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Background: Corynebacterium accolens (C. accolens) is a common nasal 

colonizer, whereas Staphylococcus aureus (S. aureus) is typically regarded a 

pathogenic organism in patients with chronic rhinosinusitis (CRS). This study 

aims to evaluate the interaction of the two bacteria in vitro.

Methods: Clinical isolates of C. accolens and S. aureus from sinonasal swabs, 

as well as primary human nasal epithelial cells (HNECs) cultured from cellular 

brushings of both healthy and CRS patients were used for this study. The 

cell-free culture supernatants of all isolates grown alone and in co-cultures 

were tested for their effects on transepithelial electrical resistance (TER), FITC-

Dextran permeability, lactate dehydrogenase (LDH), and IL-6 and IL-8 secretion 

of HNECs. Confocal scanning laser microscopy and immunofluorescence 

were also used to visualize the apical junctional complexes. C. accolens 

cell-free culture supernatants were also tested for antimicrobial activity and 

growth on planktonic and biofilm S. aureus growth.

Results: The cell-free culture supernatants of 3\C. accolens strains (at 60% for 

S. aureus reference strain and 30% concentration for S. aureus clinical strains) 

inhibited the growth of both the planktonic S. aureus reference and clinical 

strains significantly. The C. accolens cell-free culture supernatants caused no 

change in the TER or FITC-Dextran permeability of the HNEC-ALI cultures, 

while the cell-free culture supernatants of S. aureus strains had a detrimental 

effect. Cell-free culture supernatants of C. accolens co-cultured with both 

the clinical and reference strains of S. aureus delayed the S. aureus-dependent 

mucosal barrier damage in a dose-dependent manner.

Conclusion: Corynebacterium accolens cell-free culture supernatants appear 

to inhibit the growth of the S. aureus planktonic bacteria, and may reduce the 

mucosal barrier damage caused by S. aureus.
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Introduction

The microbiota can be defined as ecological communities of 
commensal and pathogenic microorganisms found in and on all 
multicellular organisms (Belkaid and Hand, 2014). The microbial 
communities encode millions of genes and their associated 
functions, which work in tandem with human cells to maintain 
cellular homeostasis (Yatsunenko et al., 2012). A wealth of studies 
have established the microbiota as an important contributor to 
essential mammalian functions including metabolism (Trompette 
et al., 2014), serotonin biosynthesis (Lynch and Pedersen, 2016), 
neurotransmission (Cryan and O'Mahony, 2011; Surjyadipta and 
Lukiw Walter, 2013), and immunomodulation (Marcus and 
Hornef Mathias, 2014; Lloyd Clare and Marsland Benjamin, 
2017). The host-microbiota interface is particularly important 
with evidence suggesting that many chronic inflammatory 
diseases are associated with significant shifts in the local 
microbiota towards inflammatory configurations (Hand Timothy 
et al., 2016). Therefore, a better understanding of the microbiota 
associated with these conditions may be the key to elucidating 
their underlying pathogenesis and ultimately facilitating the 
development of new treatments.

Chronic rhinosinusitis (CRS) is a persistent inflammatory 
condition of the paranasal sinus mucosa. Although its 
pathogenesis remains unclear, it is believed that external factors 
such as fungi, superantigens and toxins produced by bacteria 
and bacterial biofilms, as well as mucosal barrier disruption and 
a dysregulated innate immune response play a role (Jiao et al., 
2019; Blot et  al., 2020). Sinonasal microbiota studies have 
shown that healthy people and CRS patients have a similar 
overall bacterial burden and share many common phyla (Psaltis 
and Wormald, 2017), however patients with CRS tend to have 
reduced bacterial diversity with an expansion of 
opportunistically pathogenic microorganisms, such as 
Staphylococcus aureus, Staphylococcus epidermidis, and 
Propionibacterium acnes. Similar to other chronic inflammatory 
conditions, it is possible that pathogen expansion and the 
microbiota imbalance may be an initial cause of the chronic 
immune response and inflammation seen in this condition 
(Hand Timothy et al., 2016).

Our department’s previous research characterised the 
sinonasal microbiota and its global geographical variations in 
health and CRS using a large international patient cohort. Using 
16S rRNA amplicon sequencing, we  determined that 
Corynebacterium and Staphylococcus were amongst the most 
dominant genera in the majority of patients, regardless of their 
disease state. Unfortunately it was not possible to accurately 
characterize the bacteria genus to the species level due to the 
well-documented limitations of the short-read gene sequencing, 
where sequencing the V3-V4 hypervariable region of the 16S 
rRNA gene and taxonomy assignment was perfomed against the 
Greengenes 16S reference database. Several different 
Corynebacterium species are known to inhabit the nasal cavity, 
with the majority believed to be potential mutualists with 

important protective functions. Corynebacterium accolens 
(C. accolens), for example, is a common nasal colonizer and  
can inhibit Streptococcal growth via the release of oleic acids from 
the hydrolysis of host triacylglycerols (Bomar et  al.,  
2016). Conversely, Staphylococcus aureus (S. aureus) is considered 
to be  pathogenic in patients with CRS with its presence  
associated with recalcitrant CRS and poorer postoperative 
outcomes (Archer et  al., 2011; Singhal et  al., 2011; Cleland 
et al., 2014).

Previous research from our department has shown that 
C. accolens, when isolated from a healthy human nasal cavity, can 
exhibit antimicrobial activity against planktonic and biofilm 
growth of S. aureus and methicillin-resistant S. aureus (MRSA) 
isolated from CRS patients (Menberu et al., 2021b). This study 
aims to build on previous research by evaluating the interactions 
between the clinical isolates of C. accolens and S. aureus, cultured 
from the sinonasal mucosa, with a particular focus on their effects 
on the mucosal barrier in an in vitro setting.

Materials and methods

The study was approved by the Central Adelaide Local Health 
Network Human Research Ethics Committee (HREC/15/
TQEH/132) and written informed consent was obtained from 
participants before collection of microbial swabs and primary 
human nasal epithelial cells (HNECs).

Sample collection

Bacterial swabs were used to sample the middle meatus of 
CRS patients and non-CRS controls. Cytobrushes (EndoScan 
Brush, Medico, Melbourne, VIC, Australia) were used 
intraoperatively to harvest primary human nasal epithelial 
cells (HNECs) from the inferior turbinate mucosa. Control 
patients were patients undergoing endoscopic skull base 
procedures without clinical or radiological evidence of sinus 
disease. CRS patients fulfilled the diagnostic criteria set out in 
the position papers by the American Academy of 
Otolaryngology and Head and Neck Surgery and the European 
Position Statement (EPOS) on CRS (Fokkens et al., 2012; Lin 
and Nnacheta, 2015).

Bacterial assay

Bacterial culture

To understand if C. accolens cell-free culture supernatants can 
inhibit S. aureus planktonic growth, three C. accolens clinical 
isolate strains (C1 to C3) were selected from our bacterial biobank, 
based on their established broad antagonistic activity against 
multiple methicillin-resistant Staphylococcus aureus (MRSA) and 
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methicillin-susceptible Staphylococcus aureus (MSSA) clinical 
isolates in our previously published work by Menberu et  al. 
(2021a,b); S. aureus clinical isolates (SC) were identified by South 
Australia (SA) Pathology and S. aureus reference strain 
(ATCC51650, SA) was purchased from American Type Culture 
Collection (ATCC, Manassas, United States). S. aureus strains 
were frozen in tryptone soy broth (TSB, Thebarton, SA, Australia) 
with 20% (v/v) glycerol at-80°C until use. Isolates were thawn and 
cultured at 37°C for 24 h on 1.5% trypticase soy agar (TSA) plates 
with 0.5% Tween 80 (Sigma-Aldrich, St. Louis, United States). For 
each of the C. accolens and S. aureus isolates, a 0.5 MacFarland 
Unit (MFU) suspension was created in 0.9% sodium chloride 
(NaCl). The suspension was subsequently diluted 1: 100 in 10 ml 
TSB supplied with 0.5% Tween 80 and incubated at 37°C on an 
orbital shaking incubator at 180 rpm for 24 h. The overnight 
bacterial culture was then diluted with TSB containing 0.5% 
Tween 80 to an absorbance of 0.05 at a wavelength of 600 nm 
(OD600) (SmartSpec 3000, Biorad, CA, United States). 10 ml of the 
diluted bacterial suspension was transferred into a 100 ml 
centrifuge tube and incubated at 37°C on an orbital shaking 
incubator at 180 rpm. The OD600 was measured hourly to prepare 
a standard growth curve of the bacteria.

Cell-free culture supernatants harvest 
and protein quantification

For planktonic cell-free culture supernatants, 0.5 McF 
C. accolens and S. aureus suspension in 0.9% NaCl were obtained 
using a single colony from a plate grown on 1.5% TSA with 0.5% 
Tween 80 at 37°C for 24 h. The bacterial suspension was diluted at 
1: 100 in 10 ml TSB with 0.5% tween 80 in a 50 ml falcon tube, 
then, the suspension of C. accolens or S. aureus was incubated at 
180 rpm in a 37°C incubator in air for 24 h. For C. accolens and 
S. aureus co-cultures, a fixed number of S. aureus (5 × 105 CFU) 
with C. accolens in different ratios ((50% (2.5 × 105 CFU),70% 
(3.5 × 105 CFU), and 90% (4.5 × 105 CFU)) was incubated at 
180 rpm in a 37°C incubator in air for 24 h.

After 24 h incubation, the cell-free culture supernatants from 
single cultures and co-cultures was spun down and filtered 
through a 0.22 μm syringe filter (Pall Corporation, San Diego, 
United States).

For biofilm cell-free culture supernatants, 1 McF C. accolens 
and S. aureus suspension was diluted 1: 15 in TSB with 0.5% tween 
80 to form biofilm in 6-well plates (2 ml per well) (Fokkens et al., 
2012). The suspension of C. accolens, S. aureus, and S. aureus 
co-cultured with C. accolens in different ratios (50% 
(2.5 × 105 CFU),70% (3.5 × 105 CFU), and 90% (4.5 × 105 CFU)) was 
incubated for 48 h at 37°C on a gyratory shaker at 70 rpm in air. 
The cell-free culture supernatants were harvested as 
described above.

Then the protein concentration was determined using Nano 
Orange protein quantitation kit (Invitrogen, Carlsbad, CA, 
United States). The experiment was repeated three times.

Antibacterial assay

Planktonic bacteria assay

100 μl of S. aureus suspension (0.5 McF) was grown in TSB 
with 0.5% Tween 80 in a 96-well plate (Corning Incorporated, 
Corning NY, United States) containing different concentrations 
(20–90% v/v) of C. accolens (clinical isolates 1 to 3) cell-free 
culture supernatants and incubated for 24 h at 180 rpm in 37°C in 
air. S. aureus treated with TSB with 0.5% Tween 80 was used as 
positive control and TSB with 0.5% Tween 80 without S. aureus as 
a negative control. The OD600 was measured to determine the 
growth of bacteria after 24 h treatment. All treatments were 
carried out in six replicates and the entire experimental procedure 
was repeated three times.

Confocal laser scanning microscopy

Confocal laser scanning microscopy was used to confirm 
inhibition of planktonic cells (Lin and Nnacheta, 2015). Briefly, 
one drop of cells from above was spotted on the glass slide and left 
to air dry. Cells were then stained with a LIVE/DEAD BacLight 
Bacterial Viability Kit (Life Technologies Australia, Mulgrave, 
Victoria, Australia) according to the manufacturer’s instructions. 
The stained cells were examined at 20× magnification using a 
confocal laser scanning microscope (Zeiss LSM700, Carl Zeiss 
AG, Oberkochen, Germany). The experiment was repeated 
three times.

Biofilm assay

Black 96-well microplates (Costar; Corning Incorporated, 
Corning, NY, United States) were used to form biofilms. In Brief, 
a 1.0 McF S. aureus suspension in 0.9% NaCl was diluted 1: 15 in 
TSB and gently mixed by inversion. 150 μl/well of the resulting 
suspension was plated into a 96-well microplates in six replicates. 
The top and bottom edge of the plate were filled with 200 μl of 
sterile phosphate-buffered saline (PBS) to prevent dehydration. 
Negative controls were added to each plate containing TSB 
solution only. The plates were then incubated for 48 h at 37°C on 
a gyratory shaker at 70 rpm to allow for biofilm formation. After 
48 h, biofilms were rinsed three times with 1 × PBS to remove 
planktonic bacteria. Following that, the S. aureus biofilm was 
treated with C. accolens planktonic and biofilm cell-free culture 
supernatants (in 20–100% v/v) for 24 h. S. aureus biofilms treated 
with TSB only were included as a positive control. After 
treatment, the metabolic activities of biofilm were determined 
using an alamarBlue assay (Sigma-Aldrich, St. Louis, MO, 
United States; Menberu et al., 2021b). Briefly, the microplates 
were incubated with 200 μl diluted (1: 10 ratio) alamarBlue and 
incubated at 37°C for 3 h. Subsequently, the fluorescence intensity 
of the samples was measured using a FLUOstar Optima 96-well 

https://doi.org/10.3389/fmicb.2022.984741
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2022.984741

Frontiers in Microbiology 04 frontiersin.org

fluorescence microplate reader (BMG Labtech, Ortenberg, 
Germany) at λexcitation = 530 nm/λemission = 590 nm. All assays 
were carried out in six replicates and the experiment was repeated 
three times.

Cell culture assays with primary 
human nasal epithelial cells

Primary human nasal epithelial cells

HNECs were cultured as previously described (Murphy 
et al., 2018a; Ramezanpour et al., 2018). Briefly, HNECs were 
suspended in 10 ml DMEM medium (Gibco, Thermofisher 
Scientific, Melbourne, VIC, Australia) and centrifuged at 
300× g for 5 min at 4°C. The pellet was then resuspended in 
1 ml PneumaCult™-Ex Plus Basal Medium (STEMCELL 
Technologies, Tullamarine, VIC, Australia) and plated on a 
100-mm diameter culture plate coated with anti-CD68 
antibodies (Dako, Glostrup, Denmark) for 20 min at 37°C to 
deplete monocytes. Then HNECs were seeded in collagen-
coated T75 cell culture flasks (Corning Incorporated, NY, 
United States) and grown in 15 ml Ex-medium consisting of 
PneumaCult™-Ex Plus Basal Medium (STEMCELL 
Technologies, Tullamarine, VIC, Australia), PneumaCult™-Ex 
Plus 50× Supplement (STEMCELL Technologies, Tullamarine, 
VIC, Australia), and penicillin–streptomycin (Thermo 
Scientific, Walthman, MA, United States). The seeded HNECs 
were incubated at 37°C with a 95% humidity incubator 
supplied with 5% CO2 and inspected daily under light  
microscopy.

Air liquid interface culture

Once HNECs reached 80–100% confluence, cells were 
detached by treating them with 0.05% trypsin (Thermo Scientific, 
Waltham, MA, United States) and resuspended in Ex-medium 
(PneumaCult™-Ex Plus Basal Medium; PneumaCult™-Ex Plus 
50× Supplement and penicillin–streptomycin prepared as above 
description) after centrifugation. Then, cell suspensions were 
plated onto the apical collagen IV-coated chambers of Transwells 
(BD Biosciences, San Jose, California, United  States). 500 μl 
Ex-medium was added in the basolateral chamber. Cells were 
given 2 days to settle and the medium from the apical chamber 
was removed completely and the basolateral chamber medium 
was changed to PneumaCult™-ALI Basal Medium (STEMCELL 
Technologies, Tullamarine, VIC, Australia); PneumaCult™-ALI 
10× Supplement; penicillin–streptomycin/amphotericin B 
(Thermo Scientific, Walthman, MA, United  States); And 
PneumaCult™-ALI Maintenance Supplement (STEMCELL, 
Vancouver, Canada). The basolateral chamber medium was 
replaced every 3 days. The cells were cultured for a period of 17 up 
to 21 days.

Transepithelial electrical resistance

TER was measured by using an EVOM volt-ohmmeter (World 
Precision Instruments, Sarasota, FL, United States). Briefly, 100 μl of 
PneumaCult™-ALI Basal Medium was added to the apical chamber 
of ALI cultures to form an electrical circuit across the cell monolayer 
and into the basal chamber. Cultures were maintained at 37°C 
during the measurement period using a heating platform (LEC 
Instrument, Australia). Only wells displaying baseline resistance 
readings greater than 700 Ω/cm2 were used for the experiments. 
S. aureus and C. accolens co-cultured cell-free culture supernatants 
in different ratios were added to the apical chambers of each 
Transwell. TER measurements were taken at times 0, 0.5, 1, and 2 h. 
As the negative and postitive controls, ALI cultures treated with TSB 
and 2% Triton X-100 (Promega, Madison, WI, United States) were 
tested together. The experiment was repeated three times.

FITC-dextran permeability assay

Paracellular permeability was assessed by measuring the 
apical-to-basolateral flux of FITC-Dextran 4 kDa (Sigma, Saint 
Louis, United States). Briefly, after treating cells with bacterial cell-
free culture supernatants and TSB (negative control) and 2% 
Triton X-100 (positive control) for 2 h, the apical chambers were 
filled with 3 mg/ml of FITC-Dextran and incubated at 37°C for 
2 h. Samples were then taken from the basolateral compartment 
and transferred to a clear bottom black 96-well plate (Corning-
Costar Corp., Cambridge, United Kingdom). The fluorescence of 
the samples was measured with a FLUOstar Optima 96-well 
fluorescence microplate reader (BMG Labtech, Ortenberg, 
Germany) at excitation and emission wavelengths of 485 nm and 
520 nm. The experiment was repeated three times.

Immunofluorescence staining

Following the FITC-Dextran Permeability Assay, cells were 
fixed for 10 min on ice with 2.5% formalin in PBS. Fixed samples 
were then permeabilized with 1% sodium dodecyl sulfate (SDS) for 
10 min on ice. Following this, the permeabilized cells were blocked 
for 1  h with serum-free blocker (Dako, Glostrup, Denmark) at 
room temperature. Cells were incubated with the primary antibody 
[Rabbit anti-claudin-1 (1:50; Invitrogen, Carlsbad, CA, 
United States); Mouse anti-zonula occludens-1 (1,100; Invitrogen, 
Carlsbad, CA, United States)] overnight at 4°C. Following washing, 
cells were then incubated with secondary antibodies [Donkey anti-
rabbit Cy3 (1:200; Jackson ImmunoResearch Labs Inc., West 
Grove, PA, United States); Donkey anti-mouse IgG Alexa Fluor 488 
(1:200; Jackson ImmunoResearch Labs Inc., West Grove, PA, 
United States)] for 1 h at room temperature (RT) and with 200 ng/
ml of 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, St. 
Louis, MO, United States) for 10 min at RT to resolve nuclei. Cells 
were then mounted with a fluorescence anti-fade mounting 
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medium (Dako, Glostrup, Denmark) and were covered with 
coverslips. Images were examined with a confocal laser-scanning 
microscope LSM700 (Zeiss Microscopy, Jena, Germany) and 
images were then processed with ZEN Imaging Software (Carl 
Zeiss AG, Oberkochen, Germany). The experiment was performed 
in triplicates.

Cell cytotoxicity assay

Following the last TER measurements (2 h), the medium from 
the basal chambers of each sample was collected and cytotoxicity 
was determined using the lactate dehydrogenase (LDH) release kit 
(Promega, Madison, WI, United  States) according to the 
manufacturer’s instructions (Dong et al., 2020). Briefly, 50 μl of the 
medium from each condition was transferred to a new plate, and 
50 μl of LDH reagent was added to the medium and this was 
incubated for 30 min in the dark at RT. Absorbance was read using 
a microplate reader at 490 nm (BMG Labtech, Ortenberg, 
Germany). Cells treated with TSB and 2% Triton X-100 were used 
as negative and positive control, respectively. The relative viability 
was calculated relative to the LDH levels of negative controls and 
positive controls. The experiment was performed in triplicates.

Enzyme-linked immunosorbent assay

The medium was collected from the basolateral compartment 
of treated HNEC-ALI cultures after exposure with bacterial cell-
free culture supernatants. Interleukin-6 (IL-6) and Interleukin-8 
(IL-8) levels were estimated with an ELISA kit (BD Biosciences, 
New Jersey, United  States), according to the manufacturer’s 
instructions. All measurements were performed in triplicates using 
a FLUOstar OPTIMA plate reader (BMG Labtech, Ortenberg, 
Germany). The IL-6 and IL-8 concentration was calculated from a 
standard curve and corrected for protein concentration.

Statistical analysis

GraphPad Prism 9.0 (San Diego, CA, United States) was used for 
statistical analysis. One-way analysis of variance (ANOVA) followed 
by Dunnett’s multiple comparisons test or Tukey’s multiple 
comparisons test was used to compare the differences between 
multiple groups. A p < 0.05 was considered as statistically significant.

Results

Antibacterial effects of Corynebacterium 
accolens cell-free culture supernatants 
against planktonic and biofilm 
Staphylococcus aureus 

Three C. accolens clinical isolates (C1–C3) demonstrated 
broad antagonistic activity against a variety of methicillin-resistant 

Staphylococcus aureus (MRSA) and methicillin-susceptible 
Staphylococcus aureus (MSSA) clinical isolates chosen for this 
study. The cell-free culture supernatants of all three tested 
C. accolens were found to inhibit the growth of planktonic 
S. aureus in a dose-dependent way. There was significant growth 
inhibition of the reference strain at >50% v/v and of the S. aureus 
clinical strain at 30% v/v (Figure 1A). This was further confirmed 
using LIVE/DEAD BacLight Bacterial Viability staining 
(Figure 1B). Biofilm growth of both the reference and clinical 
S. aureus strains was not inhibited by the same concentrations of 
C. accolens cell-free culture supernatants (Supplementary Figure 1).

The co-culture of C. accolens and S. 
aureus has no effect on measured total 
exoprotein secretion

To determine whether the presence of C. accolens live bacteria 
inhibited the growth of S. aureus and S. aureus exoprotein 
secretion, S. aureus clinical isolates and S. aureus ATCC51650 
were co-cultured with various numbers of C. accolens live bacteria. 
Both planktonic and biofilm cell-free culture supernatants were 
harvested and proteins quantified. According to our finding, there 
was no significant difference for both planktonic and biofilm’ total 
exoprotein concentrations among all the experimental conditions 
we have tested (Supplementary Figures 2A,B).

Effect of Corynebacterium 
accolens on Staphylococcus aureus 
induced HNECs barrier disruption

Corynebacterium accolens cell-free 
culture supernatants reduce 
Staphylococcus aureus  cell-free culture 
supernatants-induced transepithelial 
electrical resistance reduction

To examine the effect of C. accolens cell-free culture 
supernatants on the HNECs barrier, HNECs were harvested from 
three control patients and three chronic rhinosinusitis without 
Nasal Polyps (CRSsNP) patients. TER reduction was then used to 
determine the effect of bacterial cell-free culture supernatants on 
the integrity and transcellular permeability of HNEC-ALI 
cultures. In our previous data (Menberu et  al., 2021b), 
3\C. accolens strains (C1–C3) exhibited comparable antimicrobial 
activities against two S. aureus strains. Consequently, one 
representative C. accolens (C1) strain was chosen for the remainder 
of these experiments. C1 cell-free culture supernatants did not 
affect the TER at any of the exposure times, while the reference 
(SA) and clinical strains of S. aureus (SC) cell-free culture 
supernatants reduced the TER significantly within 15 min and at 
all other time points (30 min, 1 and 2 h). Cell-free culture 
supernatants from the mixed C. accolens-S. aureus cultures 
induced a time and dose-dependent reduction in TER. With a 
higher concentration of C. accolens (70 and 90%), a statistically 
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significant reduction in TER took 1 h to occur, while at lower 
numbers of C. accolens (50%), a significant reduction in TER 
occurred within 30 min (Figures 2A,B).

Corynebacterium accolens cell-free 
culture supernatants reduce 
Staphylococcus aureus cell-free culture 
supernatants-induced detrimental 
effects on the HNEC-ALI cultures 
paracellular permeability

To determine the effect of bacterial cell-free culture 
supernatants on the paracellular permeability of the epithelial cell 

layer, HNEC-ALI cultures were exposed for 2 h to the cell-free 
culture supernatants of C. accolens C1 and the reference and 
clinical strains of S. aureus co-cultured cell-free culture 
supernatants. The cell-free culture supernatants of C. accolens C1 
appeared to have no significant effect on the paracellular 
permeability of the HNEC-ALI cultures when applied alone. Both 
the reference and clinical strains of S. aureus significantly 
increased the permeability of the epithelial cell layer. When the 
co-cultured S. aureus and C. accolens cell-free culture supernatants 
were applied, it was found that a higher ratio of C. accolens (90%) 
resulted in a greater reduction of S. aureus-dependent effects on 
paracellular permeability, compared to when a lower ratio (50%) 
of C. accolens was applied (Figures 3A,B).

A

B

FIGURE 1

Antibacterial effects of Corynebacterium accolens cell-free culture supernatants against planktonic S. aurens. Different concentrations of cell-free 
culture supernatants from 3 clinical isolates of C. accolens were added to treat planktonic SA and SC. (A) OD600 was measured to determine the 
bacterial growth after 24 h treatment. (B) LIVE/DEAD BcalLight Bacterial Viability staining of S aureus planktonic bacteria was used to show dead 

(PI, yellow) and live (SYTO® 9, blue) in samples representatives of each treatment group. C1 supernatant, C. accolens cell-free culture supernatants 
from C. accolens clinical isolate 1. C2 supernatant, C. accolens cell-free culture supernatants from C. accolens clinical isolate 2. C3 supernatant, 
C. accolens cell-free culture supernatants from C. accolens clinical isolate 3. SA, S. aureas ATCC 51650. SC, S. aureas clinical strain. Significance 
was determined by comparing the OD600 value of each treatment group with SA or SC untreated group. **p < 0.001, ***p < 0.001, ****p < 0.0001. n, 
no significant difference. Experiments were performed three times.
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Corynebacterium accolens cell-free 
culture supernatants reduce 
Staphylococcus aureus cell-free 
supernatants-induced detrimental effects 
on HNEC-ALI cultures tight junctions

Zonula Occludens-1 (ZO-1) and Claudin-1 immunofluorescence 
were assessed on HNEC-ALI cultures following the application of 
the various bacterial co-cultured cell-free culture supernatants to 
determine the effect of these supernatants on the tight junction 
protein production and immunolocalization. C. accolens cell-free 
culture supernatants were found to have no significant effect on 
either of the tight junction proteins compared with control (TSB; 

Figure 4). Conversely, the cell-free culture supernatants from both 
the reference and clinical strains of S. aureus reduced the ZO-1 and 
Claudin-1 protein expression. In addition, as the concentration of 
live C. accolens bacteria increased during the co-cultivation with the 
S. aureus, the effect of their co-cultured cell-free culture supernatants 
on both tight junction proteins diminished.

Corynebacterium accolens cell-free 
culture supernatants are not cytotoxic To 
HNEC-ALI cultures

An LDH assay was used to determine if all of the aforementioned 
changes were due to cytotoxicity. The cell-free culture supernatants 

A

B

FIGURE 2

Corynebacterium accolens cell-free culture supernatants delay with S. aureus cell-free culture supernatants induced Transepithelial electrical 
resistance (TER) reduction. TER of HNEC-ALI was measured at 0 mins, 15 mins, 30 mins, 1 h and 2 h, following exposure to C. accolens cell-free 
culture supernatants, cell-free culture supernatants from the co-cultured C. accolens-S. aureus in different ratio and cell-free culture supernatants 
of S. aureus ATCC strain [(SA) A] or a clinical isolate of S. aureus [(SC) B]. TSB served as the negative control and Triton treatment as the positive 
control. Experiments were performed in triplicates. The significance was determined by comparing time point at 15 mins, 30 mins, 1 h and 2 h with 
time 0 min. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n, no significance difference.
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from individual bacteria or co-cultured bacteria in all tested ratios 
exhibited no significant cytotoxicity when applied to HNEC-ALI 
cultures for 2 h (Supplementary Figures 3A,B).

Corynebacterium accolens cell-free 
culture supernatants reduced  
Staphylococcus aureus cell-free culture 
supernatants-induced inflammatory 
cytokine production to baseline

Using ELISA to quantify IL-6 and IL-8 release from HNEC-ALI 
cultures after exposure to C. accolens C1 cell-free culture 
supernatants, we did not observe a significant increase in either IL-6 
or IL-8 secretion. A significant increase was observed with exposure 
to both the reference and clinical strains of S. aureus cell-free culture 
supernatants after 2 h treatment; lower rates of IL-6 secretion were 
observed when HNEC-ALI cultures were exposed to the cell-free 
culture supernatants of C. accolens C1 co-cultured with S. aureus, in 
comparison to the control (TSB) and C. accolens C1 cell-free culture 
supernatants treatment. Cell-free culture supernatants that were 
harvested from the lower ratio of C. accolens C1 (50%) co-cultured 
with S. aureus did not reduce the IL-8 release, compared to control. 
However, when the ratio of C. accolens C1 increased (70 and 90%), 
the co-cultured cell-free culture supernatants reduced the release of 
IL-8 back to baseline levels (Figures 5A,B).

Discussion

Corynebacterium accolens is typically regarded as a commensal 
bacteria in the sinuses of healthy patients. It is thought to have a 

“gatekeeping” function against pathogenic bacteria including 
S. aureus, though no mechanistic link has been established 
(Bomar et al., 2016). Previous research in our department has 
found that while Corynebacterium and Staphylococcus species are 
among the most common organisms isolated from the sinuses of 
both healthy and CRS patients, CRS patients have a relative 
reduction in Corynebacterium load and expansion of 
Staphylococcus species (Ramezanpour et  al., 2018). This study 
shows that C. accolens cell-free culture supernatants have an effect 
on S. aureus growth and cell-free culture supernatants activity 
in vitro.

In this study, we  found that C. accolens cell-free culture 
supernatants have a direct effect on the planktonic growth of 
both the reference and clinical strains of S. aureus. This is 
consistent with Menberu et al. findings, which demonstrated 
that C. accolens has antimicrobial activity against S. aureus and 
MRSA CIs in both planktonic and biofilm forms (Menberu 
et al., 2021b). This supports the findings of other studies that 
demonstrate a negative correlation between S. aureus abundance 
and Corynebacterium abundance (Uehara et  al., 2000; Lina 
et al., 2003; Frank et al., 2010) and may explain the typical lack 
of S. aureus expansion in the non-diseased state. It also supports 
the hypothesis of this commensal bacterium’s “gatekeeping” 
function. The C. accolens cell-free culture supernatants had no 
effect on S. aureus biofilm growth, implying that the biofilm 
structure confers some protection against the C. accolens cell-
free culture supernatants. Biofilm resistance to naturally and 
synthetic therapeutic agents has been well documented, which 
explains their association with the chronic disease state (Dong 
et al., 2020; Zhang et al., 2020).

A B

FIGURE 3

Corynebacterium accolens cell-free culture supernatants reduced with HNEC-ALI cultures paracellular permeability. The paracellular permeability.
as measured by the FITC-Dextran Assay at 120 mins, following exposure to C. accolens cell-free culture supernatants, C. accolens cell-free culture 
supernatants from the mixed C. accolens-S aureus in different ratio and S. aureus ATCC strain [(SA) A] or a clinical isolate of S. aureus [(SC) B]. TSB 
served as the negative control and Triton treatment as the positive control. The significance was determined by comparing different treatment 
group with the negative control (TSB). Experiments were performed in triplicates. *p < 0.05, **p < 0.01, ***p<0.001, ****p < 0.0001. n, no significance 
difference.
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Consistent with the reported commensal role of C. accolens 
(Miling et al., 2013; Mahdavinia et al., 2016), we did not observe any 
detrimental effects of its cell-free culture supernatants on epithelial 
integrity, membrane permeability, or cellular viability. This was in 

contrast to the cell-free culture supernatants of S. aureus which 
resulted in marked reductions in TER and increases in FITC-
Dextran permeability when applied to HNECs in our study. This 
aligns with the findings of previous studies that demonstrate a 
detrimental effect of S. aureus exotoxins on sinonasal epithelium 
(Malik et  al., 2015; Murphy et  al., 2018b). The intracellular 
localization of S. aureus in CRS patients has been reported and 
shown to be associated with poor prognostic characteristics and 
treatment resistance (Tan et al., 2013; Ou et al., 2016, 2017).

The ratio-dependent increase in time to epithelial disruption 
and membrane permeability when S. aureus was co-cultured with 
C. accolens was another finding that supported the proposed 
protective action of C. accolens. The higher the concentration of 
C. accolens, the longer it took for the S. aureus cell-free culture 
supernatants to cause significant damage. We  hypothesise that 
protective factors secreted by C. accolens may mitigate S. aureus-
induced inflammation. This is further supported by the reduction 
in the release of potent inflammatory cytokines like IL-6 and IL-8 
when the cell-free culture supernatants of S. aureus co-cultured 
with the C. accolens were applied to primary epithelial cell cultures 
compared to cell-free culture supernatants of S. aureus alone.

Our findings do support the consistent observation of both 
clinical and the microbiota sinus studies-the association of 
S. aureus with more severe disease and the collapse of the 
diverse healthy microbiota in patients with CRS (Ramakrishnan 
et al., 2013; Choi et al., 2014; Kristi et al., 2015; Wagner et al., 
2016). Furthermore, our study suggest a mechanistic link by 
which commensal bacteria like C. accolens keep pathogenic 
bacteria in check through their secreted products. According to 
a previous study conducted by this group, C. accolens cell-free 
culture supernatants lost their antimicrobial activity against 
S. aureus strains after proteinase K treatment, supporting the 
hypothesis of the proteinaceous nature of the C. accolens 
secreted products responsible for their anti-staphylococcal 
effect (Menberu et  al., 2021b). However, other secreted 
products, such as acetic acid and lactic acid or other peptide 
components, may contribute to these anti-staphylococcal 
effects. Regardless, a reduction in the number of these 
gatekeeping bacteria may therefore be implicated as an initiating 
event in the pathogenesis of CRS.

This study has several imitations which should be  noted 
including its in vitro study design, its small sample of clinical 
isolates tested, and the lack of functional testing. Although IL-6 
and IL-8 are excellent surrogate markers for measuring the 
inflammatory response in CRS patients in the in vitro settings, 
these selected markers can not truly inform us of what its 
occuring in an in vivo setting. Other cytokines, such as IL-1β, 
CCL-20, CCL-5, CCL-22, IL-33, IL-1α, CCL-2, IP-10, 
GM-CSFand HBD-2, need to be investigated in the in vivo setting 
and proteomic and molecular work is required to better define 
the nature of protective factors that are secreted by C. accolens. In 
our study, we mainly tested the mucosal barrier effects of cell-free 
culture supernatants of C. accolens or the cell-free culture 
supernatants of C. accolens and S. aureus co-cultures. Considering 
that the bacterial culture medium may also affect the metabolism 

FIGURE 4

Corynebacterium accolens cell-free culture supernatants reduce 
S. aureus cell-free culture supernatants-induced detrimental 
effects on HNEC-ALI cultures tight junctions. Immunofluorescence 
staining of tight junction proteins of HNEC-ALI cultures treated 
with cell-free culture supernatants from SA and SC co-cultured 
with C. accolens in different ratios. HNEC-ALI cultured cells were 
stained with antibodies against Z0-1(green), claudin-1 (red) and 
DAPI to resolve nuclei (blue). TSB treatment was used as the 
negative control. Triton-100 was used as the positive control. 
Images were examined with confocal laser-scanning microscope 
(Scale bar = 10 μm). C1, C. accolens clinical isolate 1; SA, S. aureus 
ATCC51650; SC, S. aureus clinical strain.
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of bacteria, further studies are needed to define the exact 
underlying mechanism and interaction among the live 
C. accolens, S. aureus and other potential species that may 
be present in the upper airway.

Conclusion

This study demonstrated that C. accolens cell-free culture 
supernatants can inhibit the growth of S. aureus planktonic 
bacteria, and reduce the detrimental effects of S. aureus cell-free 
culture supernatants on the sinonasal epithelium. Further 
research is required to better characterize the proteins or other 
peptide components that mediate their effect and their precise 
mode of action, as well as to evaluate the different inflammatory 
cytokines and antimicrobial activity between the various species 
using in vivo animal models.
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FIGURE 5

Corynebacterium accolens cell-free culture supernatants reduce S. aureus cell-free culture supernatants-induced inflammatory cytokine production to 
baseline. The IL-6 (A) and IL-8 (B) release by the HNEC-ALI cultures treated with the cell-free culture supernatants of C. accolens, S. aureus and  
co-cultured C. accolens, S. aureus in different ratio was measured. C1, C. accolens clinical isolate 1. SA, S. aureus ATCC51650. SC, S. aureus clinical strain. 
Experiments were performed in triplicates. *p < 0.05, **p < 0.01, ***p < 0.001. n, no significance difference. Experiments were performed three times.
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