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Exoelectrogenic microorganisms are in the spotlight due to their unique respiratory
mechanisms and potential applications in distinct biotechnological fields, including
bioremediation, bioenergy production and microbial electrosynthesis. These
applications rely on the capability of these microorganisms to perform extracellular
electron transfer, a mechanism that allows the bacteria to transfer electrons to the cell’s
exterior by establishing functional interfaces between different multiheme cytochromes
at the inner membrane, periplasmic space, and outer membrane. The multiheme
cytochrome CbcL from Geobacter sulfurreducens is associated to the inner membrane
and plays an essential role in the transfer of electrons to final electron acceptors with
a low redox potential, as Fe(III) oxides and electrodes poised at −100 mV. CbcL has
a transmembranar di-heme b-type cytochrome domain with six helices, linked to a
periplasmic cytochrome domain with nine c-type heme groups. The complementary
usage of ultraviolet-visible, circular dichroism and nuclear magnetic resonance permitted
the structural and functional characterization of CbcL’s periplasmic domain. The protein
was found to have a high percentage of disordered regions and its nine hemes
are low-spin and all coordinated by two histidine residues. The apparent midpoint
reduction potential of the CbcL periplasmic domain was determined, suggesting a
thermodynamically favorable transfer of electrons to the putative redox partner in the
periplasm − the triheme cytochrome PpcA. The establishment of a redox complex
between the two proteins was confirmed by probing the electron transfer reaction and
the molecular interactions between CbcL and PpcA. The results obtained show for the
first time how electrons are injected into the periplasm of Geobacter sulfurreducens for
subsequent transfer to the cell’s exterior.

Keywords: Geobacter, extracellular electron transfer, inner membrane associated cytochrome, protein-protein
interactions, NMR
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INTRODUCTION

Microorganisms are the most important biogeochemical agents
affecting the chemistry, distribution, and the bioavailability
of almost all elements (Popescu et al., 2002). A wide group
called dissimilatory metal reducing bacteria (DMRB) plays
an important role, namely in the biogeochemical cycles of
transition metals as chromium, iron, uranium and manganese
(Cavalier-Smith et al., 2006). DMRB can couple their oxidative
metabolism to the reduction of extracellular metals like Fe(III),
U(VI) or Mn(IV) oxides, as well as electrode surfaces. Unlike
the most common respiratory pathways, in which a soluble
terminal electron acceptor is reduced inside the cell, DMRB
developed an electron transport chain capable of transfering
the electrons from inside the cell to the exterior (Nealson
and Saffarini, 1994). The best characterized DMRB belong to
the Geobacteraceae and Shewanellaceae families, particularly the
bacterium Geobacter sulfurreducens that produces the highest
power densities of all known exoelectrogenic microorganisms
(Vasyliv et al., 2013; Logan et al., 2019). The abundance of c-
type cytochromes encoded in G. sulfurreducens genome provides
a unique respiratory flexibility (Lovley et al., 2011; Speers and
Reguera, 2012). This flexibility can be explored for different
applications including the reduction of soluble metals (e.g.,
Cr(VI), U(VI)) to insoluble precipitates (Cr(III) and U(IV))
in contaminated waters, or the decomposition of hydrocarbon
contaminants in soils, which simplifies the bioremediation
process of these pollutants (Lovley et al., 2004, 2011). The
transport of electrons to the cells’ exterior, a mechanism called
extracellular electron transfer (EET), led to the development of
different biotechnological applications using bioelectrochemical
systems (BES) (Kumar et al., 2015). Microbial fuel cells
(MFC), which can couple the oxidation of organic compounds
to the production of electric current are the best known
BESs, establishing a promising synergy between green energy
production and wastewater treatment (Koffi and Okabe, 2020).
However, BESs are not limited to MFCs. Microbial electrolysis
cells that produce biohydrogen, or microbial desalination cells
that desalinate sea water, are also blooming (Al-Amshawee et al.,
2020). This wide range of applications makes important to
understand the functional mechanism of EET. Studies based
on gene-knockout and proteomic analysis in different growth
conditions constantly provide new findings that bring more
insights on the proteins involved in the EET pathways (Levar
et al., 2014; Zacharoff et al., 2016). To date it is well known
that these respiratory pathways in G. sulfurreducens encompass
different multiheme cytochromes along the inner membrane,
periplasmic space, and outer membrane (Ueki, 2021). One
remarkable finding was that EET in G. sulfurreducens could
only be described when the contribution of multiple governing
redox processes was considered (Marsili et al., 2010; Yoho et al.,
2014; Rimboud et al., 2015). In 2014, Levar and co-workers
showed that a strain without the gene that encodes for the
inner membrane cytochrome ImcH (1imcH) lost the ability to
reduce the electron acceptors Fe(III)-EDTA, Fe(III) citrate, and
insoluble Mn(IV) oxides – all with reduction potentials above
−100 mV (Levar et al., 2014). However, the 1imcH mutant

was still able to reduce Fe(III) oxides with reduction potentials
below−100 mV. These results, in agreement with the hypothesis
that distinct routes are necessary to describe EET, suggested
that at least one alternative quinone oxidoreductase should be
active to permit the growth of the mutated G. sulfurreducens
strain in the presence of electron acceptors with low redox
potentials. This was further confirmed by Zacharoff and co-
workers by the deletion of a gene coding for another inner
membrane cytochrome [c- and b-type cytochrome for low
potential (CbcL)] and the concomitant inability of the mutated
strain to reduce low potential electron acceptors, such as Fe(III)
oxides and electrodes poised at−100 mV (Zacharoff et al., 2016).
Finally, and more recently, Joshi and co-workers described a
third inner membrane cytochrome, designated CbcBA, that was
shown to be necessary in the final stages of Fe(III) reduction
(Joshi et al., 2021). A G. sulfurreducens strain lacking this
multiheme cytochrome ceased Fe(III) reduction at −210 mV
and couldn’t perform electron transfer to electrodes between
−210 and−280 mV.

The present work focuses on the cytochrome CbcL which
is constituted by two domains: a membrane domain with
six transmembrane helices and two b-type heme groups,
and a periplasmic domain containing nine c-type heme
groups. The periplasmic domain of cytochrome CbcL was
successfully produced and its characterization was obtained by
the complementary usage of different spectroscopic techniques,
including UV-visible, circular dichroism (CD) and nuclear
magnetic resonance (NMR). Interaction studies between
cytochrome CbcL and the triheme cytochrome PpcA, one
of its putative redox partners in the periplasm, were also
monitored by NMR.

MATERIALS AND METHODS

Cloning
DNA sequence of the gene cbcL (GSU0274, GenBank accession
number AAR33608.1) was obtained from G. sulfurreducens
PCA genome database from Kyoto Encyclopedia of Genes and
Genomes database (Kanehisa et al., 2016). Residues 30-279 (CbcL
periplasmic domain) were amplified from genomic DNA using
Phusion DNA polymerase (Thermo Scientific) together with
primers with restriction sites for NotI and HindIII enzymes.
The resulting DNA fragment and vector pVA203 (Londer
et al., 2002; Pokkuluri et al., 2004a) were digested, the E-gel R©

electrophoresis system (Invitrogen) was used to purify them, and
T4 DNA ligase (Thermo Scientific) was used to ligate the DNA
fragment to the vector. The plasmid was further modified by the
addition of a C-terminal Strep-tag R©. Plasmids were propagated
in Escherichia coli DH5α cells and colony screenings performed
by PCR using Taq DNA polymerase (VWR). Positive clones were
cultured in liquid medium. The plasmids were then purified
using the NZYMiniprep kit (NZYTech) and sequenced by
STABVida (Caparica, Portugal). The resulting plasmid pVA203-
CbcL-St codes for the signal peptide of the protein OmpA
from E. coli followed by the periplasmic domain of CbcL and a
C-terminal Strep-tag R©.
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Protein Expression and Purification
Isolated colonies of E. coli Tuner (DE3)/pEC86+pVA203-
CbcL-St were selected and inoculated in liquid 2xYT medium
supplemented with 100 µg·mL−1 of ampicillin and 34 µg·mL−1

of chloramphenicol, and incubated overnight at 30◦C and
200 rpm. On the following day, 15 mL of this culture were
transferred to 2 L conical flasks, each containing 1 L of liquid
2xYT medium with antibiotics in the same concentration. The
cultures were incubated at 30◦C and 180 rpm for approximately
8 h until an OD600 ∼1.7 was reached. Cells were collected by
centrifugation at 5,500 ×g for 15 min at 4◦C. The pellets were
then resuspended in buffer W (100 mM Tris-HCl pH 8, 150 mM
NaCl, 1mM EDTA), in a ratio of 1 mL of buffer per gram of cells
and frozen at −20◦C. Cell lysis was performed by a combined
method of three freeze/thaw cycles followed by 18 cycles of
ultrasonication (3 min on plus 1 min off) with an Ultrasonic
homogenizer (Branson) regulated for 65% of amplitude and
in the presence of DNase I, 2 mM benzamidine and 1 mM
phenylmethanesulfonylfluoride. Cell debris were removed by
centrifugation at 48,000 ×g for 1 h at 6◦C. The supernatant
containing the soluble extract was loaded directly onto a 5 mL
Strep-Tactin R© XT 4Flow (IBA Lifesciences) column, previously
equilibrated with buffer W. The flowthrough was collected and
the unbound proteins washed by passing 25 mL of buffer W.
The protein was eluted with buffer BXT (buffer W with 50 mM
biotin). The eluted sample was dialyzed against 10 mM Tris-HCl
pH 8, using a dialysis membrane with a molecular weight cut
off (MWCO) 12–14 kDa (Spectrum). After the dialysis step, the
sample was loaded onto a 5 mL anion exchange UNOsphereTM Q
(Bio-Rad) column, equilibrated with the same dialysis buffer. The
protein was eluted with a 75 mL gradient of 0–300 mM NaCl. The
fractions were analyzed by SDS-PAGE (12.5%) and stained with
BlueSafe (NZYTech). Fractions containing CbcL (unless stated
otherwise CbcL’s periplasmatic domain will be referred as CbcL)
were concentrated and the buffer exchanged using an Amicon
Ultra-4 centrifugal filter unit with a MWCO 10 kDa (Merck-
Millipore). After, the samples were loaded onto a SuperdexTM 75
Increase 10/300 GL (GE Healthcare) equilibrated with 100 mM
sodium phosphate buffer pH 8. Chromatographic steps were
performed with an ÄKTA Pure or with an ÄKTA Prime Plus.
Final protein purity was evaluated by SDS-PAGE. The molecular
weight of CbcL was confirmed by matrix assisted laser desorption
ionization coupled to time-of-flight mass spectrometry (MALDI-
TOF/TOF MS) performed by the Mass Spectrometry Unit
(UniMS), ITQB/iBET, Oeiras, Portugal. For interaction studies
with CbcL, PpcA was expressed and purified as previously
described (Londer et al., 2002).

UV-Visible Spectroscopy, Protein
Quantification, Heme Content and Molar
Extinction Coefficient Determination
UV-visible spectra were acquired on a Thermo Scientific
Evolution 201 spectrophotometer at room temperature in the
reduced and oxidized states. A freshly prepared solution of
sodium dithionite was added to the sample to reduce the protein.
Protein concentration was measured with the PierceTM Modified

Lowry Protein Assay Kit (Thermo Scientific Pierce; Ohnishi
and Barr, 1978), using horse heart cytochrome c as protein
standard, and used to determine molar extinction coefficients.
Subsequent protein concentrations were calculated using the
determined molar extinction coefficients. The protein heme
content was determined by the pyridine hemochromogen assay,
by measuring the absorbance at 550 nm (for c-type hemes
ε550nm = 30.27 mM−1

·cm−1) of a 1.2 µM CbcL solution
prepared in 50 mM of NaOH/20% pyridine and reduced by
the addition of a freshly prepared sodium dithionite solution
(Berry and Trumpower, 1987).

Circular Dichroism Spectroscopy
CD characterization in the Far-UV was performed with a CbcL
sample at 10 µM prepared in 10 mM sodium phosphate buffer
pH 8. Measurements were performed in an Applied Photophysics
ChirascanTM qCD spectropolarimeter using a 300 µL quartz
cuvette with 1 mm of path length. The CD spectra at 25◦C are
an average of three spectral acquisitions with a step-size of 1 nm.
A temperature ramp was measured in the range of 10–94◦C,
with a temperature increment of 2◦C for each measurement with
1 min period for stabilization in each temperature. A two-state
transition model from folded to unfolded was used to determine
the melting temperature and the enthalpy of unfolding (1H)
(Greenfield, 2007b). The analysis of the CD spectra, including
the determination of the composition of the secondary structure
elements, was carried out using the online program DichroWeb
with the CDSSTR algorithm and SPM180 as a reference dataset
(Whitmore and Wallace, 2004).

Nuclear Magnetic Resonance
Spectroscopy
NMR experiments were performed either on a Bruker Avance
Neo 500 MHz spectrometer or on a Bruker Avance III 600 MHz
spectrometer at 25◦C. The water signal was used as internal
reference for the calibration of the 1H chemical shifts to sodium
trimethylsilylpropanesulfonate (Pierattelli et al., 1996). All 1D 1H
NMR spectra were acquired with 1024 increments, a sweep width
of 70 kHz and processed using TOPSPIN 4.1.1TM (Bruker).

Electron Transfer Experiments
To monitor the electron transfer reaction between CbcL and
PpcA, a sample of 100 µM (160 µL) of CbcL prepared in 10 mM
sodium phosphate buffer pH 8 was lyophilized (NMR spectra
were acquired before and after lyophilization − in the reduced
and oxidized states − to confirm that the protein integrity and
their redox behavior was not affected) and resuspended in 2H2O
inside an anaerobic glovebox (LABstar, MBraun) to avoid the
presence of oxygen. The NMR tube was sealed with a gas-tight
serum cap and flushed with gaseous hydrogen for reduction
in the presence of a catalytic amount of hydrogenase from
Desulfovibrio vulgaris. After reduction, argon was used to remove
all the hydrogen from the sample. Similarly, a sample of PpcA
was lyophilized and resuspended in 20 µL of 2H2O inside the
glovebox, resulting in a 3.2 mM sample. The electron transfer
reaction between reduced CbcL and oxidized PpcA was followed
by a series of 1D 1H NMR spectra each acquired after the addition
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of increasing equivalents of PpcA to the reduced CbcL sample,
inside the anaerobic glovebox.

Protein-Protein Interaction Studies in the Oxidized
Form
The molecular interactions between CbcL and PpcA were
followed by NMR chemical shift perturbation experiments. For
the monitorization of perturbations on PpcA’s NMR signals, a
sample of 50 µM PpcA (160 µL) and a sample of CbcL at
800 µM (30 µL) both in 10 mM sodium phosphate buffer pH
8 were prepared by lyophilization and resuspended in 2H2O.
A series of 1D 1H NMR spectra were obtained after the addition
of increasing amounts of CbcL to PpcA. For the monitorization of
perturbations on CbcL’s NMR signals, a sample of 100 µM CbcL
(160 µL) and a sample of PpcA at 3.2 mM (50 µL) both in 10 mM
sodium phosphate buffer pH 8 were lyophilized and resuspended
in 2H2O. A series of 1D 1H NMR spectra were obtained after
the addition of increasing amounts of PpcA to CbcL. The pH
was monitored to confirm that it was maintained throughout
the experiments.

The chemical shift variations of the heme methyl signals of
PpcA were used to determine the dissociation constant (Kd). The
Kd was determined by a two-parameter non-linear least-square
fitting estimated under fast exchange conditions for a one binding
site model corrected for the dilution effect, using OriginPro 8.5.
The value was determined by the following equation, as described
by Kannt et al. (1996).

1δbind = 0.51δmax(A−
√

A2 − 4R),

with A = 1+ R+ Kd
[CbcL]0 + R[PpcA]0
[CbcL]0[PpcA]0

In the equation, 1δbind is the chemical shift change at a
determined protein ratio, 1δmax is the maximum chemical shift
difference between the free and complex form of PpcA, R is
the [CbcL]/[PpcA] ratio at each point. [PpcA]0 and [CbcL]0
correspond to the stock concentrations of each protein.

Redox Titrations Monitored by UV-Visible
Spectroscopy
Redox titrations were performed in anaerobic conditions
with ∼3 µM of CbcL in 80 mM sodium phosphate buffer
with NaCl (250 mM final ionic strength) pH 8. The UV-
visible spectrophotometer (Thermo Scientific Evolution 300)
was coupled to a circulating bath to keep the sample at
15◦C. The solution potential was measured by a platinum
pin electrode associated with an AgCl/Ag reference (Crison)
and corrected for the Standard Hydrogen Electrode (SHE).
The electrode was calibrated at the start and at the end of
each titration with freshly prepared saturated quinhydrone
solutions at pH 7 and pH 4. The following mixture of redox
mediators, each at 1 µM final concentration, was added to the
protein solution to promote a fast exchange between the redox
centers of the protein and the electrode: 1,2-naphtoquinone-4-
sulphonic acid (E0 ′ =+215 mV), 1,2-napthoquinone (E0 ′ =+143
mV), trimethylhydroquinone (E0 ′ = +115 mV), phenazine

methosulfate (E0 ′ = +80 mV), phenazine ethosulfate (E0 ′ = +55
mV), gallocyanine (E0 ′ = +21 mV), methylene blue (E0 ′ = +11
mV), indigo tetrasulfonate (E0 ′ = −30 mV), indigo trisulfonate
(E0 ′ = −70 mV), indigo disulfonate (E0 ′ = −120 mV), 2-
hidroxy-1,4-naphthoquinone (E0 ′ = −145 mV), anthraquinone-
2,6-disulfonate (E0 ′ = −185 mV), anthraquinone-2-sulfonate
(E0 ′ = −225 mV), safranine O (E0 ′ = −280 mV), neutral red
(E0 ′ = −325 mV), benzyl viologen (E0 ′ = −345 mV), diquat
(E0 ′ =−350 mV) and methyl viologen (E0 ′ =−440 mV) (Dutton,
1978). Potassium ferricyanide and sodium dithionite were used as
oxidizing and reducing agents, respectively. The experiment was
performed two times, and the reduction potentials were found to
be reproducible within± 2 mV.

The reduced fraction of CbcL was calculated by integrating
the area of the α band above the isosbestic points (541 and
559 nm), as previously described (Paquete et al., 2007). The
macroscopic apparent midpoint reduction potential (Eapp) value
was determined after a nonlinear fit of the experimental data
to a model with nine sequential one electron Nernst equations
using OriginPro 8.5.

RESULTS AND DISCUSSION

Production of CbcL
The purification of CbcL involved three consecutive
chromatographic steps: an affinity step followed by an anion
exchange and a size exclusion step (Figure 1A). The purity
of CbcL was evaluated by SDS-PAGE (Figure 1A inset) and
confirmed by MALDI-TOF/TOF-MS. The peak for pure CbcL in
the mass spectra at 34.5 kDa is in agreement with the expected
molecular mass of 28.9 kDa of the apo-protein plus 5.6 kDa for
the nine heme groups. The presence of the nine heme groups
was further confirmed by the pyridine hemochrome assay. The
molar extinction coefficients for CbcL were determined by
the Lowry colorimetric assay at 408 nm in the oxidized form
(ε408nm = 923 mM−1

·cm−1) and at 552 nm in the reduced form
(ε552nm = 230 mM−1

·cm−1) and were used to calculate the
purification yield of CbcL per liter of culture (0.3 mg).

Analysis of CbcL Amino Acid Sequence
and Structure Prediction
The local alignment search tool (BLAST) was used to search
for similar amino acid sequences to full-length CbcL in the
database from NCBI (Altschul et al., 1997). The alignment of the
sequences with more than 65% pairwise identity was performed
with Clustal Omega (Supplementary Figure 1) (Sievers and
Higgins, 2018). The sequences correspond to proteins from
the Desulfuromonadales order belonging to Deltaproteobacteria
in which the nine binding motifs (CXXCH) characteristic of
c-type hemes are conserved. The alignment between CbcL and
homologous sequences shows ten conserved histidine residues
in the periplasmic domain, in addition to those of the binding
motifs, and no conserved methionine residues, suggesting that
all the hemes are bis-histidine coordinated. This was further
confirmed by the AlphaFold protein structure prediction method
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FIGURE 2 | 1D 1H NMR spectra of cytochrome CbcL in the reduced (A) and oxidized (B) forms. The spectra were acquired at 25◦C with 100 µM of CbcL in 10 mM
sodium phosphate pH 8.

(Jumper et al., 2021) using the ChimeraX software tool (Pettersen
et al., 2021) (Supplementary Figure 2).

Spectroscopic Characterization of CbcL
Complementary spectroscopic techniques were used for the
structural and functional characterization of CbcL. The UV-
visible spectra of the oxidized and reduced states (Figure 1B)
showed features characteristic of low-spin hexacoordinated
c-type hemes: the Soret band (at 408 and 420 nm in the oxidized
and reduced states, respectively), and the typical β and α bands
at 522 and 552 nm in the reduced state. The spin state of
the heme groups was further confirmed by NMR. The 1D 1H

NMR spectra of cytochromes provide important information
regarding the spin-state of the heme groups and their axial
ligands. In fact, the signals for high- or low-spin hemes appear in
very distinct spectral regions for each redox state. Cytochromes
containing high-spin hemes typically show broad heme methyl
signals above 40 ppm (Moore and Pettigrew, 1990). On the
other hand, for low-spin hemes these resonances are mainly
found up to 35 ppm. For the reduced form, the spectra are also
distinct. Cytochromes containing high-spin hemes show larger
spectral regions, typically from 30 to −15 ppm, compared to
those with low-spin hemes (from 10 to −5 ppm). In the case
of CbcL, the 1D 1H NMR spectra in the oxidized and reduced
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states are considerably different (Figure 2). In the reduced state
(Figure 2A), the signals cover the spectral width between 10 and
−5 ppm, which is characteristic of a low spin cytochrome (Fe(II),
S = 0). In the oxidized state, the signals are broader and cover a
larger spectral region from 35 to −7 ppm, as expected from the
paramagnetic effect caused by the unpaired electron of each heme
(Figure 2B). The shape and the spectral region covered by the
signals in the oxidized state also confirms that the heme groups
are low-spin (Fe(III), S = 1/2).

Circular dichroism (CD) spectroscopy in the far-UV region
(190–260 nm) was then used to probe the secondary structural
elements and the thermal stability of CbcL. The CD spectrum
of CbcL (Figure 3A, black line) has a positive maximum at
191 nm and two minima at 207 nm and 218. The signal
at 207 is characteristic of α-helical structures whereas that at
218 nm represents a mixture of α-helix and β-sheet structure
(Wei et al., 2014). The percentages of secondary structural
elements of CbcL were calculated by the program DichroWeb
(Whitmore and Wallace, 2004) and are listed in Table 1. The
results obtained show that the secondary structure of CbcL
is mostly disordered (37%) followed by 29, 18, and 15% of
α-helix, β-sheet and turns, respectively. As observed for other
multiheme cytochromes, CbcL also has a low ratio of amino
acids per heme (28 residues), which restrains the amount of
ordered secondary structure as observed for example for the
triheme cytochrome PpcA (Pokkuluri et al., 2011) and the
dodecaheme cytochrome GSU1996 (Pokkuluri et al., 2010),
which have 24 and 26 residues per heme, respectively (Table 1).
This is also in agreement with the structural model predicted
by AlphaFold that mostly shows disordered and helical elements
(Supplementary Figure 2).

The conformational stability of CbcL was assessed by
performing temperature-induced denaturation (from 10 to
94◦C), monitored by far-UV CD at 222 nm, which reports
on the stability of the α-helical secondary structural elements.
The data show that the protein unfolding results in the loss of
secondary structure, evidenced by the decrease in the ellipticity
of the 222 nm signal, particularly above 50◦C (Figures 3B,C).
An unfolding enthalpy of 82.0 ± 13.2 kJ·mol−1 (19.6 ± 3.1
kcal·mol−1) was also determined. This value is in line with
enthalpy values of unfolding for model monomer proteins (17.7
and 21.5 kcal·mol−1) (Greenfield, 2007a). Analyzing the spectra
before and after the temperature ramp, it can also be observed
that the thermal unfolding is not fully reversible, as the far-UV
CD absorption fingerprints are not fully restored. In fact, after the
temperature ramp, the spectrum obtained at 25◦C (Figure 3A,
gray line) shows a shift of the negative band maximum from
207 to 204 nm, as well as a considerable change in ellipticity at
191 nm, when compared with the spectrum obtained before the
temperature ramp.

Functional Characterization of CbcL
The next step on the characterization of CbcL was the
determination of its reduction potential and redox working
functional range. The distinct spectral UV-visible spectroscopic
features of CbcL in the oxidized and reduced forms (Figure 1B)
were explored to monitor the variation of its reduced fraction
with the solution redox potential. Thus, redox titrations followed
by UV-visible spectroscopy were performed for CbcL at pH 8
by monitoring the variation of the α-band (552 nm) with the
solution redox potential (Figure 4A). The apparent reduction
potential (Eapp) of −194 ± 2 mV was determined for CbcL.
Given the cellular localization of CbcL at the inner membrane,
it is most likely that the electrons are transferred from CbcL
to periplasmic proteins also involved in the same extracellular
electron transfer pathway. The triheme cytochrome PpcA is
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TABLE 1 | Structural features of cytochromes CbcL, PpcA and GSU1996 from G. sulfurreducens.

Cytochromes Secondary structure elements (%) Number of residues Number of heme groups

α-Helix β-Sheet Turn Disordered

CbcL (25◦C)1 29 18 15 37 250 9

PpcA2 28 15 41 17 71 3

GSU19962 19 12 52 18 318 12

The percentage of secondary structure elements of CbcL was determined by CD spectroscopy in the far-UV region. Data for PpcA and GSU1996 is also
presented for comparison.
1According to the results obtained from the DichroWeb online platform.
2According to the results obtained from the online platform STRIDE (Frishman and Argos, 1995) using the PDB files: 2MZ9 (Pokkuluri et al., 2004b) and 3OV0 (Pokkuluri
et al., 2011) for PpcA and GSU1996, respectively.
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oxides and electrodes poised at -100 mV in G. sulfurreducens.

the most abundant periplasmic cytochrome and is a putative
redox partner of CbcL. The Eapp value of PpcA (−138mV
(Morgado et al., 2008)) is less negative then the one obtained
for CbcL, suggesting a thermodynamically favorable electron
transfer from CbcL to PpcA.

Monitorization of the Electron Transfer
Reaction Between CbcL and PpcA by
NMR
The redox properties of CbcL and PpcA, as well as their cellular
localization, strongly suggest that CbcL is most likely able to
transfer electrons to PpcA. To verify this hypothesis, the electron
transfer reaction between CbcL and PpcA was probed by NMR.
The spectral features of the 1D 1H NMR spectra of CbcL
and PpcA in the reduced and oxidized states were used to

assess the electron transfer reaction between the two proteins,
following a newly developed strategy to monitor electron transfer
between cytochromes (Morgado and Salgueiro, 2022). Thus,
a reduced sample of CbcL (CbcLred) was prepared and then
titrated with increasing equimolar amounts of oxidized PpcA
(PpcAox). After the first addition of PpcAox (Figure 5, 1:1
NMR spectrum) the signals characteristic of reduced PpcA
(PpcAred; Supplementary Figure 3) are visible in the region
between 5 and 11 ppm (yellow rectangle in Figure 5) and no
typical fingerprint of PpcAox is observed (resonances between
11 and 22 ppm), confirming that electrons were transferred
from CbcL to PpcA.

Following the subsequent additions of PpcAox the NMR
signals of CbcL in the low field region of the spectra above
22 ppm are visible. Since the reduction potential of CbcL
is more negative and it has three times more hemes than
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PpcA, it could be expected that, after the addition of three
molar equivalents of PpcAox, CbcL would be fully oxidized.
However, this was not observed and, instead, CbcL and PpcA
were both in intermediate oxidation states since broad signals
are observed between 11 and 30 ppm (1:3 NMR spectrum in
Figure 5). Even after the addition of four molar equivalents
of PpcAox, an intermediate oxidation state remained for both
cytochromes (1:4 NMR spectrum in Figure 5). To confirm that
the two cytochromes were in an intermediate oxidation state,
the NMR tube was unsealed. The contact with atmospheric O2
led to the fully oxidation of both cytochromes, as confirmed
by the typical signals of CbcLox and PpcAox (1:4 + O2 NMR
spectrum in Figure 5). This experimental setup allowed to

observe the partial reduction of PpcA with electrons provided
by CbcL, indicating that this redox pair is indeed able to
transfer electrons with the directionality expected from their
reduction potential values. The results also indicate that the
physiological state of the cytochromes is neither fully reduced
nor oxidized. Indeed, the difference of 56 mV in their apparent
midpoint reduction potential values assures an overlap of
their redox windows (Figure 4B). This overlap explains why
electrons are not fully transferred from CbcL to PpcA. Instead,
they remain in equilibrium acting as a reservoir of electrons
to permit a constant flow whenever CbcL is loaded with
electrons by the quinone pool, and PpcA oxidized by its redox
partner (Figure 4C).
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Interaction Studies Between CbcL and
the Periplasmic Cytochrome PpcA
Having shown that CbcL and PpcA can exchange electrons, the
distinct NMR spectral features of the two cytochromes were then
explored to determine the affinity constant of the redox complex.
NMR chemical shift perturbation experiments have been used to
probe interacting regions between redox proteins, particularly in
the oxidized state for which the signal dispersion is considerably
larger compared to the reduced form (Bashir et al., 2011; Fonseca
et al., 2013; Dantas et al., 2017; Fernandes et al., 2017). This
is case of cytochromes CbcL and PpcA whose spectra in the
oxidized state are considerably different (Figure 2). In the case
of redox complexes between multiheme c-type cytochromes, it is
expected that at least one heme from each protein would be in
close contact. Thus, if interacting, the chemical environment in
the vicinity of these groups would be altered and the chemical
shift (or broadening) of the heme methyl(s) signal(s) would
be affected. Therefore, in the present work, NMR chemical
shift perturbation experiments were carried out for the two
cytochromes in the oxidized state by adding successive amounts
of one cytochrome to the other. Supplementary Figure 4 depicts
the 1D 1H NMR spectra of CbcL in the low-field region titrated
with increasing amounts of PpcA. The heme methyl signals of
CbcL that are detected between 22 and 35 ppm are not affected
upon addiction of PpcA. However, this does not completely
exclude the interaction, since the binding region could be in the
vicinity of the heme groups whose resonances are not detected
in that region of the spectra. Consequently, the chemical shifts

perturbations were also probed for PpcA heme methyl signals
(Figure 6A). The higher perturbation was observed for the
heme methyl 181CH3

I and the variation of its chemical shift
was used to determine the dissociation constant (Kd) of the
complex (Figures 6B,C). The value obtained in the micromolar
range (57 ± 9 µM) suggests the formation of a low affinity
complex characteristic of redox partners and is in line with values
previously reported for redox proteins (Bashir et al., 2011; Meschi
et al., 2011; Fonseca et al., 2013).

CONCLUSION

Multiheme cytochromes have a crucial role in extracellular
electron transfer mechanisms in exoelectrogenic
microorganisms, acting as electron capacitors and carriers.
Cytochrome CbcL is one of the inner membrane quinone
oxidoreductases identified in G. sulfurreducens and was shown
to be essential for the reduction of extracellular electron
acceptors with reduction potentials lower than −100 mV.
CbcL is composed by a transmembrane domain and a soluble
periplasmic domain, and the latter is a c-type cytochrome
with nine heme groups and was biochemically characterized
in this work. The spectroscopic characterization revealed that
the hemes are low spin and coordinated by two histidine
residues and that the polypeptide chain has a low content
of secondary structural elements, features that are typically
observed for multiheme cytochromes. Compared to the one of
the periplasmic cytochrome PpcA (−138 mV), the reduction
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potential value of CbcL (−194 mV) is more negative. This
suggests a thermodynamically favorable electron transfer from
CbcL to PpcA and a putative formation of a redox complex. Using
NMR it was possible to unequivocally confirm the formation
of this complex. In fact, direct electron transfer from reduced
CbcL to oxidized PpcA was observed in 1D 1H NMR titrations.
Additionally, NMR chemical shift perturbation experiments also
showed the formation of a low affinity complex between the
two cytochromes.

The unequivocal demonstration of the formation of a complex
between CbcL and PpcA, as well as the superimposition of their
redox active windows assures the continuous flow of electrons
from the inner membrane towards the periplasm and ultimately
to the extracellular electron acceptors.
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