial community functional
diversity (Wu et al.,, 2014; Sannagoudar et al., 2021; Tataridas
et al., 2022). Liu et al. (2021) found that intercropping alfalfa
with oat provided rich nutrients for soil microorganisms and
ultimately affected the change of soil microbial dominant
population and quantity due to the litter and root exudates.
A higher soil microbial diversity index is more conducive
to improving the stability and resistance of soil ecosystems,
ensuring the normal operation of soil ecosystem function (Li
et al, 2020b). The a-diversity indices, including Chaol and
ACE, reflected the richness of the soil bacterial community,
and the Shannon index reflected the evenness of soil bacterial
community, which was positively correlated with the diversity
of the soil bacterial community (Fan et al., 2021). The above
indexes were all effectively increased in this study, suggesting
that the intercropping of A. pintoi in litchi induced a long-
lasting positive impact on soil ecological environment and soil
microbial diversity.

Effect of Intercropping to Soil Microbiota

Community Structure
The change in soil environment is reflected by the difference
in the abundance of each group of bacteria, and increasing

soil microbial populations is a key determinant in sustaining
microbial functional activity (Weller et al., 2002). Some
researchers have proposed that Proteobacteria mostly exist in
the soil environment with higher nutrition (Yergeau et al,
2012). As an important microorganism in plant rhizosphere
soil, Actinobacteria play a crucial role in promoting plant
growth and controlling plant diseases (Doumbou et al., 2005).
Nitrososphaera, a kind of beneficial microorganisms, plays an
important role in ammoxidation and facilitates the N cycling
in soils (Spang et al., 2012). It was reported that the abundance
of Candidatus Nitrososphaera and Bacillus was much higher
in the intercropping system (Gao et al, 2019). Similarly,
Bacillus is a group of plant growth-promoting bacteria, which
produces antifungal compounds and phytohormones in disease-
suppressive soil (Lim and Kim, 2009). We found that the
absolute abundance of Proteobacteria, Nitrososphaera, Bacillus,
and Actinobacteria was significantly higher, while that of
Candidatus_Koribacter was significantly lower in intercropping
pattern. Taking the above results into consideration, the
positive change in soil prosperity and the assumption that the
intercropping may be capable of improving the resistance of litchi
root systems to soil-borne diseases are consistent with previously
reported findings (Morris et al., 2017; Zhou et al., 2019).

Acidobacteria is widely distributed in the soil and has a
role in recovering soils as beneficial to soil nutrient cycling
and plant growth (Kielak et al., 2016). The correlation between
the abundance of Acidobacteria and soil pH was expounded
completely inequable in different studies that some researchers
consider that the abundance of Acidobacteria is positively related
to soil pH, while the others hold the opposite viewpoint (Jones
et al., 2009; Lauber et al., 2009; Griffiths et al., 2011). In our
research, the absolute abundance of Acidobacteria increased
significantly in the intercropping group; nonetheless, there is no
obvious change in soil pH, which was consistent with the results
of Liu et al. (2015). These differences may be due to the different
responses of subpopulations of acid bacilli or the different acid
bacilli in the same subpopulations to soil pH.

Correlations of Soil Properties With Soil
Bacterial Communities and Soil Enzyme
Activities

In previous study, N is usually the most important growth
factor for plants and soil microorganisms (Zhang et al., 2020).
Interestedly, we found that soil AK is the vital factor leading
to changes in bacterial communities in this study by the
analysis of RDA combined bacterial species richness and diversity
indices with chemical properties of soil at both genus and
phylum levels (Figure 6). At the phylum level, AK had a
significant correlation with Actinobacteria, Proteobacteria, and
Bacteroidetes, while negatively related to Acidobacteria that
Acidobacteria is an index of soil environment with poor nutrition
(Dion, 2008). At the genus level, AK had a strongly positive
impact on Flavobac, Rhodopln, Gaiella, Nitrosos, and Pseudolb.
Moreover, as shown in Figure 6, the primary factor affected
soil property was changed from pH (at the genus level) or
AN (at the phylum level) in the monoculture groups to AK
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(both at genus and phylum levels) in the intercropping group.
These can be interpreted as the conclusion that intercropping
can increase soil K content and soil fertility by improving soil
bacterial community structure, especially the absolute abundance
of eutrophic bacteria. Meanwhile, there was a positive correlation
between GP4, GP5, GP6, and AK, and a negative correlation
between GPI, GP2, GP3, GP7, and AK, which suggested that
different phyla of Acidobacteriaceae could regulate soil K in
the soil. In addition, pH, TP, and TK were also important
for regulating bacterial distribution. For example, pH and TP
contributed to GP1, GP2, GP3, and Bacillus, while TK was
strongly related to Nitrosos and GP4. This indicates that pH
and AP had similar influences on soil microbial communities.
Overall, the bacterial community appeared to be sensitive to
slight variations in environmental factors.

Soil enzyme activity is closely related to soil properties, and
there are studies suggesting that the changes in the availability
of soil nutrients could alter the soil enzyme activities (Marschner
et al., 2003). In accordance with Zhang et al. (2020), the AN was
significantly negatively correlated with SC, UE, and CAT, while
AK is significantly positively correlated with PPO and SC in our
study, which indicated that the high level of soil enzyme may
promote the synthesis and transportation of soil properties, such
as AK.

Intercropping Was Speculated to Promote
the Resistance to Soil-Borne Diseases by
Improving the Function of Soil Bacteria of
Metabolic Activity

Root-secreted secondary metabolites are known to shape the soil
microbial community, especially in the recruitment of beneficial
microbes and suppression of soil-borne pathogens (Zhang et al.,
2013; Yang et al,, 2014), because different plant species secrete
distinct root exudate profiles that stimulate different types of
soil microorganisms (Hartmann et al., 2008; Zhao et al., 2017).
It is reported that the Fusarium wilt of watermelon under the
intercropping system was substantially suppressed as the growth
and population of Fusarium oxysporum f. sp. niveum (FON)
was reduced with the application of root exudates of wheat
(Lv et al, 2018). In our study, the function of soil bacteria
was improved in intercropping groups, especially the metabolic
activity. We speculated that the root interaction between litchi
and Pinto peanut may increase the metabolic activity level of root
exudates in the soil to suppress soil pathogenic microorganisms.
In addition, researchers have discovered that K-solubilizing
bacteria can suppress pathogens (Lian et al., 2002), and the higher
absolute abundance of KSMs, namely, Acidobacteria, Bacillus,
Pseudomonas, and Burkholderia in LP is consistent with the
above speculation.

CONCLUSION

Our study demonstrated the difference in soil properties, soil
enzyme, and soil bacterial community between monoculture

pattern of litchi and over 4 years of intercropping Pinto peanut
in litchi orchard. In summary, soil AK content of intercropping
soil is significantly higher than that of monoculture of litchi,
and soil microbial structure is significantly optimized in LP
as AK is the vitally dominating environmental factor that
affected bacterial community diversity with the analysis of
RDA. Since intercropping has lower N contents, the dose and
frequency of N application should be closely monitored in litchi
orchard with a long-term intercropping of Pinto peanut. The
activities of SC, acid PT, and UE were higher in LP than in
CK. Intercropping showed a higher richness and diversity of
soil bacteria than CK, and the structure of the soil bacterial
community was obviously optimized to intercropping pattern,
which is conducive to superior soil environmental conditions for
litchi cultivation. By the analysis of functional predictions for
soil microbiota, resistance to soil-borne disease was speculated to
be highly correlated with the soil bacterial community structure
in intercropping pattern. Based on the difference in AK and
AN contents between LP and CK, further studies are needed
in the long term of dynamic change in soil properties and
microbial community.
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