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We report genomic traits that have been associated with the life history of 

prokaryotes and highlight conflicting findings concerning earlier observed trait 

correlations and tradeoffs. In order to address possible explanations for these 

contradictions we  examined trait–trait variations of 11 genomic traits from 

~18,000 sequenced genomes. The studied trait–trait variations suggested: (i) 

the predominance of two resistance and resilience-related orthogonal axes 

and (ii) at least in free living species with large effective population sizes whose 

evolution is little affected by genetic drift an overlap between a resilience axis 

and an oligotrophic-copiotrophic axis. These findings imply that resistance 

associated traits of prokaryotes are globally decoupled from resilience related 

traits and in the case of free-living communities also from traits associated 

with resource availability. However, further inspection of pairwise scatterplots 

showed that resistance and resilience traits tended to be  positively related 

for genomes up to roughly five million base pairs and negatively for larger 

genomes. Genome size distributions differ across habitats and our findings 

therefore point to habitat dependent tradeoffs between resistance and 

resilience. This in turn may preclude a globally consistent assignment of 

prokaryote genomic traits to the competitor - stress-tolerator - ruderal (CSR) 

schema that sorts species depending on their location along disturbance and 

productivity gradients into three ecological strategies and may serve as an 

explanation for conflicting findings from earlier studies. All reviewed genomic 

traits featured significant phylogenetic signals and we propose that our trait 

table can be  applied to extrapolate genomic traits from taxonomic marker 

genes. This will enable to empirically evaluate the assembly of these genomic 

traits in prokaryotic communities from different habitats and under different 

productivity and disturbance scenarios as predicted via the resistance-

resilience framework formulated here.
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Introduction

Prokaryotes contribute largely to the global organic carbon 
budget (Whitman et al., 1998), are main drivers of major element 
cycling (Konopka et al., 2015), and are therefore key components 
of earth functioning. However, natural microbial communities are 
typically extremely diverse and complex, and it remains challenging 
to predict prokaryote ecosystem functioning and community 
dynamics in response to environmental changes (Shade et al., 2012; 
Bardgett and Caruso, 2020). A large body of research highlights the 
impact of structural community properties such as diversity and 
species interaction patterns on community functioning (Poisot 
et al., 2013; Duffy et al., 2017). The effect of structural community 
properties, however, depends on the characteristics of individual 
species in a community mediated via their traits and the 
distributions of these traits have been shown to influence 
community functioning and dynamics (Enquist et  al., 2015). 
Microbes harbor an enormous functional versality regarding the 
number of metabolic functions and pathways they are capable of, 
which poses a challenge in selecting meaningful functional 
descriptors to infer overall community functioning. To simplify the 
assignment of functional attributes to microbial communities it has 
been suggested to characterize communities based on the 
distribution of overall life histories rather than focusing on the 
potentially large number of traits related to specific metabolic 
pathways (e.g., Bardgett and Caruso, 2020; Malik et al., 2020). Life 
history traits determine how species allocate available energy 
among survival, growth and reproduction and are therefore 
decisive for the overall production and stability of an ecosystem.

Several traditional life history classifications allocate species 
into binary categories either concerning their response to 

environmental change or in dependence of the resource 
availability required for growth (Box 1). For instance, the 
characterization of species along the specialist-generalist 
continuum is related to their tolerance against environmental 
change (Kassen, 2002). It has been pointed out that traits that 
encompass the capability of species to tolerate or to adapt to 
changing conditions is related to resistance, i.e., the ability of 
organisms to withstand disturbances (Nimmo et al., 2015).

The r/K selection theory refers to the fraction of resources 
allocated to reproduction (Gadgil and Solbrig, 1972). R-strategists 
can be described as opportunists that proliferate fast in response 
to opportune environmental changes while K-strategists are 
typically strong competitors that allocate more resources in 
efficient resource usage rather than growth. The competitor/
colonizer classification (Tilman, 1994) differentiates between 
organisms with competitive advantage in either empty or densely 
populated habitats: as a consequence the best competitor will 
outcompete all other species at low disturbance rates, while 
species with high colonization efficacy will dominate ecosystems 
at high disturbance rates (Hastings, 1980). Both, r-strategists  
as well as species with high colonization efficacy should 
be characterized by short lag-phases and fast growth rates enabling 
them to respond fast to changing environmental conditions or 
rapidly colonize empty habitats. It has been proposed that traits 
that indicate rapid reproduction or strong re-colonization 
capabilities are linked to an organism’s resilience, defined as its 
capacity to recover after a disturbance (Nimmo et al., 2015).

Resistance and resilience related traits represent two distinct 
components of ecological units (i.e., populations, communities or 
ecosystems) that determine their response to disturbances (Shade 
et al., 2012; Nimmo et al., 2015). High levels of resistance and 

BOX 1 Glossary.

Species: The species concept developed for macroorganisms cannot be  directly transferred to asexually proliferating microorganisms. However, 
sequenced genomes sharing >94% of their average nucleotide identity (Konstantinidis and Tiedje, 2005) or operational taxonomic units (OTUs) delineated 
e.g. from amplicon sequence variants (ASVs) of taxonomic marker genes approximate natural units that reflect ecological species and will be referred to 
as species.
Generalist/specialist: The characterization of species along the generalist specialist continuum is based on the organisms’ niche breadth, where 
ecological specialization indicates a limited niche breadth and niche breadth has been defined as the variety of resources, habitats, or environments used 
by a given species (Sexton et al., 2017). It has recently been pointed out that the unambiguous characterization of species along the specialist generalist 
continuum is challenging as niche breadth estimations usually refer to a specific range of measured conditions, and for instance, a resource generalists 
may simultaneously be a temperature specialist (Bell and Bell, 2021). Still, even though not practically measurable, the increasing number of biotic and 
abiotic conditions in a multivariate niche space under which a species can proliferate can be considered as an increasingly large multidimensional niche 
breadth of this species.
Colonizer/competitor: Competition-colonization tradeoff models assume that species can occupy a niche as colonizer by efficiently colonizing empty 
habitat patches or a niche as competitor by outcompeting species within sites (Tilman, 1994; Mouquet et al., 2005).
r/K selection: The theory of r-and K-selection postulates that r-strategists allocate an increased fraction of resources to reproduction under conditions of 
high density independent mortality (Gadgil and Solbrig, 1972).
Oligotrophic/copiotrophic: Oligotrophic species are able to grow in nutrient poor environments while copiotrophic species require high concentrations 
of inorganic and organic compounds (Poindexter, 1981).
CSR terminology: The CSR schema sorts species into competitors (C), stress-tolerators (S) and ruderals (R). Ruderals have an advantage in habitats 
with high disturbance levels, stress tolerators dominate habitats with high stress levels such as low nutrient conditions or extreme temperatures, while 
competitors profit from their competitive advantage over other organisms in resource-rich habitats (Grime, 1977).
Genomic trait: The term trait has previously been defined as ‘any morphological, physiological or phenological feature measurable at the individual level, 
from the cell to the whole-organism level, without reference to the environment or any other level of organization’ (Violle et al., 2007). Here, in order to adapt 
the use of “traits” to genomic data, genomic traits will be defined as variables that characterize prokaryotic species and which can be delineated from their 
genome sequence data, such as its genome size. We particularly focus on genomic traits that had been associated in earlier studies with one of the above 
listed life history traits.
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resilience are both associated with costs: Dall and Cuthill (1997) 
suggested costs that are inherent with a generalist’s life-style can 
include performance reductions from having more ecological 
variables to monitor. High potential growth rates in microbes 
often come at the expense of low resource usage efficiency (Fierer 
et al., 2007; Roller et al., 2016). In agreement with this, tradeoffs 
between resilience and resistance have been observed in microbes, 
where species can allocate transcriptional resources in the 
expression of stress resistance genes at the cost of a reduced 
expression of genes that promote growth (Ferenci, 2016). Such 
tradeoffs between resistance and resilience have been described 
not only at the species but also at the community level (e.g., de 
Vries and Shade, 2013; Garcia et al., 2020; Piton et al., 2021).

Resource availability can shape the distribution of resistance 
or resilience related life histories due to the above mentioned 
potential costs that are linked to the response to disturbance. 
Traditionally, in microbial ecology, large emphasis has been put in 
sorting species according to the nutrient levels required for their 
growth, in either oligotrophic or copiotrophic species (Koch, 
2001; Fierer, 2017). It has been suggested that copiotrophic species 
that require high nutrient levels for growth can commonly 
be characterized as generalists (Christie-Oleza et al., 2012) and /
or r-strategists that react fast to nutrient pulses (Fierer, 2017). 
However, although some binary life history classifications may 
overlap, these terms should not be used interchangeably as they 
are defined differently (Box 1).

The more complex CSR theoretical schema, that goes beyond 
a binary classification of life-history traits, sorts species into three 
classes of ecological strategies (competitor vs. stress-tolerator vs. 
ruderal species) depending on their location along two major 
environmental gradients: disturbance and productivity (Grime, 
1977). This framework was originally developed in plant ecology 
and integrates different dimensions in the interplay of resistance, 
resilience and resource availability. Several studies have suggested 
applying the CSR framework in the field of microbial ecology (e.g., 
Krause et al., 2014; Fierer, 2017). However, it has recently been 
claimed that the reliance of heterotroph microbial organisms on 
external carbon and energy sources distinguishes them from 
autotroph plants and complicates the application of the CSR 
framework to microbial communities dominated by heterotrophs. 
The CSR framework has therefore been adapted to microbial 
ecology by classifying high yield (Y) – resource acquisition (A) – 
stress tolerator (S) categories (Malik et al., 2020). Here Y refers to 
species with high carbon use efficiency, A replaces the plant 
competitor strategy because microbial competition is mainly over 
resources and the S strategy refers to species that are adapted to 
stress exposure due to deviations from ambient.

Although a number of prokaryote representatives from 
naturally abundant and relevant lineages have recently brought 
into culture (e.g., Marshall and Morris, 2013; Neuenschwander 
et al., 2018) the majority of prokaryotic species remains uncultured 
(Steen et al., 2019). Accordingly, the physiologically measured 
species characteristics that inform about the life-histories of 
prokaryotes are only available for a small minority of cultured 

representatives. However, a growing number of genome sequences 
from so far uncultured prokaryotic strains are available. In 
prokaryotes the myriad of responses to environmental change, 
such as changes in resource availability, abiotic stressors or 
biological interactions, is coded in their genomic material. Thus, 
the DNA of a population contains the information of its 
performance under all possible conditions or its coverage of  
the n-dimensional niche space. However, an incomplete 
understanding of the complexity of gene regulation from genome 
sequence data currently limits our capacity to predict gene 
expression patterns and consequently the specific phenotype of a 
strain in a given environment. Still, it has been demonstrated via 
machine learning approaches that the presence of functional genes 
within genomes was tightly linked to the ecological niche occupied 
by the corresponding prokaryotes, explaining ~50% of their niche 
variability in a high-dimensional niche space (Alneberg et al., 
2020). A more simplified possibility to characterize prokaryotes 
via their genomic information is to extract and evaluate simple 
parameters, so-called genomic traits, from their genomes, such as 
the presence or copy number of a specific gene or genome size. 
Although this option may lack accuracy due to the high degree of 
simplification, various studies found empirical and statistically 
validated evidence for correlations between certain genomic traits 
and the binary life history strategies listed in Box 1.

Hereafter, we summarize literature about genomic traits that 
were associated with statistical support to life history strategies with 
a focus on binary classifications and earlier reported correlation 
among these traits. In order to resolve some conflicting findings 
concerning earlier proposed genomic trait assignments to life 
histories, their pairwise correlations and tradeoffs, we inspected the 
covariation patterns among 11 genomic traits that are considered as 
life history proxies, from ~18,000 sequenced genomes representing 
~9,000 species in a multivariable trait space. As a result, 
we  categorized the studied genomic traits within a resistance-
resilience based framework. This framework resolved conflicts and 
may be used in future studies to address community dynamics under 
different disturbance and productivity scenarios in variable habitats.

We demonstrated that all analyzed genomic traits featured 
significant phylogenetic signals and proposed a simple tool to 
empirically evaluate the theoretical predictions made here via the 
extrapolation of genomic traits based on taxonomic marker genes 
from uncultured taxa.

Genomic traits as life history 
proxies in prokaryotes

A number of earlier studies has addressed prokaryotic genome 
features that give indirect evidence for physiological characteristics 
and the life-history strategies of the corresponding organisms 
(Figure 1). Particularly the classification as generalist, measured 
as an organism’s physiological versatility or its ability to colonize 
multiple habitat types, has been related to a range of different 
genomic characteristics. This includes features such as a large 
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genome size (Barberan et al., 2014; Bentkowski et al., 2015; Cobo-
Simon and Tamames, 2017; Sriswasdi et al., 2017) and a high 
fraction of regulatory genes (Parter et al., 2007; Kostadinov et al., 
2011). It indeed seems reasonable that organisms that are able to 
live and proliferate under variable conditions need more genes for 
sensing or for coping with a range of different growth conditions. 
They further need a larger number of transcription factors (%TF, 
i.e., regulatory genes) to regulate genes that are alternatively 
expressed depending on the prevailing environmental conditions. 
Based on the same considerations it has been suggested that a high 
frequency of genes acquired via horizontal gene transfer (%HGT) 
would increase the versatility of prokaryotes and allow them to 
grow in a larger number of environments (Takemoto, 2013).

It has further been argued that the life style as a generalist 
requires enhanced growth rates. In agreement with this, high 
growth rates (Freilich et al., 2009) as well as elevated codon usage 
biases (CUB, Botzman and Margalit, 2011) have been associated 
with a generalist life style. The CUB describes the phenomenon 
that synonymous codons are used unevenly among genes, where 
genes coding for highly expressed proteins are enriched in codons 
that reflect the taxon-specific tRNA pool. The CUB has been 
shown to be specifically pronounced in fast-growing organisms 
and was therefore interpreted as a genomic feature that correlates 
with maximal growth rates of prokaryotes (Vieira-Silva and 
Rocha, 2010).

In contrast, the number of rRNA gene copies (RRN) in 
prokaryote genomes could not be associated significantly to the 
classification as either generalist or specialist (Cobo-Simon and 
Tamames, 2017). Instead, the RRN decreased significantly during 
the community succession after environmental disturbances 

(Shrestha et al., 2007; Nemergut et al., 2016). A high RRN at early 
successional stages can be interpreted as evidence for a life style as 
colonizer and corroborates observations that associated high RRN 
with short lag phases and high growth rates (Klappenbach et al., 
2000; Stevenson and Schmidt, 2004; Vieira-Silva and Rocha, 2010; 
Roller et al., 2016).

A significant correlation between growth rate and competitive 
ability (Klappenbach et al., 2000; Stevenson and Schmidt, 2004; 
Vieira-Silva and Rocha, 2010) or carbon use efficiency (Roller 
et al., 2016) demonstrated that prokaryotes can generally be well 
classified along the r/K-strategist continuum. Organisms with 
short duplication times and accordingly high CUB are therefore 
likely to be r-strategists.

It had been hypothesized that the evolution towards GC 
depleted genomes is an adaption to nutrient poor conditions 
because GC pairs contain one more nitrogen atom compared to 
AT pairs (Giovannoni et al., 2005; Grzymski and Dussaq, 2012). 
Hellweger et  al. (2018) demonstrated that beside other 
mechanisms, such as mutation biases, particularly N limitation 
but also C-limitation impacted the evolution of genomes towards 
GC depletion. Accordingly, low GC content can be interpreted as 
a genomic trait that is indicative of an oligotrophic life style in 
prokaryotes. Alternatively, may a high frequency of GC pairs that 
have three hydrogen bounds compared to only two hydrogen 
bounds in AT pairs enhance the resistance of cells with high GC 
content against some specific stressors, such as heat or desiccation 
stress. Probably for this reason, a higher GC content was found in 
arid, nutrient-poor soils exposed to heat and dehydration stress 
than in soils with higher nutrient contents but lower stress 
exposure (Chen et al., 2020).

FIGURE 1

Overview of earlier literature that linked genomic traits or the physiologically measured maximal growth rates of prokaryotes to their life-history 
traits. Traits that were in this study assigned as resistance or resilience related traits are indicated. If studies refer to organisms from a specific 
ecosystem, this is given in brackets. Green (or red) fields indicate studies that found positive (or negative) relationships (p < 0.05) between the listed 
genomic feature and a life style as generalist, r-strategist, colonizer or copiotroph. In one study no value of p was reported, but mathematical 
evidence for increased environmental tolerance of species with large genomes was provided via the computational simulation of evolutionary 
processes (Bentkowski et al., 2015). Gray fields indicate studies where neither a significant relationship and not even a positive or negative trend 
was detected (p > 0.5).
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Lauro et  al. (2009) suggested that high RRN, an elevated 
number of prophages and a large genome size are more common 
in marine copiotrophic than in marine oligotrophic bacteria. A 
recent study demonstrated in agreement with this that nutrient 
additions to oligotroph lake water induced a significant increase 
of community mean genome size, RRN, CUB and GC content 
(Okie et  al., 2020). In contrast, nutrient additions to soil 
environments resulted in the selection of prokaryotes with smaller 
genomes (Leff et al., 2015) and a recent comparison of microbial 
communities in nutrient rich versus nutrient depleted soils did not 
reveal a significant difference in their average genome sizes (Chen 
et al., 2020). In addition, enhanced CUBs were found associated 
with copiotrophic microbial communities in soil environments 
(Chen et al., 2020).

Trait–trait correlations in the light 
of physiological constraints

A number of earlier studies explored pairwise correlations 
among the above-mentioned genomic traits or with the organism’s 
physiologically measured maximal growth rate. Most of these 
studies found significant positive correlations, e.g., between 
genome size and %TF, RRN and growth rates (Figure 2). As a 
consequence, if large genome sizes and a high %TF are indicative 
of a generalist life history and a high RRN and elevated growth 
rates indicate r-strategists and/or colonizers, a generalist’s life style 
should be associated with a simultaneous life style as r-strategist 
and colonizer. This inference however contradicts the often 
observed and above outlined tradeoff between resistance and 
resilience in microbial communities (e.g., Ferenci, 2016; Garcia 
et al., 2020; Piton et al., 2021). A resistance-resilience tradeoff 
would instead imply a negative correlation between resistance 
associated traits, such as genome size or transcription factors 
versus resilience associated traits, such as rRNA gene copy 
numbers or growth rates. We want to point out that some studies 
did not find significant positive relationships between genome size 
and growth rates and although the observed correlation 
coefficients were positive, they were very weak (Vieira-Silva and 
Rocha, 2010; Westoby et al., 2021b). Still, also in these cases no 
negative correlations were detected as one would expect from a 
tradeoff between resistance and resilience.

To elucidate conflicting relationships between these earlier 
observations and the resistance-resilience tradeoff, we  here 
examined covariations among multiple genomic traits. These traits 
were extracted from the genomic material of sequenced 
prokaryotic genomes available via the JGI/IMG platform (Chen 
et al., 2021; Mukherjee et al., 2021).1 For downstream analyzes 
we considered those genomes that are integrated into the default 
reference database in the PICRUSt2 software (Douglas et al., 2020) 
and which infers the genomic content of uncultured prokaryotes 

1 https://img.jgi.doe.gov/

from closely related genomes via taxonomic marker genes. In total 
17,856 of the 20,000 genomes that are integrated in the PICRUSt2 
default reference phylogenetic tree could be downloaded via the 
JGI/IMG database (date of download: 24.08.2021). These genomes 
cover a broad phylogeny (73 phyla; 172 classes; 382 orders; 762 
families; 2,669 genera; 8,847 species) and include genomes from 
yet uncultured candidate phyla (Supplementary Table S1; 
Supplementary Figure S1).

Additionally to the genomic traits presented above (Figure 1), 
we also considered genome level parameters for gene richness (i.e., 
the number of different genes in a genome) and the gene 
duplication level (i.e., the average number of gene copies per gene 
in a genome). This is because the genome size can increase due to 
the integration of new genes or due to the duplication of already 
existing genes and either one of these two mechanisms may have 
different consequences for the resistance level of prokaryotes: on 
the one hand may multiple copies of the same gene, that for 
instance differ in their pH optimum (Miyashita et  al., 1991), 
be expressed alternatively in response to environmental change. 
In this case the respective copies of this gene would be under the 
control of different operons, analogously to two different genes 
that can be expressed alternatively in response to environmental 
change. On the other hand may multi copy genes that are under 
control of the same operon have an adaptive effect to stressful 
environments due to an enhanced dosage effect (Kondrashov, 
2012). Some genomic traits are provided directly by the JGI 
genome statistics, while others were computed from the genome 
sequences. An inspection of the JGI/IMG provided RRN  
data indicated inaccuracies for this specific genomic trait 
(Supplementary Figures S1, S2). We therefore extrapolated RRNs 
for the JGI/IMG reference genomes affiliating with the same genus 
of genomes stored in the Ribosomal RNA Operon Copy Number 
Database (rrnDB)2 which provides curated RRN data (Stoddard 
et al., 2015). In order to remove phylogenetic redundancy from 
the dataset we aggregated mean trait values for all genomes at the 
species level. The affiliation of genomes at the species level was 
determined via the GTDB taxonomy (Chaumeil et al., 2020). In 
the case of genomes that could not be annotated at the species 
level to the GTDB taxonomy, we considered genomes sharing 
>94% of their average nucleotide identity as affiliating to the same 
species (Konstantinidis and Tiedje, 2005; Jain et al., 2018). Scripts 
that were used for determining the here presented genomic traits 
and the assignment of genomes to species are available via 
GitHub3 and a detailed method description as well as a trait table 
are provided in the Supplementary material (Supplementary File 1; 
Supplementary Table S1).

Covariation patterns among the above introduced genomic 
traits in the multivariate trait space were illustrated via a principal 
component analysis (PCA, Figure  3). The first two principal 
components explained >65% of total variability, while the 

2 https://rrndb.umms.med.umich.edu/

3 https://github.com/sarabeier/genomic.traits
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remaining principal components each contributed <10% to total 
variability (Supplementary Figure S2). A random removal of 1, 2, 
3 or 4 variables from the PCA demonstrated that the covariation 
patterns among the remaining genomic traits patterns stayed 
robust (Supplementary Figure S3). An inspection of individual 
pairwise correlation strengths (Figure 4) revealed that the absolute 
spearman rank correlation index rho ranged from 0.04 to 0.92. All 
correlations were significant due to the large number of included 
genomes (8,847 species, value of p adjusted via Bonferroni 
correction for multiple comparisons: Padj <0.05). Below we will 
highlight some of the 35 pairwise correlations whose strength or 
shape displayed via local fitting can be interpreted well in the light 
of possible physiological constraints.

Genome size, gene duplication level, gene richness and the %TF 
aligned along the first principal component (PC1) while covarying 
positively with each other (Figure 3; Table 1). An inspection of the 
pairwise scatter plots revealed a pronounced linear relationship 
between the genome size and the gene duplication level (Figure 4). 
In contrast, the increase of gene richness along with genome size 
rather followed a saturation curve. Apparently, the enrichment of 
genomes with new genes occurred only until a certain genome size 
threshold (~ five million base pairs), after which a further genome 
size increase was mostly due to the duplication of already present 
genes. A similar saturation pattern was observed for the pairwise 
correlation of the fraction transcription factors against genome size 
(Figure 4): a steep positive relationship was apparent approximately 
up to the genome size until which gene richness increased, while 
after that threshold a less pronounced increase was observed. 

Obviously, acquiring new genes requires a stronger enrichment in 
regulatory genes, than does the duplication of genes. This 
observation implies that multicopy genes are often, although not 
explicitly, under the control of the same regulatory operon and can 
in this case not be expressed alternatively in response to changing 
conditions. An increasing tolerance to environmental changes due 
to a genome size increase should therefore, in the case of larger 
genomes, be primarily due to the dosage effect of replicated genes. 
The shape of the above reported pairwise relationships accordingly 
illustrates the physiological mechanisms that link the variables for 
%TF and genome size depending on whether genome size increases 
due to the acquisition of new genes or gene duplication. The positive 
covariation among all four traits underlines their common 
association with species classifications along the specialist-generalist 
continuum suggested in literature for genome size and the %TF 
(Figure 1).

Earlier studies suggested moreover that the % HGT, the CUB 
and the RRN were either linked to generalist-specialist 
classifications or correlated positively with genome size 
(Figures 1, 2), which would imply an alignment of these variables 
along PC1. Yet, these variables aligned along the second principal 
component (PC2, Figure 3; Table 1) and were accordingly only 
weakly correlated to either of the four above described resistance 
related variables (Figures 3, 4). Indeed, a weak correlation between 
genome size and growth rates that had been observed in several 
earlier studies (Figure 2; Vieira-Silva and Rocha, 2010; Westoby 
et  al., 2021b) was supported by the likewise weak overall 
correlation between genomes size and CUB (rho = −0.12) in our 

FIGURE 2

Earlier reported pairwise correlations among genomic traits and/or physiologically measured maximum growth rates. Traits that were in this study 
assigned as resistance or resilience related traits are indicated. Dark green fields indicate positive significant correlations (p < 0.05) and light green 
field indicates a positive trend below the significance level (0.5 > p > 0.05).
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analysis. However, when inspecting the pairwise scatterplots in 
more details, local fitting suggested a hump-shaped relationship 
between CUB and genome size, that to our knowledge has not yet 
been described elsewhere: a positive trendline occurred until a 
genome size of roughly five million base pairs, after which the 
direction turned into a negative trendline (Figure 4). Obviously, 
the observed hump-shaped trendline appeared mainly due to the 
absence of very small as well as very large genomes with high CUB 
values. In contrast, genomes with intermediate genome sizes were 
associated with almost the full range of possible CUB values, 
resulting in a kind of pyramid-shaped distribution of data points 
in the pairwise scatterplots. A recent study highlighted that the 
relationship between CUB values and minimal generation times 
is inaccurate for prokaryotes with minimal generation times >5 h 
(Weissman et  al., 2021), which complicates the ecological 
interpretation of CUB values. We therefore want to point out that 
the observation of prokaryotes with very large or small genomes 

being exclusively slow growers was not impacted by these 
inaccuracies in the relationship between CUB values and 
generation times (Figure 5).

Physiological reasons for a non-monotone relationship 
between growth rate and genome size could be due to opposing 
mechanisms that prevail under different genome sizes ranges: on 
the one hand, it had been proposed that an increasing proportion 
of genes involved in metabolic pathways, that was observed along 
with increasing genome sizes (Konstantinidis and Tiedje, 2004) 
causes higher metabolic rates. Consequently, an increased 
availability of energy supply via ATP should lead to enhanced 
growth rates (DeLong et al., 2010). In this scenario, the growth 
rate of very small genomes would be  limited by the available 
energy. On the other hand, it has been argued that cells with small 
genomes feature higher growth rates than cells with large 
genomes, because they can initiate a new replication cycle before 
the previous rounds have been finished (Vieira-Silva and Rocha, 

FIGURE 3

Principal component analysis illustrating covariations among genomic traits from 17,856 sequenced prokaryotic genomes available via the JGI/
IMG platform (https://img.jgi.doe.gov/) that were averaged at the species level (Supplementary Table S1). Traits assigned in this study as resistance 
and resilience traits were colored in black and orange, respectively. %GC and prophages that were not assigned in this study to either resistance or 
resilience related traits were colored in gray. 5,823 out 8,847 species shared values for all considered traits and were included in the analyzes. The 
values for %HGT were log(x + 0.001) transformed to approximate a normal distribution. We have chosen to display the CUB parameter F (Vieira-
Silva and Rocha, 2010) instead of generation time estimations that can be delineated from the CUB, because F is unambiguously defined for all 
genomes. In contrast, generation time estimations have been suggested to be inaccurate for genomes with large CUB values.
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2010). Furthermore, the proportion of genes encoding the 
translation of mRNA into proteins, DNA replication or cell 
division is reduced in large genomes (Konstantinidis and Tiedje, 
2004), which could lead to reduced growth rates. We propose that 
these latter two physiological constraints limit the growth rates of 
species with very large genomes. It has been discussed earlier that 
genome size reduction in prokaryotes can on the one hand 
be  induced via genetic drift, a mechanism that should affect 

particularly intracellular parasites with small effective population 
sizes. Conversely, genome streamlining due to adaptive selection 
occur typically in response to nutrient limitation in aquatic 
systems (Giovannoni et  al., 2014). Still, the above highlighted 
physiological consequences of genome size reduction should 
apply to all small genomes. Indeed, both, intracellular parasites as 
well free living oligotrophic organisms with small genome sizes 
are typically characterized as slow growing organisms that are 

FIGURE 4

Overview of pairwise correlation patterns among genomic traits from 8,847 species delineated from sequenced prokaryotic genomes available via 
the JGI/IMG platform (https://img.jgi.doe.gov/) and created via the R command chart.Correlation in the R package PerformanceAnalytics (v2.0.4). 
The lower panels illustrate pairwise correlation plots fit via loess smoothing statistics with the smoothing parameter f set to 2/3 and the number of 
robustness iterations set to 3. The value in the upper panels indicate strength of the pairwise correlations (rho, Spearman rank correlation). The 
diagonal panels illustrate the distribution of the input variables. The CUB was estimated via the variable F as detailed elsewhere (Vieira-Silva and 
Rocha, 2010). The value for %HGT was log(x + 0.001) transformed to approximate normal distribution. The variables RRN and prophages were not 
transformed as no transformation option improved the fit to normal distribution. The raw values of all data are given in Supplementary Table S1.
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sensitive to environmental change (Couturier and Rocha, 2006; 
Joseph and Goebel, 2007; Parter et al., 2007; Giovannoni et al., 
2014). We argue based on these considerations that genome size 
itself causes the above described physiological constraints and 
characteristics, independent from which evolutionary force selects 
for prokaryotes with enlarged or reduced genome size.

A trend for hump-shaped relationships and/or pyramid-
shaped distribution of data points in the pairwise scatterplots was 
not only visible if plotting genome sizes against CUB values: 
several other pair-wise comparisons between traits associated with 
the specialist-generalist continuum (genome size, gene duplication 
level and the fraction of transcription factors) versus and traits 
that covaried positively with CUB (RRN, number of prophages) 
displayed similar profiles (Figure 4).

The positive covariation between the number of prophages 
with the RRN and, to a certain extent, with CUB and, accordingly, 
with maximum growth rate has already been outlined earlier 
(Touchon et al., 2016). It has been argued that a higher number of 
prophages in potentially fast growing bacteria is a consequence of 
their opportunist life style that provides more variable growth 
states and resources for the production of virions. This in turn was 
suggested to favor lysogeny and therefore the presence of 
prophages (Touchon et  al., 2016). However, the number of 
prophages was placed in-between the PCA axes PC1 and PC2 and 
also covaried positively with %TF and gene richness. This seems 
reasonable as the integration of prophages into the genome adds 
more genes to the genome. The lateral transfer of genes via 
prophages is one of several mechanisms leading to HGT. It is 
therefore remarkable that we found a negative correlation between 
the number of prophages with the %HGT (Figure 3). We conclude 
from this observation that the overlap between the detected HGT 
events and prophages was low. This is possibly due to a high host-
specificity of bacteriophages, which would lead to gene transfer 
only between closely related strains. We  assume that the 
phylogeny-based method that was applied to detect the %HGT  
in the JGI genome statistics and that identifies genes with 

phylogenetic foreign origin in genomes, does not resolve well 
genes acquired from close relatives (Markowitz et al., 2010).

The %HGT covaried not only negatively with the number of 
prophages, but also with CUB and RRN (Figure 3). Such negative 
covariation has to our knowledge not yet been reported. However, 
the discovery that the %HGT events in genomes is connected to 
their optimal growth temperature (Gophna et  al., 2015) may 
be linked to the above mentioned negative covariation, as species 
with high growth optimum tend to have comparably high 
maximal growth rate (i.e., low minimal generation time; Vieira-
Silva and Rocha, 2010). A high degree of sub-species genome 
plasticity in the typically slow growing members of the SAR11 
clade (Ward et al., 2017) is in agreement with this observation. It 
indeed seems reasonable that a fine tuned genetic replication 
machinery is necessary for achieving high maximal growth rate, 
which may easily be impeded by a high fraction of genes of foreign 
origin. Our data therefore point to a possible tradeoff between 
high growth rates and the ability of genomes to stably integrate 
foreign DNA from different phylogenetic origin. It needs though 
to be  considered that the phylogeny-based methods to detect 
%HGT events may overestimate HGT events for genomes with 
few closely related genomes that belong to the same phylogenetic 
group. The above suggested tradeoff should therefore be confirmed 
in other datasets, possibly in combination with other approaches 
to detected HGT events.

The GC content did not exhibit a pronounced covariation 
with any other genomic trait. However, a certain level of 
covariation could be  detected with genome size and the gene 
duplication level or with CUB and the fraction of horizontally 
transferred genes (Figure 3). The limited covariation of the GC 
content with any other trait could be due to the complex selection 
forces, including on the one hand nutrient availability and on the 
other hand exposure to heat or desiccation stress that in 
combination drive the GC content evolution (Hellweger et al., 
2018; Chen et al., 2020).

Synthesis

Based on the covariation patterns observed here in 
combination with findings from earlier studies, we propose that 
the %TF, genome size, gene richness and gene duplication that 
aligned significantly with the first principal component (PC1) 
represent resistant related traits (Figure 3; Table 1). In contrast, 
traits including CUB, RRN and %HGT that according to earlier 
studies or in agreement with our analyzes exhibited covariations 
with growth rates or lag phases and that aligned significantly with 
the second principal component (PC2) could hence be considered 
as resilience related traits (Figure 3; Table 1).

We did not assign %GC to resistance or resilience related traits 
as it was positioned in-between PC1 and PC2 and did not align 
closely to any of the other traits. Although a high GC content can 
protect cells from heat or desiccation stress resistance, it can 
furthermore not be  considered as a general resistance trait 

TABLE 1 Loadings of genomic traits on principal components (all 
genomes, Figure 3).

Genomic trait a,bPC1 PC2

Resilience Genome size 0.47* −0.07

%TF 0.41* 0.22

Gene duplication 0.46* −0.10

Gene richness 0.46* 0.09

Resistance CUB (F) −0.12 0.51*

RRN 0.13 0.57*

%HGT (log) −0.02 −0.38*

Na Prophages 0.21* 0.24

%GC 0.33* −0.37*

aLoadings of genomic traits on PC1 and PC2 can be interpreted as correlation 
coefficients of the variables with the respective principal component if variables were 
standardized prior to the PCA, as it was the case in our analysis.
bAsterisks indicate permutation based significance of loadings on PC1 and PC2 (100 
premutations, Camargo, 2022).
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enabling for instance tolerance against changes in the resource 
type supply. A significant alignment with both, PC1 and PC2 
(Table  1) underlines the unclear association of this trait with 
resistance and resilience. Likewise, we did not assign the number 
of prophages to either resistance nor resilience related traits based 

on its position in-between PC1 and PC2. Although this trait 
aligned significantly with PC1, but not PC2, higher loadings were 
detected on PC2. Apart from an earlier suggested link between an 
elevated number of prophages with high growth rates and an 
opportunistic lifestyle (Touchon et al., 2016) an increasing number 
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FIGURE 5

Scatterplots displaying pairwise relationships between the codon usage bias (F, Vieira-Silva and Rocha, 2010) the generation time (log-
transformed) estimated as detailed in Vieira-Silva and Rocha (2010) and the generation time (log-transformed) estimated using the R package 
gRodon (v0.0.0.9000, Weissman et al., 2021) against genomes size (A-C), %TF (D-F) and gene duplication (G-I). Genomes with low codon usage 
bias resulting in predicted generations times (gRodon) exceeding 5 h (highlighted in gray) represent species with generations times >5 h, while the 
exact value is inaccurate. The absence of genomes with elevated generation times at the extremes of the value ranges for the displayed resistance 
related traits is accordingly independent from these inaccuracies.
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of prophages will also increase the genome size and other 
resistance related traits.

The not fully congruent overlap between the genomic traits 
that we  assigned to either resistance or resilient related traits 
suggests that these traits cover different aspects of resistance and 
resilience, such as increased growth rates versus shorter lag phases 
in the case of resilience related traits.

The roughly orthogonal position of several resistance and 
resilience traits in prokaryotes across whole range genome sizes 
reflects the results of some previous studies, which suggested that 
genome size and growth rate are not related (Vieira-Silva and 
Rocha, 2010; Westoby et  al., 2021b). However, the analyzes 
presented here were based on a database that exceeded those used 
in these former studies by one to two orders of magnitude. An 
inspection of pairwise trait correlations indicated the presence of 
non-monotone relationships between several resistance and 
resilience related genomic traits that to our knowledge were not 
yet reported in earlier studies: for instance, genomes with a size up 
to roughly four million base pairs featured according to a local 
fitting approach a positive relationship with CUB, while after 
approximately five million base pairs it turned to a negative 
relationship (Figures  4, 5). Furthermore, genomes up to this 
threshold continued to increase due to a combination of newly 
acquired genes and gene duplication events, while larger genomes 
increased rather due to gene duplication events (Figure 4). Last 
but not least aquatic environments are typically characterized by 
genomes smaller than four million base pairs, while soil 
environments usually harbor genomes larger than five million 
base pairs (Giovannoni et  al., 2014). Correlation analyzes of 
partial datasets exhibited in agreement with the trendlines 
obtained by local fitting significant positive correlations between 
several resistance versus resilience related traits, if considering 
genomes up to a size of four million base pairs. The opposite was 
true in most cases if considering genomes larger than five million 
base pairs (Table 2). Results from these partial correlation analyzes 
(Table 2) highlight that non-monotone relationships are sensitive 
to the range of data points included. We argue that non-monotone 
relationships are the reason for contradicting findings, e.g., the 
relationship between genome size and growth rates, that have been 

described as either positively related (Freilich et al., 2009; DeLong 
et al., 2010) or as largely unrelated dimensions (Vieira-Silva and 
Rocha, 2010; Westoby et al., 2021b). Furthermore, the previously 
reported superlinear positive correlation between genome size 
and HGT events (Cordero and Hogeweg, 2009) or the assignment 
of generalist species to high %HGT, large CUBs or increased 
growth rates (Figure 2), which was not supported by our findings, 
could be due to the specific set of genomes that were used in the 
respective analyzes.

Noticeably, not all partial pairwise correlations were strong 
or resulted in a differential correlation profile for larger and 
smaller genomes (Table  2). Still, we  believe that as a 
consequence of the inconsistent correlation patterns reported 
here, positive relationships between resistance and resilience 
are more likely to occur in aquatic habitats: a positive 
covariation of genomic traits that we  here classified as 
resistance and resilience related traits had been recently 
observed in an aquatic fertilization experiment (Okie et al., 
2020). Instead, tradeoffs between resistance and resilience 
should be  more likely in soil habitats. Indeed, the above 
outlined tradeoff between functional resistance and resilience 
has to our knowledge mainly been observed in soil 
environments (e.g., Garcia et al., 2020; Piton et al., 2021). This 
is in agreement with the negative correlation between several 
resistance and resilience related traits particularly among 
larger genomes.

Habitat specific PCA patterns with genomes originating from 
soils, aquatic habitats or from the digestive tract furthermore 
supported our findings: depending on whether mean genome size 
of genomes from the habitats was >5 or <4 mbp resilience trait 
rotated either counterclockwise or clockwise relative to the global 
PCA (Figure 6). As a consequence and similar to the genome size 
dependent partial correlation analyzes, several resistance versus 
resilience related traits shifted with increasing mean genome size 
from positive towards negative correlations (Table 2). We though 
want to emphasize that only a minority of all genomes in our 
dataset could be assigned to one of the above mentioned habitats 
(n ≤ 565 species per habitat, Figure 6), and that the respective 
species may not be typically abundant representatives of these 

TABLE 2 Correlation coefficients (Spearman rank correlation) between selected resistance and resilience related traits for species with small and 
large genomes.

Comparison 
(resistance vs. 
resilience)

aGenomes <4 Mbp aGenomes >5 Mbp aSoil genomes aAquatic genomes aDigestive tract 
genomes

Genome size versus CUB 0.05* −0.28*** −0.26*** 0.15*** −0.20**

Genome size versus RRN 0.09*** −0.02 −0.01 0.47*** 0.39***

Gene duplication versus CUB 0.12*** −0.23*** −0.23*** 0.12** −0.02

Gene duplication versus RRN 0.07*** −0.16*** −0.04 0.33*** 0.41***

%TF versus CUB 0.44*** −0.12*** 0.29*** 0.54*** 0.45***

%TF versus RRN 0.83*** 0.23*** 0.29*** 0.54*** 0.45***

aBonferroni adjusted value of p:
*Padj < 0.05; **Padj < 0.01; ***Padj < 0.001.
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habitats. Particularly aquatic bacteria in our database seemed to 
be biased towards species with larger genome size: most aquatic 
habitats feature mean genome sizes between 1 and 3 Mbp 
(Giovannoni et  al., 2014) compared to the value of 3.9 Mbp 
detected in this study (Figure 6C). Natural aquatic habitats may 
consequently be  characterized by more pronounced positive 
covariation of resistance and resilience traits than observed in our 
study (Figure  6C). Beyond genome size driven differences in 

trait–trait variations also further habitat specific factors may exist 
that impact trait co-variation patterns. For instance, %TF and 
gene richness were tightly correlated in all habitats except the 
digestive tract. However, due to the limited number of species 
included in the habitat specific analyzes, we believe that a possible 
existence of habitat specific drivers for trait–trait variations other 
than genome size is at this point speculative and should 
be addressed in future studies.

A B

C D

FIGURE 6

Principal component analyzes illustrating covariations among genomic traits from 17,856 JGI/IMG prokaryotic genomes in dependence on the 
habitat type. The genomes were after assignment to the habitat type aggregated at the species level. Traits assigned in this study as resistance and 
resilience traits were colored in black and orange, respectively. %GC and prophages that were not assigned in this study to either resistance or 
resilience related traits were colored in gray. (A) All genomes. (B) Genomes originating from soil habitats. (C) Genomes originating from aquatic 
habitats. (D) Genomes originating from the digestive tract. The three habitat types were determined via text search from the habitat information 
available via the JGI/IMG database: all genomes containing the strings ‘soil’ or ‘rhizosphere’ in the habitat description where classified as 
originating from soil habitats; all genomes containing the strings ‘aquatic’ or ‘marine’ or ‘water’ where classified as originating from aquatic 
habitats; all genomes containing the strings ‘oral’ or ‘stomach’ or ‘gut’ or ‘intestinal’ or ‘feces’ were classified as originating from the intestinal tract. 
The remaining genomes were not further classified.
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Literature suggests consistently that increasing resource 
availability leads to the selection of fast growing opportunists 
(i.e., r-strategists) with decreased resource usage efficiency 
(Stevenson and Schmidt, 2004; Fierer et al., 2007; Roller et al., 
2016). Prokaryotes with high resource usage efficiency and 
simultaneously low maximal growth rates are usually observed 
in oligotroph environments with the possible exception of 
obligate intracellular living bacteria: as mentioned above is the 
evolution of these organism largely affected by genetic drift and 
they typically live in nutrient rich environments, but tend to 
feature low growth rates (Couturier and Rocha, 2006; Joseph 
and Goebel, 2007). Based on earlier literature we  suggest 
copiotrophic-oligotrophic classifications, at least in free living 
communities that are little impacted by genetic drift, to 
be aligned with the dimension of resilience and resource usage 

efficiency. This implies that classifications of free living 
communities along the copiotrophic-oligotrophic axis are 
analogously to the resilience axis decoupled from the 
dimension of resistance related classifications if considering 
species along the whole range of genome sizes. However, 
contrasting relationships can occur for instance in aquatic 
versus soil habitats. In agreement with these theoretical 
considerations, previous studies actually reported the selection 
of larger genomes after nutrient addition in aquatic habitats 
and the opposite in soil habitats (Figure 2). In line with this, a 
recent study indicated based on habitat dependent covariation 
patterns between genome size and %GC that genome reduction 
in soil habitats may not be driven by known mechanisms, such 
as streamlining due to nutrient limitation (Chuckran 
et al., 2021).

BOX 2 Evaluation of genomic trait distributions from community sequence data. 

The shape of trait distributions in communities represented by measures such as the community weighted mean (CWM), but also the community weighted 
variance, skewness or kurtosis belong to the key drivers of community functioning and assembly (Enquist et al., 2015). While there are practical constraints 
to measure the distribution of physiological traits in microbial communities, genomic trait distributions can be extracted from community sequencing data. 
For instance, the CWM of the GC contents or genome sizes in microbial communities can be determined directly from the sequenced reads of shot gun 
metagenomes. In the latter case this can be done by relating the number of reads coding for single copy housekeeping genes to the number of total reads 
(Nayfach and Pollard, 2015). The same is true for the RRN, as the number of reads coding for 16s rRNA genes can be directly identified from metagenome 
reads (Kopylova et al., 2012) and related to the number of reads coding for single copy housekeeping genes (Biers et al., 2009). However, while the 
typically highly conserved housekeeping genes can be identified with high precision from short sequence reads the functional annotation of less conserved 
genes from short reads lacks accuracy. Longer sequences are therefore necessary for the Hidden Markov Models based annotation of genes encoding 
transcription factors as well as for the CUB estimation (Vieira-Silva and Rocha, 2010). In order to estimate the gene richness or gene duplication level within 
genomes as well as the number of prophages, an access to (nearly) full genome sequences is necessary. Longer sequences and even assembled genome 
sequences from shotgun metagenome data can be obtained via assembly and genome binning approaches. However, both methods (particularly genome 
binning) are biased towards more abundant sequences and genomes, while some life history traits may prevail in the rare biosphere (Vergin et al., 2013). 
Accordingly, may genomic traits representing the life histories of species that are rare in a community be  underestimated if assembled or binned 
metagenome data were used for trait detection.

Another option to assess the distribution of genomic traits is to infer genomic traits from taxonomic marker genes of species in a community based on 
sequenced reference genomes of close relatives (Cébron et al., 2021; Romillac and Santorufo, 2021). This procedure is possible for all traits featuring a 
sufficiently strong phylogenetic signal (Box 3) and has been applied to determine genome sizes (Barberan et al., 2014) or the CUB (Weissman et al., 2021) 
of microbial communities based on 16s rRNA gene sequence data. Beside avoiding the possible biases outlined above, this strategy would allow to not 
only determine CWM, but also the other moments of trait distributions and thereby enable a more thorough evaluation of trait distributions in microbial 
communities.

The PICRUSt2 software (Douglas et al., 2020) that had been designed to extrapolate the genomic content of uncultured prokaryotes from closely related 
genomes via taxonomic marker genes can be analogously used to extrapolate the genomic traits outlined here. Our trait table (Supplementary Table S1) 
can be applied to predict genomic traits from 16s rRNA gene sequences via the hidden state prediction tool (Louca and Doebeli, 2018) integrated into the 
PICRUSt2 software and using the default PICRUSt2 species reference database.

BOX 3 Phylogenetic signals of genomic traits.

All above evaluated genomic traits featured overall significant phylogenetic signals (Table  3). In agreement with the phylogenetic signals, Mantel 
correlograms illustrated significant positive correlations between phylogenetic and trait value distances at least until a phylogenetic distance of 0.5 (Table 3; 
Figure 7). Phylogenetic distance class specific phylogenetic signals from the Mantel correlograms (Figure 7; Table 3) can be used to evaluate if reference 
genomes used to predict genomic traits from 16s rRNA gene data are sufficiently close related to result in a robust prediction.
Due to possible biases of RRN values given in the JGI database (Supplementary Figures S4, S5) we estimated the phylogenetic signal for RRN based on 
original entries of the rrnDB in combination with the corresponding rrnDB phylogeny. We assume that the comparably low phylogenetic signals detected 
for RRN (Table 3; Figure 7) may not be a purely biological signal, but could be due to inaccuracies of this parameter that, although not as pronounced as 
in the JGI database, seemed to be also inherent in the rrnDB database (Supplementary Figure S5).
One may wonder why genomic traits, such as prophages or %HGT at all exhibit phylogenetic signals, although individual events contributing to these traits 
are not inherited vertically. However, while the presence of a specific prophage or HGT gene in a genome should indeed not have a phylogenetic signal, it 
has been argued as outlined above that the characteristic of a genome to host multiple prophages or HGT derived genes is linked to the life-history of the 
corresponding organism. In agreement with our observation (Table 3), life history traits featured comparably strong phylogenetic signals in an earlier study 
(Blomberg et al., 2003). Still, in the case of prophages and % HGT it seems biologically meaningful that detected phylogenetic signals were low compared 
those of other traits (with the exception of RRN).

https://doi.org/10.3389/fmicb.2022.985216
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Beier et al. 10.3389/fmicb.2022.985216

Frontiers in Microbiology 14 frontiersin.org

Importantly, the proposed non-monotonous relationship of 
resistance versus resilience and resource usage efficiency 
dimensions entails that a consistent assignment of traits to the 
CSR or YAS schemes with validity for all prokaryotes may not 
be possible: in environments inhabited by prokaryotes with small 
genomes, such as aquatic habitats a nutrient rich and frequently 
disturbed habitat should select species with increased CUB and 
comparably large genomes, while the same scenario in soil 
environments should instead rather select species with increased 
CUB, but comparably small genomes. Genome size dependent 
trait–trait covariation patters might furthermore be the reason 
for conflicting assignments of genome size either with the C 
(Fierer et  al., 2007) or R category (Krause et  al., 2014) and 
likewise RRN or CUB/growth rate with either the R and S 
categories (Fierer et al., 2007) or with the C category (Krause 
et al., 2014) of the CSR schema.

We want to emphasize that the classification of individual 
species via their genomic traits into life history categories suffers 
from inaccuracies. This is on the one hand due to the fact that 
different evolutionary mechanisms and selective forces in 
combination lead to the selection of genomic trait values, which 
causes noisy correlations between trait values and the functional 
characteristics of a species. On the other hand, the assignment of 
species for instance along the specialist-generalist gradient is 

highly context-dependent and a resource specialist might be at the 
same time a temperature generalist (Bell and Bell, 2021). As a 
consequence, it is not possible to unambiguously characterize 
prokaryote species along the generalist-specialist continuum or 
predict their phenotypic response to a specific environmental 
change based on a simple genomic trait as for instance their 
genome size. Still, the probability that a species will be resistant 
against a specific environmental change increases with its genome 
size. Similarly, while it is not possible to predict from a high CUB 
that the corresponding species will actually grow fast in a given 
environment, a high CUB increases the probability of this species 
to exhibit high growth rates in this environment. Accordingly, 
although the outlined genomic traits are imprecise in predicting 
the phenotypic characteristics of individual species in a given 
environment, they affect its likelihood to be tolerant or to grow 
fast in this environment. While probabilities do not allow the 
prediction of a single event, their predictive power increases with 
the number of considered events. We  therefore suggest that 
resistance or resilience of individual species in a given situation 
should preferably be evaluated via the regulation of RNA markers 
in response to a specific environmental change, as detailed in a 
recent study (Rain-Franco et al., 2021). We however claim that the 
predictability of functional consequences from genomic traits 
increases if simultaneously applied for multiple species in a 
community and genomic traits values are scaled-up to evaluate 
their distribution at the community level (Box 2).

Conclusion

Recent publications claimed that trait dimensions that are 
apparent among heterotroph prokaryotes are due to different 
physiological constraints and tradeoffs not directly comparable 
to those of autotroph plants (Malik et al., 2020; Westoby et al., 
2021a). Based on our analyzes we suggest that physiological 
constraints and tradeoffs differ even within the microbial 
cosmos, which precludes a globally consistent assignment of 
microbial traits in agreement with the CSR or YAS frameworks. 
In contrast, sorting microbial traits within a resistance/
resilience framework increased consistency between trait–trait 
covariations and earlier reported findings due to variable 
tradeoffs between resistance and resilience related traits in 
dependence of the genome size range. It has been argued that 
varying resistance/resilience relationship have consequences for 
the stability of communities: In aquatic systems, where our 
analyzes suggest a high likelihood for positive relationship 
between resistance and resilience levels, disturbances under 
oligotroph conditions should lead according to ecological 
theory to a species loss because both resistance and resilience 
are simultaneously low (Nimmo et  al., 2015). Disturbances 
under high resource availability should instead induce a gain of 
species if resistance and residence levels are simultaneously 
high. In contrast, theory suggests a higher degree of stability in 
response to disturbances in communities featuring a resistance/

TABLE 3 Phylogenetic signals of genomic traits.

Genomic 
trait

Ka p (K)a Lambdab p 
(lambda)b

Max 
PDc

Genome sized 5.89 × 10−4 <0.001 0.9973 <0.001 1.5

%TF 3.10 × 10−4 <0.001 0.9905 <0.001 1.5

Gene 

duplication

4.89 × 10−4 <0.001 0.9976 <0.001 1.5

Gene richness 5.52 × 10−4 <0.001 0.9892 <0.001 2.5

CUB (F) 1.24 × 10−3 <0.001 0.9974 <0.001 1.5

Generation 

time 

(gRodon)

4.66 × 10−4 <0.001 0.9935 <0.001 2.0

RRN 1.20 × 10−6 <0.001 0.9624 <0.001 1.5

Prophages 1.33 × 10−5 <0.001 0.6403 <0.001 0.5

%HGT 4.22 × 10−5 <0.001 0.8897 <0.001 1.5

%GC 2.33 × 10−2 <0.001 0.9999 <0.001 1.5

aBlomberg’s K statistics.
bPagel’s Lambda statistics.
cMaximal phylogenetic distances (tested for phylogenetic distance classes ≤3), until 
which a continuous significant positive correlation against trait distances was detected 
via Mantel correlograms (significance based on the Bonferroni adjusted value of p Padj 
<0.1). See also Figure 6.
dIn the specific case of RRN we provide phylogenetic signal estimated based on trait 
values from the rrnDB, while for all other traits JGI/IMG trait values as reported in the 
Supplementary Table S1 were used (%HGT was log(x + 0.001) transformed and 
Generation time was log(x) transformed). We inferred the RRN rrnDB phylogenetic 
signal from a phylogenetic tree calculated using rrndbDB 16s rRNA gene sequences 
(FastTree 2, Price et al., 2010) and using the trait values available via the rrnDB (https://
rrndb.umms.med.umich.edu/static/download/, rrnDB-5.7).The phylogeny for all JGI/
IMG values was inferred from the pro_ref.tre phylogenetic tree, which is used as 
backbone phylogeny of the PICRUSt2 software. All analyzes to compute phylogenetic 
signals were performed in R (R Core Team, 2021) and a script is available on GitHub 
(https://github.com/sarabeier/genomic.traits).
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resilience tradeoff (i.e., soil communities) because these 
communities are either resistant or resilient (Nimmo 
et al., 2015).

Even though specific CSR or YAS trait attributions may not 
generally be  applicable for all prokaryotes, they should 
be applicable with adapted trait associations for communities 
harboring species within certain ranges of genome sizes, such 

as aquatic or soil communities. We argue that, beside potential 
differences between heterotrophs and autotrophs outlined 
elsewhere (Malik et  al., 2020; Westoby et  al., 2021a), 
disturbances and productivity gradients are, analogous to 
plants, the main drivers for microbial community dynamics. To 
understand the ecology of microbes and make predictions 
about their dynamics it is consequently essential to combine 

FIGURE 7

Results from Mantel correlograms. Filled data points indicate positive significant correlations (Bonferroni adjusted value of ps Padj <0.1) of pairwise 
distances of traits values against pairwise phylogenetic distances among the reference genomes. The Mantel correlograms were computed for 
10,000 randomly selected genomes and with 200 permutations. In the specific case of RRN we computed the Mantel correlogram based on trait 
values of the rrnDB, while for all other traits JGI/IMG trait values as reported in the Supplementary Table S1 were used (%HGT was log(x + 0.001) 
transformed and Generation time was log(x) transformed). We inferred the RRN rrnDB phylogenetic signal from a phylogenetic tree calculated 
using rrndbDB 16s rRNA gene sequences (FastTree 2, Price et al., 2010) and using the trait values available via the rrnDB (https://rrndb.umms.med.
umich.edu/static/download/, rrnDB-5.7). The phylogeny for all JGI/IMG values was inferred using the pro_ref.tre phylogenetic tree, which is used 
as backbone phylogeny of the PICRUSt2 software. All analyzes to compute Mantel correlograms were performed in R (R Core Team, 2021). Scripts 
with the code for all analyzes described in this figure legend are available on GitHub (https://github.com/sarabeier/genomic.traits).
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different trait dimensions, concerning their response to 
disturbances and nutrient availability. We emphasize the need 
to expose prokaryote communities from different habitats to 
experimentally crossed disturbance and productivity gradients 
using full factorial designs and examine genomic trait 
distributions and diversity patterns. This should ideally be done 
in combination with functional resistance and resilience 
measurements to validate the links between genomic traits and 
community-level functional characteristics of prokaryotes 
outlined in this study. Such experimental designs will enable to 
empirically underpin the here presented predictions concerning 
the assembly of genomic traits and species richness under 
different scenarios and their relevance for community 
functioning. The trait table used in this study may hereby serve 
to extrapolate genomic trait distributions in prokaryotic 
communities based on taxonomic marker genes as outlined 
in Box 2.
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