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The gut microbiome plays a pivotal role in maintaining the health of the hosts; however, 
there is accumulating evidence that certain bacteria in the host, termed pathobionts, play 
roles in the progression of diseases. Although antibiotics can be used to eradicate 
unwanted bacteria, the side effects of antibiotic treatment lead to a great need for more 
targeted antimicrobial agents as tools to modulate the microbiome more precisely. Herein, 
we reviewed narrow-spectrum antibiotics naturally made by plants and microorganisms, 
followed by more targeted antibiotic agents including synthetic peptides, phage, and 
targeted drug delivery systems, from the perspective of using them as potential tools for 
modulating the gut microbiome for favorable effects on the health of the host. Given the 
emerging discoveries on pathobionts and the increasing knowledge on targeted 
antimicrobial agents reviewed in this article, we anticipate targeted antimicrobial agents 
will emerge as a new generation of a drug to treat microbiome-involved diseases.

Keywords: berberine, polyphenols, bacteriocins, antimicrobial peptides, phage therapy, targeted drug delivery 
system, pathobionts, microbiome editing

INTRODUCTION

The mammalian gut microbiome plays a pivotal role in maintaining stable gut physiology and 
organism homeostasis. The roles of individual bacterial species in the human gut microbiome 
have been studied since early 1900, and have been greatly accelerated by the advance in 
sequencing technology since the mid-2000s. There is accumulating evidence that some commensal 
species play beneficial roles in maintaining health in the host while some other species, termed 
pathobionts, play in detrimental ways.

Pathobionts often refer to symbiotic bacteria with pathogenic potential that contribute to 
the progression of a disease, but have not yet been recognized as pathogens (see review: Chow 
et  al., 2011; Gill and Rosenbaum, 2020; Chandra et  al., 2021). For example, Fusobacterium 
nucleatum, an oral symbiotic bacterium was demonstrated as a pro-carcinogenic bacterium in 
colorectal cancer (CRC; Brennan and Garrett, 2019; Yachida et  al., 2019; Slade, 2021). 
Enterotoxigenic Bacteroides Fragilis (ETBF) which is associated with inflammatory bowel  
disease and CRC in humans, contributes to colitis and carcinogenesis in mouse models  
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(Chung et  al.,  2018; Cao et  al., 2021). The pks+ Escherichia 
coli that produces the genotoxic colibactin was shown to drive 
tumorigenesis in mouse models, human mini-guts, and CRC 
patients (Pleguezuelos-Manzano et  al., 2020; Iftekhar et  al., 
2021). Gut pathobionts and their related diseases are summarized 
in Figure  1.

For pathobiont-promoted diseases, pathobionts can serve 
as therapeutic targets. Antibiotics are the first-line consideration 
for treating bacterial infection; however, antibiotic treatment 
has many side effects, including secondary infections, digestive 
problems, and the emergence of antibiotic-resistant bacteria. 
Therefore, there is a great need for tools that can be  used to 
modulate the microbiome more precisely. Such tools would 
make pathobionts “manageable” and their related diseases 
preventable with minimal side effects. In this review, 
we  summarized five categories of targeted antimicrobial agents 
that they are promising to be developed as tools for modulating 
the gut microbiome to achieve favorable outcomes in the host. 
We  first reviewed narrow-spectrum antimicrobial agents made 
by plants and microorganisms, followed by more targeted 

antimicrobial agents including synthetic antimicrobial peptides, 
phage, and targeted drug delivery systems.

NARROW-SPECTRUM ANTIMICROBIAL 
AGENTS FROM PLANTS

Narrow-spectrum antimicrobial agents are active on a limited 
range of bacteria while leaving a wide range of bacteria 
unharmed. For example, berberine, a quaternary ammonium 
alkaloid made by plants including Chinese goldthread (Coptis 
chinensis Franch.), showed antimicrobial activity on 
Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus 
faecium, Bacillus dysenteriae, Shigella flexneri, and Helicobacter 
pylori, and showed no antimicrobial activity on a wide range 
of bacteria that span across multiple phyla, including 
Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, 
Acinetobacter Baumanni, Enterobacter cloacae, Proteus mirabilis, 
Bifidobacterium longum and Lactobacillus casei (Lin Yuan and 
Jian-Dong, 2018).

FIGURE 1 | Gut pathobionts and their related diseases. CRC: colorectal cancer; CD: Crohn’s disease; UC: ulcerative colitis.
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Not surprisingly, the oral intake of berberine resulted in 
an altered microbiome in the hosts. Interestingly, in addition 
to the alteration of the microbiome, berberine and its derivatives 
were shown to have broad effects on the health or progression 
of diseases in the hosts, suggesting the link between the effects 
of berberine and the altered microbiome.

Berberine as a Tool for Modulating the Gut 
Microbiome
Although berberine sometimes affects the host’s health by 
directly interacting with host targets (Ren et  al., 2021), there 
is emerging evidence that berberine’s effects are mediated by 
the gut microbiome (see review: Zhang et  al., 2020a; Cheng 
et al., 2021). For example, berberine attenuated choline-induced 
atherosclerosis in a mouse model by down-regulating the 
bacterial production of trimethylamine, a pro-atherosclerosis 
molecule produced by the gut microbiome (Li et  al., 2021). 
In another mouse model, berberine ameliorated the ovariectomy-
induced anxiety-like behaviors by enriching the quote-generating 
gut microbiome (Fang et al., 2021a). Further, a study on human 
revealed the antidiabetic effect of berberine on type 2 diabetes 
is mediated by the inhibition of Ruminococcus bromii, which 
break down a type of secondary bile acid that contributes to 
glycemic control (Zhang et  al., 2020b).

Other Plant Ingredients
Besides berberine, polyphenols, a type of compound made by 
plants, also showed narrow-spectrum antimicrobial activity in 
vitro (see review: Gonzalez-Lamothe et  al., 2009). Similar to 
berberine, oral intake of polyphenols also has beneficial effects 
on multiple diseases of the host while altering the gut microbiome 
in the host. These diseases include colitis-associated colorectal 
cancer, cardiovascular disease, and obesity (Gowd et  al., 2019; 
Martinet et  al., 2019; Jennings et  al., 2021; Rufino et  al., 2021; 
Zhao and Jiang, 2021). Given the accumulating association 
between polyphenols’ effects on health and the gut microbiome 
modulation, it is likely that the beneficial effects of polyphenols 
are mediated by the gut microbiome, although further study 
is required to reveal the roles of the gut microbiome in 
these effects.

In addition to determining ingredients like berberine and 
polyphenols, some plant extracts showed narrow-spectrum 
antibacterial activity in vitro. For example, ethanolic extracts 
of Passiflora mollissima, which are rich in several phytochemicals, 
including alkaloids, saponins, essential oils, carotenoids, and 
anxiolytic, showed selective activity against in vitro cultured 
strains of Streptococcus mutans, Streptococcus oralis, and 
Streptococcus sanguiniss (Adrián Calderon et al., 2019), although 
the active ingredients are yet to known.

NARROW-SPECTRUM ANTIMICROBIAL 
AGENTS FROM MICROORGANISMS

Antimicrobial peptides (AMPs) are produced by a broad spectrum 
of organisms including microorganisms, plants, insects, and 

vertebrates. Animal AMPs are essential components of the 
innate immune system, and often have broad-spectrum 
antimicrobial activity (Ostaff et  al., 2013; Sivieri et  al., 2017; 
Aresti Sanz and El Aidy, 2019). In contrast, bacterial AMPs, 
termed bacteriocins, often exhibit a limited spectrum of 
antimicrobial activity, effective on bacteria that are 
phylogenetically related to the bacteriocin-producing bacteria 
(Meade et  al., 2020).

Most bacteriocins kill target bacteria by pore formation on 
the membrane of the victims (Kumariya et  al., 2019), and 
other mechanisms include killing by condensation of genomic 
DNA or inhibition of cell wall synthesis (Mengxin Geng and 
Smitha, 2018; Qin et  al., 2019). Bacteriocins are mainly 
categorized into three classes, based on their structural and 
physicochemical properties: Class I, Class II, and Class III. Class 
I  bacteriocins belong to ribosomally synthesized and post-
translationally modified peptides (RiPPs). They are also known 
as lantibiotics because they contain the unusual amino acids, 
lanthionine, and methyllanthionine. Class I  bacteriocins often 
exhibit broad-spectrum antimicrobial activities. In contrast, 
Class II bacteriocins are predominantly unmodified peptides 
(Soltani et  al., 2021), and often showed narrow-spectrum 
antimicrobial activity (Moll et  al., 1999; Ríos Colombo et  al., 
2019). They are first synthesized as prebacteriocins with an 
N-terminal leader, and the leader is later removed during the 
process of secretion. For example, rhamnocin 519 showed a 
narrow-spectrum antibacterial activity against Listeria 
monocytogenes and S. aureus (Jeong and Moon, 2015). Class 
III bacteriocins are heat-labile, high molecular weight antibacterial 
proteins. For example, geobacillin 26 has a narrow antibacterial 
spectrum against some thermophilic bacteria (Vaičikauskaitė 
et  al., 2019). To target pathobionts in the gut with minimum 
collateral damage to gut normal flora, narrow-spectrum 
bacteriocins are more favorable than broad-spectrum bacteriocins. 
A list of Class II bacteriocins that exhibit the narrow spectrum 
of antimicrobial activities is summarized in Table  1.

In addition to bacteriocins, many fungi and bacteria secrete 
antimicrobial secondary metabolites. Unlike many broad-
spectrum antibiotics that are used in preventing infectious 
diseases, some secondary metabolites exhibit selective 
antimicrobial activity, some of which are summarized in Table 2.

In contrast to berberine and polyphenols, the effects of oral 
intake of bacteria-derived antimicrobial agents on the alteration 
of the host-microbiome are not extensively studied; however, 
it would be  interesting to test these narrow-spectrum 
antimicrobial agents from microorganisms as potential tools 
for modulating gut microbiome to achieve beneficial effects 
on the health of the host.

SYNTHETIC ANTIMICROBIAL PEPTIDES

Inspired by bacteriocins, synthetic AMPs have emerged since 
1992 containing only leucine and lysine residues. The study 
field of synthetic AMPs was first focused on the observation 
of the correlation between the structural properties and the 
antimicrobial activities of AMPs (Fang et  al., 2021b). During 
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TABLE 1 | Selective antimicrobial activity of class II bacteriocins.

Bacteriocins Sensitive bacteria Resistant microorganism Origin References

Piscicolin Listeria monocytogenes Gram-negative bacteria Carnobacterium

maltaromaticum

Martin-Visscher et al., 2011

Mesenterocin Listeria monocytogenes

Carnobacterium divergen

Enterococcus faecium

Lactobacillus plantarum

Lactobacillus sakei

Pediococcus acidilactici

Pediococcus pentosaceus

Lactococci, Lactobacilli Leuconostoc

mesenteroides

Osmanagaoglu and Kiran., 
2011

Leucocin Listeria monocytogenes

Lactobacillus sakei

Lactobacillus formosensis

Lactococcus lactis

Entercoccus durans

Weissella hellenica

Lactococcus garvieae

Staphylococcus aureus

Acinetobacter baumannii

Escherichia coli

Bacillus thuringiensis

Bacillus subtili

Leuconostoc

pseudomesenteroides

Chen et al., 2018

Curvacin Listeria monocytogenes

Lactobacillus paracasei

Lactobacillus sakei

Enterococcus faecium

Bacillus cereus

Staphylococcus aure

Salmonella typhimurium

Klebsiella pneumonia

Escherichia coli

Saccharomyces cerevisiae

Candida pseudotropicalis

Penicillium roqueforti

Lactobacillus curvatus

Lactobacillus sakei

Ahmadova et al., 2013

Curvaticin Staphylococcus aureus

Enterococcus faecalis

Listeria monocytogenes

Lactococcus lactis Lactobacillus curvatus Bouttefroy et al., 2000

Garvicin ML Lactobacillus casei,

Lactobacillus sakei,

Pediococcus acidilactici, 
Enterococcus faecium

Pseudomonas fluorescens,

Escherichia coli,

Salmonella paratyphi

Lactococcus garvieae Borrero et al., 2011

Leucocyclicin Q Lactococcus lactis subsp. 
lactis,

Lactobacillus sakei subsp. 
sakei, Weissella 
paramesenteroides,

Pediococcus dextrinicus

Staphylococcus aureus subsp. 
aureus

Leuconostoc mesenteroides Masuda et al., 2011

Lactocyclicin Q Pediococcus extrinicus,

Lactococcus lactis subsp. 
lactis, Lactobacillus sakei 
subsp. sakei,

Bacillus coagulans

Streptococcus mutans Lactococcus sp. strain Masuda et al., 2011

Carnocyclin A Brochothrix campestris,

Enterococcus faecalis,

Lactococcus lactis subsp. 
lactis

Escherichia coli,

Pseudomonas aeruginosa,

Salmonella enterica

Carnobacterium 
maltaromaticum

Borrero et al., 2011

Avicin A Carnobacterium divergens, 
Enterococcus avium,

Enterococcus faecalis,

Leuconostoc lactis

Lactobacillus plantarum,

Leuconostoc gelidum,

Pediococcus acidilactici

Enterococcus avium Birri et al., 2010

Laterosporulin10 Bacillus subtilis,

Staphylococcus aureus, 
Mycobacterium tuberculosis

Bacillus subtilis,

Vibrio cholerae,

Escherichia coli,

Pseudomonas aeruginosa

Brevibacillus sp. strain Baindara et al., 2016
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the past decade, three main parameters of AMPs have been 
revealed to play roles in their antimicrobial activities, which 
are (1) hydrophobicity, (2) cationic number, and (3) secondary 
structure. (1) Hydrophobicity contributes to the membrane-
binding driving force, which is the main cause of the damage 
to target cell membranes. Hydrophobicity often determines 
antimicrobial potency and cell selectivity. For example, leucine 
and the more hydrophobic isoleucine are isomers. The interchange 
of them does not alter the structure of the peptide but increases 
the hydrophobicity. Accompanied by the increase of 
hydrophobicity, the antibacterial spectrum changed from Gram-
negative only to both Gram-negative and Gram-positive bacteria, 
demonstrating hydrophobicity is one of the key parameters in 
determining the selectivity of bacteria (Chou et  al., 2016). (2) 
Cationic number of AMPs is determined by cationic residues 
like arginine, lysine, and histidine, and the cationic number 
determines the affinity of AMPs to the negatively charged lipid 

head groups on the outer membrane of bacteria. (3) Secondary 
structures of AMPs are often determined by key amino acids 
including cystine and glycine. Cysteine residues, which can 
form disulfide bonds, are the prerequisite for cyclization and 
β-sheet (de Leeuw et al., 2007). Glycine, the smallest hydrophilic 
amino acid, determines the flexibility of local conformation 
of AMPs, which contributes to enhanced activity against Gram-
negative bacteria (Wang et  al., 2015). Notably, the selectivity 
of AMPs is often determined by the three main parameters 
mentioned above as well as bacterial factors, which provides 
a rationale for designing more targeted AMPs, termed specifically 
targeted antimicrobial peptides (STAMPs; Eckert et  al., 2006; 
Yount et  al., 2019).

For the past decade, STAMPs have been studied to kill 
specific pathogens while not affecting the normal flora (Phulen 
Sarma et  al., 2018). As a peptide, STAMPs are highly flexible 
for adopting structural and functional amino acid groups 

TABLE 2 | Selective antimicrobial activity of bacterial secondary metabolites.

Metabolites Sensitive bacteria Resistant microorganism Origin References

Tyromycin A Bacillus subtilis MRSA

Staphylococcus aureus, 
Micrococcus luteus

Skeletocutis sp. Chepkirui et al., 2019

Aspergyllone Candida

parapsilosis

Pseudomonas aeruginosa

Staphylococcus aureus

Escherichia coli

Candida albicans,

Candida krusei

Candida glabrata,

Candida utilis

Aspergillusniger

Tiegh

Padhi et al., 2020

Anthraquinone dimmers 
(compounds 1 and 2)

Staphylococcus

aureus

Escherichia coli

Salmonella typhimurium

Klebsiella aerogenes

Enterobacter cloacae

Pseudomonas aeruginosa

unidentified fungal strain 
INF16–17

Li et al., 2019

P. herquei

extract

Staphylococcus aureus

MRSA

Candida albicans

Candida glabrata

Candida krusei

Candida neformans

Aspergillus fumigates

Escherichia coli

Pseudomonas aeruginosa

Mycobacterium intracellulare

Penicillium herquei Ferreira et al., 2017

Glycerol 1-hydroxy-2,5-dimethyl 
benzoate 1

MRSA Mycobacterium tuberculosis

Bacillu subtilis

Pseudomonas aeruginosa

Candida albicans

Verrucosis pora sp. strain MS 
100047

Huang et al., 2016

Candida cibarius methanol 
extract

Enterococcus

faecalis

Staphylococcus aureus

Shigella sonnei

Salmonella enteritidi

Yersinia enterocolitica

Bacillus cereus

Listeria monocytogenes

Cantharellus cibarius Fr. Kozarski et al., 2015
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(Roncevic et  al., 2019), so that they can achieve a much 
narrower spectrum than natural narrow-spectrum antimicrobial 
agents reviewed above. STAMPs can be  divided into three 
categories which are, respectively, reviewed below and illustrated 
in Figure  2, based on different rational designing strategies.

Canonical STAMPs
Canonical STAMPs kill bacteria by insertion into the cell wall 
surface, followed by self-oligomerization pore-forming, and 
perturbations in the cell wall (Guo et  al., 2015; Maraming 
et  al., 2019). The selectivity or antibiotic spectrum of STAMPs 

A

B

C

FIGURE 2 | STAMPs can be divided into three categories. (A) Canonical STAMPs are usually discovered by screening a batch of peptides with various parameters 
including hydrophobicity, cationic number, and secondary structure. These parameters, as well as some bacterial factors, determine the affinity between the 
peptides and bacterial surfaces. Canonical STAMPs kill bacteria by insertion into the cell membrane, followed by self-oligomerization, pore formation, and cell 
membrane perturbation. (B) Peptide ligands as STAMPs. This category of STAMPs kills specific bacteria by competitively binding bacterial receptors of physiological 
importance against the natural ligands of the receptors, resulting in inhibition of important bacterial pathways and subsequential inhibition of bacterial growth. 
(C) Composite STAMPs consist of a targeted domain and a killing domain. The targeted domain binds to specific motifs on targeted bacteria, which directs the 
killing domain to kill bacteria in the same way as canonical STAMPs.
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is mainly determined by the three main parameters. To better 
assist the designing of STAMPs with the desired antimicrobial 
spectrum, a comprehensive AMP database has been developed 
(Wang et al., 2009). Based on the AMP database, many STAMPs 
have been developed, including STAMPs against E. coli, 
Salmonella pullorum, Pseudomonas aeruginosa, and S. aureus 
(Mishra and Wang, 2012; Chou et  al., 2019, 2021; Roncevic 
et  al., 2019). In a mouse model, a pH-dependent STAMP was 
demonstrated to kill H. pylori in an acidic environment in 
the stomach with minimal toxicity to commensal bacteria in 
the gut (Xiong et  al., 2017).

Peptide Ligands as STAMPs
Besides the designing strategy based on the AMP database, 
an alternative designing strategy has been developed. In this 
strategy, STAMPs were obtained by truncating the sequences 
from the natural protein ligands of the targeted bacterial receptor 
of important physiological importance. The resulting STAMP 
then competitively inhibit the receptor and its downstream 
pathways. For example, the sequence of a STAMPs that binds 
to F. nucleatum FadA, was shortened from mammalian 
E-cadherin, the natural ligands of FadA (Rubinstein et  al., 
2013). The E-cadherin mimicking STAMP successfully inhibited 
the FadA-dependent F. nucleatum-induced tumor and 
inflammation in mouse models.

Composite STAMPs
The third designing strategy of STAMPs involves conjugating 
a preselected targeted peptide with a wide-spectrum AMP 
domain together (Lei et  al., 2021), resulting in composite 
STAMPs with a targeted domain and a killing domain. For 
example, bacterial pheromones have been used as targeted 
domains in STAMPs against S. mutans, S. aureus, Enterococcus 
faecalis, and/or Streptococcus agalactiae (Qiu et  al., 2003; Huo 
et  al., 2018; Li et  al., 2020; Xu et  al., 2020). Furthermore, a 
cell wall precursor lipid II binding peptide, screened from a 
library of phage, was used as a targeted domain in a STAMP 
that specifically killed some clinic-isolated strains of vancomycin-
resistant bacteria (Hart et  al., 2017).

Strategies to Improve the Stability of 
STAMPs in the Gut
Although in two clinical trials, AMPs have been used to 
eliminate specific microorganisms in oral cavity and stomach 
with minimal impact on other commensal bacteria (Sullivan 
et  al., 2011; Xiong et  al., 2017), there are no report regarding 
AMPs targeted on specific bacteria in intestine and colon. 
One of the challenges in utilization of STAMPs is the proteolytic 
degradation of STAMPs that occurs in the digestive systems 
(Hashemi et  al., 2018; Bhattacharjya and Straus, 2020). Several 
strategies have been exploited to improve the stability of AMPs 
in the gut. Coating is a frequently used strategy. For example, 
an AMP aiming to treat Clostridioides difficile infection is coated 
with a layer of pectin and hydroxypropyl methyl cellulose, 
which can protect the AMP against proteolytic enzymes from 
intestinal digestive enzymes, and release the AMP when 

encountering pectinolytic enzymes in the colon (Ugurlu et  al., 
2007). Another strategy is to design STAMPs that are capable 
to self-assemble into nanoscale particles, which exhibit high 
stability against enzymatic degradation (Eskandari et  al., 2017; 
Chen and Zou, 2019; Tan et al., 2021). Besides, the introduction 
of D-amino acids, cyclization, amidation, or acetylation of the 
terminal regions are also applied to improve proteolytic stability 
(Dijksteel et  al., 2021).

UTILIZATION OF BACTERIOPHAGE

Utilization of Naturally Occurring 
Bacteriophages
Bacteriophages attach to the very specific receptors on the 
surface of bacteria such as lipopolysaccharide, lipoteichoic acid, 
capsular polysaccharide, flagella, and pili before killing them 
(Hsu et al., 2021), and therefore is a highly targeted antimicrobial 
agent (Carasso et al., 2020). Phages have been historically used 
to eradicate bacterial pathogens and were recently used as a 
potential strategy to treat diseases by the precise killing of 
target bacteria (Mccarville et  al., 2016; Wahida et  al., 2021; 
Zhang et  al., 2021). For example, Duan et al reported the 
bacteriophage that targets cytolytic E. faecalis decreased cytolysin 
in the liver and abolished ethanol-induced liver disease in 
humanized mice (Duan et  al., 2019; Colakoglu et  al., 2020).

Phage is so selective on targets that a phage strain is usually 
effective on only one strain of a bacterial species; however, 
the mixture of multiple phage strains, termed phage cocktails, 
provide a solution to achieve desired-spectrum phage therapies 
(Villarroel et  al., 2017; Gordillo et  al., 2019). For example, an 
optimized 4-phage cocktail against Clostridium difficile eradicated 
C. difficile in 24 h, without affecting commensal gut microbes 
(Nale et  al., 2018).

Phage-Guided Therapies
Besides the utilization of phages alone, phages have been used 
as a motif to synthesize phage-guided antimicrobial agents 
(Gu Liu et  al., 2020; Morrisette et  al., 2020). For example, 
the antibiotics linezolid conjugated with a lytic phage, was 
more effective than each part alone in treating MRSA infections 
of diabetic foot ulcers in an S. aureus infection murine model 
(Chhibber et  al., 2013). Phage was also used in guiding silver 
nanoparticles in targeting F. nucleatum (Xue Dong et al., 2020).

TARGETED DRUG DELIVERY SYSTEM

The concept of a targeted drug delivery system is frequently 
used in anti-cancer drugs. A targeted drug delivery system 
usually consists of a targeted unit and a cargo unit. The targeted 
units offer high ligand-binding efficiency to the targeted tissue 
or cells and the cargo units are the bioactive drugs, sometimes 
loaded inside vehicles like nanoparticles and liposomes (Hussein 
and Abdullah, 2021). Recently, a targeted drug delivery system 
has been also employed in the field of specific antimicrobial 
agents. In a recent study, an intracellular antibiotic delivery 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Chou et al. Targeted Antimicrobial Agents

Frontiers in Microbiology | www.frontiersin.org 8 July 2022 | Volume 13 | Article 879207

system has been developed. The delivery system is composed 
of three parts: (1) mesoporous silica nanoparticles loaded with 
gentamicin, (2) lipid bi-layer envelops that would disseminate 
upon contact of S. aureus hemolysins, and (3) S. aureus-targeting 
domain truncated from a previously reported AMP, ubiquicidin 
29–41. This delivery system works well in killing S. aureus 
and eliminating the S. aureus-induced inflammation in a mouse 
model (Yang et  al., 2018). In another drug delivery system, 
lipid nanoparticles loaded with antibiotic was conjugated with 
an S. aureus-targeting antibody. The resulting system showed 
enhanced in vitro bactericidal activity against S. aureus both 
in planktonic and biofilm forms (Le et  al., 2021).

DISCUSSION

The knowledge of narrow-spectrum antimicrobial agents has 
been greatly advanced in the past decade (see review: Fong 
et  al., 2016; Maxson and Mitchell, 2016; Romani-Perez et  al., 
2017; George Kerry et  al., 2018; Riglar and Silver, 2018; Alm 
and Lahiri, 2020; Altarac et al., 2021; Avis et al., 2021; Fuenzalida 
et  al., 2021). Notably, some narrow-spectrum antimicrobial 
agents have entered clinical trials, mainly to combat bacteria 
associated with antibiotic resistance, such as Acinetobacter 
baumannii, S. aureus, P. aeruginosa, and E. coli (see review: 
Alm and Lahiri, 2020). In this article, we  reviewed narrow-
spectrum antimicrobial agents from the aspect of using them 
as a microbiome-modulating tool especially to limit pathobionts 
in the gut.

Among all natural narrow-spectrum antibiotic agents, 
berberine is the most well studied in its effects on the health 
of the host and the alteration of the gut microbiome. Although 
the key pathobionts in many diseases are not identified, there 
is emerging evidence that the favorable effects of berberine 
on health are mediated by modulating the gut microbiome, 
suggesting the existence of uncovered pathobionts in these 
diseases. Besides berberine, there are many other narrow-
spectrum antibiotic agents naturally made by plants and bacteria, 
which may serve as tools to modulate the gut microbiome in 
the host. It would be  interesting to investigate their effects on 
the health of the host and the role of fan-altered microbiome 
in these effects.

Among the five categories of antimicrobial agents reviewed 
in this article, STAMPs, phages, and targeted drug delivery 

systems can be  designed to precisely target these pathobionts 
without disturbing normal flora in the gut. These strategies have 
the potential to achieve a higher level of precision on targeted 
bacteria than natural narrow-spectrum antimicrobial agents.

Besides the strategies reviewed in this article, probiotic and 
engineered bacteria have also been explored in modulating 
the gut microbiome. Effects of probiotics on the gut microbiome 
have been extensively reviewed (George Kerry et  al., 2018; 
Fuenzalida et al., 2021) and engineered bacteria is a complicated 
topic. When designing such engineered bacteria, multiple factors 
need to be considered including the selection of chassis bacteria, 
control circuits, secretion strategies, and payload proteins (see 
review: Mays and Nair, 2018; Aggarwal et  al., 2020; Brennan, 
2021; Lynch et  al., 2022; Shen et  al., 2022).

For the pathobionts-targeting therapeutics, the detection of 
pathobionts is a challenge. One of the best detection methods 
of pathobionts is qPCR against their “virulence factors.” For 
example, the detection of Enterotoxigenic Bacteroides fragilis 
(ETBF) can be  based on the qPCR of B. fragilis toxin (BFT) 
or fragilysin. As such, the understanding of the pathogenicity 
of pathobionts is crucial for developing detection methods. 
This is different from classical pathogens, in which a full 
understanding of the pathogenicity is often not required to 
develop detection methods against them.

To conclude, given the emerging discoveries on pathobionts 
and their pathogenesis, we  expect as our knowledge of the 
human microbiome increases targeted antimicrobial agents will 
emerge as a new generation of drugs to treat microbiome-
involved diseases.
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