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Introduction: Gut microbiota alterations are strongly associated with 

prescription opioid use (POU) and multisite chronic pain (MCP). However, 

whether or not these associations are causal remains unknown. Therefore, 

we aim to explore the causal relationships between them comprehensively.

Methods: A two-sample bi-directional Mendelian randomization was 

conducted to assess the potential associations between gut microbiota and 

POU/MCP using summary level Genome-wide association studies (GWASs) 

that were based on predominantly European ancestry.

Results: Potential causal effects were identified between seven host genetic-

driven traits of gut microbiota on POU, including Adlercreutzia, Allisonella, 

Dialister, Anaerofilum, Anaerostipes, ChristensenellaceaeR.7group, and 

LachnospiraceaeNC2004group at the genus level (p < 0.05) by the Inverse-variance 

weighted method, with significant causal effects of ChristensenellaceaeR.7group 

and Allisonella on POU (p < 0.025). A total of five genetically greater abundance 

of gut microbiota traits were identified to be possibly related to the level of MCP 

(p < 0.05), including genus ErysipelotrichaceaeUCG003, family Clostridiaceae1, 

order Gastranaerophilales, order Actinomycetales, and family Actinomycetaceae. 

In the other direction, no clear evidence was found to support a significant 

causal relationship between POU and gut microbiota, as well as MCP and gut 

microbiota. In addition, evidence was also provided for the relationship between 

triacylglycerols and diacylglycerol elevation, and an increased risk of POU and 

MCP. No evidence was found across various sensitivity analyses, including reverse 

causality, pleiotropy, and heterogeneity.

Conclusion: The findings from this study provide robust evidence that gut 

microbiota alterations may be a risk of POU/MCP, but not vice versa.

TYPE Original Research
PUBLISHED 22 November 2022
DOI 10.3389/fmicb.2022.994170

OPEN ACCESS

EDITED BY

Asker Daniel Brejnrod,  
Technical University of Denmark, Denmark

REVIEWED BY

Ankur Naqib,  
Rush University,  
United States
Zhiyi Zuo,  
University of Virginia,  
United States

*CORRESPONDENCE

Jingxian Zeng  
zjingx@mail.sysu.edu.cn  
Daowei Lin  
lindw@mail.sysu.edu.cn

†These authors have contributed equally to 
this work and share first authorship

‡These authors share last authorship

SPECIALTY SECTION

This article was submitted to  
Systems Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 12 August 2022
ACCEPTED 01 November 2022
PUBLISHED 22 November 2022

CITATION

Lin L, Lin J, Qiu J, Wei F, Bai X, Ma W, 
Zeng J and Lin D (2022) Gut microbiota 
alterations may increase the risk of 
prescription opioid use, but not vice versa: 
A two-sample bi-directional Mendelian 
randomization study.
Front. Microbiol. 13:994170.
doi: 10.3389/fmicb.2022.994170

COPYRIGHT

© 2022 Lin, Lin, Qiu, Wei, Bai, Ma, Zeng 
and Lin. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.994170%EF%BB%BF&domain=pdf&date_stamp=2022-11-22
https://www.frontiersin.org/articles/10.3389/fmicb.2022.994170/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.994170/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.994170/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.994170/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.994170/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.994170
mailto:zjingx@mail.sysu.edu.cn
mailto:lindw@mail.sysu.edu.cn
https://doi.org/10.3389/fmicb.2022.994170
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Lin et al. 10.3389/fmicb.2022.994170

Frontiers in Microbiology 02 frontiersin.org

KEYWORDS

causality, prescription opioid use, multisite chronic pain, gut microbiota, 
metabolites, Mendelian randomization

Introduction

Over the past two decades, the important role of gut microbiota 
has been recognized in the establishment and maintenance of health, 
as well as in the occurrence and progression of various diseases. A 
well-maintained gut microbiota diversity is essential for a normal 
life, whereas alterations to it (dysbiosis) have impacts on the 
gut-brain axis, leading to a variety of neurological diseases, such as 
neuropsychiatric disorders (Ochoa-Repáraz et al., 2020; Ni et al., 
2021). Gut microbiota alterations are also noticed in patients 
suffering from different types and areas of chronic pain, including 
visceral pain, inflammatory pain, headache, neuropathic pain, and 
chronic widespread pain (Newlove-Delgado et al., 2019; Yang et al., 
2019; Chen et al., 2020; Guida et al., 2020; Freidin et al., 2021). Based 
on these studies, we  believe that two possibilities should not 
be neglected: one is that chronic pain may lead to dysbiosis, and the 
other is that gut microbiota may be a possible way to regulate chronic 
pain conditions.

Opioids are a major component in the treatment of chronic pain. 
While they do relieve pain, the long-term use of opioids is often 
accompanied by multiple systems disorders in the whole body, 
including the nervous, cardiovascular, digestive, immune, and 
endocrine systems (Farmer et al., 2018; de Vries et al., 2020; Hadland 
et al., 2021; Rosoff et al., 2021; Cai et al., 2022). Due to the side effects 
mentioned above, it has long been a public concern to reduce opioid 
use (Sandhu et al., 2018). Recent studies also demonstrated that the 
long-term use of opioid use may result in increasing comorbidity 
and behavioral changes due to dysbiosis (Meng et al., 2013, 2015; 
Wang et al., 2018). Furthermore, opioid receptors are found in both 
the digestive tract and the central nervous system, which suggests 
their important role in the modulation of the gut-brain axis (Zhang 
and Roy, 2021). Notably, observational animal studies also indicate 
the importance of the gut microbiota in opioid tolerance (Kang et al., 
2017; Lee et al., 2018; Zhang et al., 2019).

Looking at the importance of gut microbiota in the gut-brain 
axis and the critical role of opioids in pain management, it is, 
therefore, crucial to reveal the causal direction between gut 
microbiota alteration and prescription opioid use (POU) as well as 
multisite chronic pain (MCP). A clear causal direction not only 
guides us on how to maintain a healthy gut microbiota composition 
but also provides us with a possible strategy for reducing opioid use. 
Conventionally, well-designed randomized controlled trials are the 
golden standard for inferring a causal relationship between gut 
microbiota and POU/MCP; however, they are difficult to implement 
due to ethical and legal restrictions. Mendelian randomization (MR) 
is an alternative approach to assess the causal relationship between 
exposures and outcomes, using genetic variants as unconfounded 
proxies for exposures (Emdin et al., 2017). Since genetic variants are 

randomly distributed during meiosis yielding, the MR approach is 
conceptually similar to a randomized controlled study and can 
minimize confounding such as social and economic factors (Emdin 
et  al., 2017). Based on the advantages of MR mentioned above, 
we applied a two-sample bi-directional MR approach to explore the 
causal relationships between gut microbiota and POU as well as 
MCP. Metabolites are one of the important bridges between gut 
microbiota and the central nervous system (Eicher and Mohajeri, 
2022); thus, MR analysis was also conducted to find the potential 
associations between metabolites and POU, as well as MCP.

Materials and methods

Study design

A two-sample bi-directional designed MR approach was 
carried out to explore the causality between host genetic-driven 
gut microbiota and POU, as well as MCP, using summary statistics 
from large genome-wide association studies (GWASs; Figure 1; 
Supplementary Table S1). Ethical approval for each GWAS 
included in this study can be found in the original articles. The 
study was implemented under Burgess’s guidelines and was 
reported according to the STROBE-MR statement (Burgess 
et al., 2019).

Data sources and instruments

Gut microbiota
Summary statistics were leveraged from the largest study of host 

genetic influences on the abundance of human gut microbiota so far. 
The MiBioGen consortium curated and analyzed genome-wide 
genotypes and microbiome data (fecal16S rRNA gene sequencing) 
from 18,340 individuals (24 cohorts) adjusting for potential covariate 
effects such as sex, age, BMI, and other covariates. The consortium 
yielded summary data including 9 phyla, 16 classes, 20 orders, 35 
families, and 131 genera, respectively, (Kurilshikov et  al., 2021). 
We discarded those gut microbiota traits that could not be classified, 
leaving a total of 9 phyla, 16 classes, 20 orders, 32 families, and 119 
genera for the MR analysis. Relevant SNPs were identified as having 
reached the selection threshold of P < 1 × 10−5, as suggested by Sanna 
et al. (2019).

Prescription opioid use
Summary-level statistics for POU were drawn from a GWAS 

in United Kingdom Biobank (UKB), comprising a sample size of 
78,808 including 22,982 cases and 55,826 controls (Wu et  al., 
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FIGURE 1

Study flow diagram. This study was a bi-directional Mendelian randomization analysis testing the causal effects between gut microbiota and POU/
MCP. All summary-level genetic associations were derived from cohorts of predominant European ancestry. Inverse-variance weighted (IVW) was 
adopted as the primary method for univariable MR. Sensitivity analyses were adopted to provide robust evidence of MR estimates. Causal effects 
of 2 gut microbiota traits on POU, and 4 gut microbiota traits on MCP stayed significant after Bonferroni correction (p < 0.025, corrected for 2 
outcomes). No significant causal association was observed for POU/MCP on gut microbiota after Bonferroni correction (p < 2.55 × 10−4, corrected 
for 196 outcomes). MR, Mendelian randomization; POU, prescription opioid use; MCP, multisite chronic pain; F, F statistics; P, p-value for selected 
SNPs of exposures.
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2019). POU was defined as the prescription of active ingredients 
including but not limited to opioids (e.g., morphine, oxycodone, 
codeine, fentanyl, pethidine, and tramadol). In this case–control 
GWAS, Wu et al. identified only three SNPs (single nucleotide 
polymorphisms) that are robustly related to POU (p < 5 × 10−8). 
SNPs with a P threshold < 5 × 10−6 were used as only a limited 
number of SNPs meet genome-wide significance.

Multisite chronic pain
For chronic pain, we extracted summary statistics from a GWAS 

in UKB as well. A total of 387,649 participants were enrolled in this 
study. Johnston et al. performed a GWAS within the United Kingdom 
general population. Summary data were yielded based on a measure 
of the number of sites of chronic pain in individuals, adjusting for 
age, sex, and BMI, and the measure was termed Multisite Chronic 
Pain (MCP). The definition of MCP is the sum of body sites at which 
chronic pain (for a duration of at least 3 months). A total of 76 
leading SNPs at 39 risk loci were identified to be associated with 
MCP (Johnston et al., 2019). Only SNPs meeting the genome-wide 
significance (p < 5 × 10−8) were selected.

Metabolites
Considering that metabolites may play an important role 

between gut microbiota and host, PubMed was searched for GWASs 
of metabolites and summary statistics were leveraged from a recent 
GWAS of the human blood metabolites conducted among European 
individuals (FHS, n = 2,076; Rhee et al., 2013). In this GWAS, Rhee 
et al. tested all 217 metabolite concentrations present in the datasets 
adjusting for age, sex, systolic blood pressure, antihypertensive 
medication use, BMI, diabetes, smoking status, and prevalent 
cardiovascular disease and renal function. For each metabolite, SNPs 
were selected at a P threshold < 1 × 10−5.

Statistical analysis

Based on the cohort information described in the original 
GWAS analysis, there was no sample overlapping between 
exposures and outcomes in this study. Two sample Mendelian 
randomization analyses were applied as the main statistical 
method to explore causal relationships between each instrument-
exposure and instrument-outcome. To obtain data on independent 
SNPs, SNPs were clumped and discarded at linkage disequilibrium 
(LD) r2 > 0.001 within a 10,000 kilobase pairs window based on 
reference data of European ancestry from the 1,000 Genomes 
Project (Genomes Project, C et al., 2015). SNP effects and relevant 
standard errors were obtained from GWASs of exposures and 
outcomes (Hemani et al., 2018b). The F-statistics were calculated 
to quantify the strength of each SNP. SNPs with F-statistics smaller 
than 10 were removed. Steiger filtering was carried out on the 
harmonized data to detect and remove SNPs presenting reverse 
causation based on the test report. Reverse causation is defined as 
the observed variance of the outcome outweighing the observed 
variance of the exposure (Hemani et al., 2018a). The exposure and 

outcome data were then harmonized, and palindromic SNPs 
were removed.

After the selection of instrumental variables described 
above, we  performed the MR, using the Inverse-variance 
weighted (IVW) method as the primary analyses. To provide 
robust evidence of MR findings, we  performed further 
sensitivity analyses including Weighted median, MR-Egger. 
The Wald ratio method was applied to get the effect estimate 
of exposure on outcome for each SNP. The IVW method was 
then conducted to combine the Wald ratio estimates to obtain 
a consistent estimate (Pierce and Burgess, 2013). The weighted 
median assumes that more than half of the instruments are 
valid (Bowden et al., 2016). On the other hand, the MR-Egger 
method detects unclear horizontal pleiotropy based on a 
non-zero intercept value (Bowden et al., 2015). Only if the 
effect estimates were consistent across the three methods, 
including IVW, weighted median, and MR-Egger, the results 
would be enrolled for further sensitivity analyses. To detect 
any possible pleiotropy, MRPRESSO was also adopted as 
another method. MRPRESSO is a method to screen horizontal 
pleiotropy best suited when horizontal pleiotropy occurs in 
less than 50% of the instruments (Verbanck et  al., 2018). 
Cochran’s Q-test, I2 statistics, and leave-one-out analysis were 
applied to detect the heterogeneity of the SNPs that may affect 
the outcome through an unknown pathway. I2 > 25% and 
p < 0.05  in the Cochran Q-test were identified as potential 
existence of heterogeneity (Greco et al., 2015). The Rucker’s 
Q’-test was also adopted to screen heterogeneity of the 
MR-Egger model. A minor difference between Q and Q’ 
(p > 0.05) indicated IVW as a better-fitting model (Bowden 
et al., 2015). An MR Steiger directionality test was carried out 
to explore whether the causal direction was true (Xue and Pan, 
2020). SNPs that exhibit either pleiotropy or heterogeneity 
were removed according to the results of MRPRESSO and 
leave-one-out analysis. After that, we repeated MR analyses to 
obtain the final MR estimates.

For the continuous outcome, the MR effect estimates were 
reported in beta values (95% CIs), while for the binary outcome, 
effect estimates were presented in ORs (95% CIs). To adjust multiple 
comparisons, a Bonferroni correction was applied. p-value of effect 
estimates <0.025 (corrected for 2 outcomes) for the causal effect of 
gut microbiota on POU and MCP, and 2.55 × 10−4 (corrected for 196 
outcomes) for the reverse causation, was considered significant. 
p-value smaller than 0.05 but greater than the corrected p-value, was 
considered as a potential causal association. The statistical power of 
MR estimates was calculated on the website of mRnd.1

The MR analyses were performed in the R (version 4.1.2) 
computing environment using the TwoSampleMR package 
(version 0.5.6) and the MRPRESSO package (version 1.0). The 
Effect of the exposure and outcome was harmonized by the 
TwoSampleMR package, according to comprehensive information 

1 http://cnsgenomics.com/shiny/mRnd/
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on SNPs, like phenotypes, effect alleles, effect allele frequencies, 
effect sizes, and standard errors for each SNP. In addition, positive-
strand alleles and drop palindromic SNPs were inferred according 
to allele frequencies.

Results

After clumping and discarding SNPs at linkage disequilibrium 
(LD) r2 > 0.001 within a 10,000 kilobase pairs window, we identified 
a total of 2,368 and 2,601 SNPs for gut microbiota traits with POU 
and MCP at the suggestive significance level p < 1 × 10−5, respectively. 
Steiger filtering and harmonization were performed after removing 
SNPs with F-statistics smaller than 10. SNPs that exhibit either 
pleiotropy or heterogeneity were removed according to the results of 
MRPRESSO and leave-one-out analysis. At last, 1,999 and 2,188 
SNPs were selected for gut microbiota traits with POU and MCP 
respectively, as shown in Data Sheet 2 in the Supplementary material. 
After MR analyses, a total of 36 causal associations were identified, 
including seven gut microbiota traits with POU, five gut microbiota 
traits with MCP, 12 metabolites traits with POU, and 12 metabolites 
traits with MCP (Tables 1, 2; Supplementary Tables S4, S5).

Associations of gut microbiota with 
POU/MCP

In this direction, five positive causal associations were identified, 
including Adlercreutzia, Allisonella, and Dialister at the genus level 
with POU, family Clostridiaceae1 and order Gastranaerophilales with 
MCP. The host genetic-driven increases in Adlercreutzia, Allisonella, 
and Dialister at the genus level were potentially related to a higher 
risk of POU (per relative abundance: Adlercreutzia OR = 1.154, 95% 
CI = 1.015, 1.313, p = 0.029; Allisonella OR = 1.135, 95% CI = 1.061, 
1.213, p = 0.0002; Dialister OR = 1.117, 95% CI = 1.005, 1.242, 
p = 0.04). Among them, a higher abundance of Allisonella at the genus 
level demonstrated a significantly higher risk of POU causally with a 
p-value of 0.0002 (Table  1). Higher abundances of family 
Clostridiaceae1 and order Gastranaerophilales were found causally 
associated with elevated level of MCP (per relative abundance: family 
Clostridiaceae1 Beta = 0.031, 95% CI = 0.004, 0.057, p = 0.023; order 
Gastranaerophilales Beta = 0.024, 95% CI = 0.002, 0.045, p = 0.032; 
Table  2). As shown in Table  1, a total of four gut microbiota 
traits  showed a negative causal effect on POU, including 
LachnospiraceaeNC2004group, ChristensenellaceaeR, Anaerostipes, 
and Anaerofilum at the genus level, whose odds ratios are between 
0.820 and 0.924. Order Actinomycetales, family Actinomycetaceae and 
genus ErysipelotrichaceaeUCG003 also showed a protective causal 
effect on MCP, with regression coefficients between −0.029 and 
−0.031. Notably, family Actinomycetaceae and order Actinomycetales, 
share the same SNPs in the final MR analyses, including rs2889192, 
rs34583783, rs35011108, rs4073240, and rs58484246, as shown in 
Data Sheet 2 in the Supplementary material. That is probably because 
family Actinomycetaceae is a sub-category of order Actinomycetales 

and limited loci were identified for these two traits. Scatter plots 
across various methods are presented in Figure 2.

Considering that chronic intestinal disorders may result in 
dysbiosis and thus affect the associations between gut microbiota 
and POU/MCP, several sub-types of chronic bowel disease were 
identified to check the potential influence. A total of seven traits, 
including Crohn’s disease, bowel problem, inflammatory bowel 
disease, irritable bowel syndrome, ulcerative colitis, other 
non-infective gastroenteritis and colitis, and other functional 
intestinal disorders were taken into adjustment as suggested by Ni 
et al. (2021). The associations of the identified IVs with each trait 
were retrieved in the United Kingdom Biobank summary statistics 
through the website of GeneATLAS.2 As listed in 
Supplementary Table S2, all p-value was above the corrected 
p-value, indicating limited confounding effect of chronic bowel 
diseases. To further determine whether the identified causal 
associations were affected by these intestinal diseases, we removed 
IVs that are relevant to any one of the chronic intestinal disorders 
at a P threshold of <0.05, and reran the MR analysis using the 
remaining IVs. Similar effect magnitudes were found as compared 
with the results shown in Tables 1, 2, however, less precisely 
(Supplementary Table S3). Results of four gut microbiota traits 
remained significant, including Family Clostridiaceae1 with MCP 
(p = 0.013), Genus Allisonella with POU (p = 0.001), Genus 
ChristensenellaceaeR.7group with POU (p = 0.008), and Genus 
LachnospiraceaeNC2004group with POU (p = 0.021). Meanwhile, 
sensitivity analyses including the MR-PRESSO test, Cochrane’s 
Q-test, leave-one-out analysis, MRPRESSO, and MR-Egger 
intercept showed no evidence of heterogeneity and horizontal 
pleiotropy (all p > 0.05; Supplementary Table S3). Taken together, 
these results indicated that the above causal associations were 
unlikely to be mediated by chronic intestinal disorders.

Associations of POU/MCP with gut 
microbiota

In this direction, no clear evidence was found for any causal 
effect of POU on gut microbiota, nor MCP on gut microbiota 
among all the 196 gut microbiota traits tested.

Associations of metabolites with 
POU/MCP

Among all the 217 metabolites in the MR analyses, host genetic-
driven increases in lipid metabolites such as triacylglycerols (TAGs, 
including TAG 50:4, TAG 52:2, TAG 52:6, TAG 54:2, TAG 58:11), 
diacylglycerol (DAG 36:2), and cholesterol ester (CE 20:4) were 
related to a higher risk of POU, with odds ratios ranging from 1.347 
to 2.193. Meanwhile, elevated levels of metabolites, including 

2 http://geneatlas.roslin.ed.ac.uk/phewas
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TABLE 1 MR results of gut microbiota on prescription opioid use.

Directional pleiotropy Cochran Q-test Rucker’s framework

Level Exposure Outcome Method NSNPs OR (95% CI) P Egger 
intercept (P)

MRPRESSO global 
test RSSobs (P)

I2 statistics Q-statistic 
(P)

Q’-statistic 
(P)

Q–Q’ (P) Steiger P

Genus Anaerofilum POU IVW 9 0.924 (0.857, 0.995) 0.037 0.019 (0.409) 4.527 (0.918) 0.00% 3.617 (0.89) 2.845 (0.899) 0.772 (0.38) 2.55E-40

Weighted 

median

9 0.915 (0.83, 1.01) 0.078

MR Egger 9 0.785 (0.543, 1.136) 0.241

Genus Anaerostipes POU IVW 11 0.872 (0.769, 0.989) 0.033 0.021 (0.163) 15.401 (0.366) 7.13% 10.768 

(0.376)

8.458 (0.489) 2.311 (0.128) 3.83E-54

Weighted 

median

11 0.889 (0.751, 1.052) 0.169

MR Egger 11 0.652 (0.439, 0.967) 0.062

Genus ChristensenellaceaeR POU IVW 8 0.82 (0.709, 0.949) 0.008 0.007 (0.688) 10.228 (0.484) 0.00% 5.838 (0.559) 5.661 (0.462) 0.177 (0.674) 5.17E-28

Weighted 

median

8 0.799 (0.664, 0.961) 0.017

MR Egger 8 0.755 (0.501, 1.139) 0.230

Genus Lachnospiraceae 

NC2004group

POU IVW 9 0.917 (0.842, 0.998) 0.046 0.010 (0.643) 10.262 (0.507) 0.00% 6.466 (0.595) 6.231 (0.513) 0.235 (0.628) 5.55E-40

Weighted 

median

9 0.917 (0.822, 1.024) 0.123

MR Egger 9 0.843 (0.593, 1.198) 0.372

Genus Adlercreutzia POU IVW 7 1.154 (1.015, 1.313) 0.029 −0.011 (0.687) 15.693 (0.225) 25.65% 8.070 (0.233) 7.785 (0.169) 0.285 (0.594) 1.89E-41

Weighted 

median

7 1.073 (0.917, 1.256) 0.378

MR Egger 7 1.31 (0.722, 2.375) 0.415

Genus Allisonella POU IVW 7 1.135 (1.061, 1.213) 0.0002 −0.003 (0.914) 3.940 (0.912) 0.00% 2.863 (0.826) 2.850 (0.723) 0.013 (0.91) 9.79E-36

Weighted 

median

7 1.107 (1.01, 1.213) 0.030

MR Egger 7 1.163 (0.758, 1.784) 0.520

Genus Dialister POU IVW 11 1.117 (1.005, 1.242) 0.040 −0.019 (0.266) 13.385 (0.462) 0.00% 8.092 (0.62) 6.685 (0.67) 1.407 (0.236) 2.68E-42

Weighted 

median

11 1.064 (0.919, 1.232) 0.408

MR Egger 11 1.436 (0.936, 2.205) 0.132

MR, mendelian randomization; POU, prescription opioid use; IVW, inverse-variance weighted; NSNPs, number of single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; RSSobs, residual sums of squares of observations.
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TABLE 2 MR results of gut microbiota on chronic multisite pain.

Directional pleiotropy Cochran Q-test Rucker’s framework

Level Exposure Outcome Method NSNPs Beta (95% CI) P Egger 
intercept 

(P)

MRPRESSO 
global test 
RSSobs (P)

I2 statistics Q-statistic 
(P)

Q’-statistic 
(P)

Q–Q’ (P) Steiger P

Family Actinomycetaceae MCP IVW 5 −0.031 (−0.058, 

−0.005)

0.020 0.001 (0.804) 4.299 (0.637) 0.00% 2.984 (0.561) 2.910 (0.406) 0.074 (0.786) 2.17E-25

Weighted median 5 −0.033 (−0.069, 

0.003)

0.072

MR Egger 5 −0.040 (−0.107, 

0.028)

0.331

Genus Erysipelotrichaceae 

UCG003

MCP IVW 16 −0.029 (−0.050, 

−0.009)

0.005 0.000 (0.879) 19.059 (0.403) 4.42% 15.694 (0.403) 15.667 (0.334) 0.027 (0.87) 5.61E-81

Weighted median 16 −0.032 (−0.061, 

−0.004)

0.025

MR Egger 16 −0.034 (−0.092, 

0.025)

0.275

Order Actinomycetales MCP IVW 5 −0.031 (−0.058, 

−0.005)

0.021 0.001 (0.808) 4.316 (0.645) 0.00% 2.996 (0.559) 2.926 (0.403) 0.070 (0.791) 2.51E-25

Weighted median 5 −0.033 (−0.066, 

0.000)

0.050

MR Egger 5 −0.040 (−0.107, 

0.028)

0.334

Family Clostridiaceae1 MCP IVW 10 0.031 (0.004, 0.057) 0.023 0.000 (0.926) 13.584 (0.371) 0.00% 7.875 (0.547) 7.866 (0.447) 0.009 (0.923) 9.47E-48

Weighted median 10 0.026 (−0.012, 0.063) 0.186

MR Egger 10 0.027 (−0.048, 0.102) 0.497

Order Gastranaerophilales MCP IVW 9 0.024 (0.002, 0.045) 0.032 −0.001 (0.811) 18.611 (0.162) 34.39% 12.194 (0.143) 12.088 (0.098) 0.106 (0.745) 1.98E-57

Weighted median 9 0.018 (−0.007, 0.044) 0.153

MR Egger 9 0.031 (−0.033, 0.095) 0.371

MR, mendelian randomization; MCP, multisite chronic pain; IVW, inverse-variance weighted; NSNPs, number of single nucleotide polymorphisms; Beta, MR effect estimate; CI, confidence interval; RSSobs, residual sums of squares of observations.
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5-hydroxyindoleacetic acid (5-HIAA), guanosine diphosphate 
(GDP), indoxyl sulfate, cholesterol ester (CE 14:0) and 
phosphatidylcholine (PC 36:3) were associated with a lower risk of 
POU, with odds ratios ranging from 0.567 to 0.693. A total of 9 
metabolite traits were found significantly associated with the risk of 
POU after Bonferroni correction (p < 0.025, corrected for 2 outcomes; 
Figure 3; Supplementary Table S4; Supplementary Figure S2).

Elevated TAG concentrations were found to be potentially 
associated with higher MCP levels, including TAG 46:1, TAG 48:3, 
TAG 50:3, and TAG 52:1; while cyclic adenosine monophosphate, 

inositol and sphingomyelin (SM 24:0) were associated with a 
lower level of MCP. A total of 10 metabolite traits were found 
significantly associated with the level of MCP after Bonferroni 
correction (p < 0.025, corrected for 2 outcomes; Figure  3; 
Supplementary Table S5; Supplementary Figure S3).

Sensitivity analysis

To provide solid evidence for a true causal association, only 
if effect estimates were consistent across three MR methods, 

FIGURE 2

Scatterplot of Mendelian randomization (MR) estimates between prescription opioid use (POU), multisite chronic pain (MCP), and gut microbiota. 
(A1–A7) Associations of gut microbiota traits with POU; (B1–B5) Associations of gut microbiota traits with MCP.
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including IVW, weighted median and MR-Egger, would 
be enrolled for further sensitivity analysis. No clear evidence of 
pleiotropy was observed according to the results of MRPRESSO 
analysis and MR-Egger intercept analysis (all p > 0.05). No 
apparent evidence of overall heterogeneity was identified 

according to the Cochran’s-Q test (all p > 0.05). No single SNP 
drives the causal association signal according to the leave-
one-out sensitivity (Supplementary Figures S1–S3). All the 
F-statistics for the selected SNPs were larger than 10, indicating 
an absence of weak instrument bias, as shown in Data Sheet 2 in 

FIGURE 3

Forest plot of Mendelian randomization (MR) estimates. Causal effects from the inverse-variance weighted Mendelian randomization method. 
Effect estimates were presented as odds ratios (OR) or beta depending on whether the outcome was binary or continuous, with 95% confidence 
intervals (CI). (A) Odds ratio per 10 units increase in metabolites on prescription opioid use (POU); (B) Estimates per 10 units increase in metabolites 
on multisite chronic pain (MCP). NSNPs, number of single nucleotide polymorphisms; CI, confidence interval; TAG, triacylglycerol; CE, cholesterol 
ester; DAG, diacylglycerol; PC, phosphatidylcholine; cAMP, cyclic adenosine monophosphate; SM, sphingomyelin.
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the Supplementary material. The p-value for the MR Steiger 
directionality test ranged between 10−16 and 10−101, implying 
that all the suggestive causal associations were true (Tables 1, 2; 
Supplementary Tables S3–S5). Power calculation for detecting 
a significant causal effect (p < 0.05) of gut microbiota (OR = 1.2) 
on the risk of POU, and of gut microbiota on MCP (Beta = 0.1) 
were almost above 80% (Supplementary Table S6).

All harmonized data were shown in Data Sheet 2 in the 
Supplementary material. All results of the bi-directional MR 
analyses between gut microbiota and POU as well as gut 
microbiota and MCP were shown in Data Sheet 3 in the 
Supplementary material. All results of the MR analyses between 
metabolites and POU as well as metabolites and MCP were also 
shown in Data Sheet 3 in the Supplementary material.

Discussion

In this study, potential bi-directional associations between 
host genetic-driven gut microbiota and prescription opioid use 
(POU), as well as multisite chronic pain (MCP) were evaluated. A 
total of seven and five gut microbiota traits were identified to 
be causally associated with POU and MCP, respectively. In the 
other direction, no clear evidence for any significant causal 
association was found between POU and gut microbiota as well 
as MCP and gut microbiota. Besides, metabolites including lipid 
metabolites and neurotransmitters were found to exhibit causal 
relationships with POU and MCP.

A total of five positive causal associations were identified, 
including Adlercreutzia, Allisonella, and Dialister at the genus 
level with POU, Family Clostridiaceae1, and order 
Gastranaerophilales with MCP. Findings from our study were 
consistent with a cross-sectional study showing that genera 
Adlercreutzia and Dialister are significantly related to chronic 
back pain (Dekker Nitert et  al., 2020). The underlying 
mechanism has not been fully explored; however, it may 
include the role of gut microbiota in regulating inflammation-
driven hyperalgesia, impaired reward behavior, and other 
neuropsychiatric disorders (Lee et al., 2018; Valles-Colomer 
et al., 2019; Zhuang et al., 2020). A recent animal study found 
that gut microbiota and one of its products, valeric acid, may 
play a crucial role in neuroinflammation(Lai et al., 2021). An 
increasing number of studies has shown that altered gut 
microbiota is associated with inflammatory cytokines such as 
IL-6, IL-8, IFN-γ, and TNF-α (Lin et al., 2019). As is known, 
inflammatory cytokines play a crucial role in the process of 
hyperalgesia and thus strengthen the sense of pain, which may 
also increase the demand for analgesics. Another underlying 
mechanism is the neuropsychiatric disorders pathway. Many 
studies found evidence of relationships between gut microbiota 
and neuropsychiatric diseases and neurodegenerative diseases, 
for example, major depressive disorder, schizophrenia, and 
Parkinson’s disease (Zhuang et al., 2020; Rosoff et al., 2021; 
Ning et  al., 2022). One of the crucial symptoms of these 

diseases is the abnormality in reward processing, which often 
accompanies with chronic pain and also means increased 
demand for opioids (Pellissier et al., 2018).

Interestingly, protective causal effects of gut microbiota on 
POU, as well as gut microbiota on MCP were also found in our 
study. A total of seven negative relationships were identified, 
including Anaerofilum, Anaerostipes, ChristensenellaceaeR, and 
LachnospiraceaeNC2004group at the genus level with POU, 
genus ErysipelotrichaceaeUCG003, family Actinomycetaceae, 
and order Actinomycetales with MCP. These associations are 
broadly supported by previous studies. As is known, 
Anaerofilum, Anaerostipes, ChristensenellaceaeR.7group, and 
LachnospiraceaeNC2004group are all Gram-positive and 
anaerobic bacterial genera from the class Clostridia and the 
phylum Firmicutes. Class Clostridia is a producer of short-
chain fatty acids (SCFAs), mainly including butyrate. It is 
widely recognized that SCFA butyrate may reduce oxidative 
damages and suppress inflammation, thus alleviating pain 
perception and further reducing the demand for pain 
medications (Russo et al., 2018).

In the other direction, no clear evidence was found to reveal 
any significant causal relationship between POU and gut 
microbiota nor MCP and gut microbiota. This was contradicted 
with traditional studies that generally suggest gut microbiota 
alteration as a result of chronic pain and long-term use of pain 
medications such as opioids (Banerjee et  al., 2016; Acharya 
et  al., 2017), thus supporting the fact that these previous 
observational associations may be  due to confounding or 
reverse causality. Santanu et al. showed that long-term use of 
morphine was significantly associated with gut microbiota 
alterations and resulted in an increase in the abundance of 
Gram-positive pathogenic bacterial strains (Banerjee et  al., 
2016). In another cross-sectional study of patients with diabetes, 
a similar conclusion was yielded that the use of opioids was 
accompanied by changes in the gut microbiota, including levels 
of Bifidobacterium (Barengolts et  al., 2018). In addition, 
Gicquelais et al. performed a 16S rRNA gene sequencing, using 
fecal samples from 46 patients in an outpatient addiction clinic. 
Results from this study showed a decrease in Roseburia 
(butyrate-producing bacteria) and Bilophila in the prescription 
opioid use group but not in the nonopioid control group 
(Gicquelais et  al., 2020). The reason that our results were 
different from the above-mentioned observational studies may 
be due to the small sample sizes (ranging from 46 to 99), which 
were susceptible to unmeasured confounders such as diet and 
health status, leading to biased conclusions.

Given that metabolites may play a crucial role in the 
interaction between gut microbiota and POU/MCP, MR analysis 
was conducted to find their potential associations. It was 
surprising to find that a series of lipid metabolites may increase 
the risk of POU. Higher levels of triacylglycerol, diacylglycerol, 
and cholesterol ester potentially link to the risk of POU and/or 
MCP, implying their important roles in the microbiota-host 
crosstalk. These results are consistent with a previous study that 

https://doi.org/10.3389/fmicb.2022.994170
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=956143
https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=956114
https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=956143


Lin et al. 10.3389/fmicb.2022.994170

Frontiers in Microbiology 11 frontiersin.org

showed higher levels of triacylglycerol in patients with chronic 
pain would increase pain severity (Sibille et al., 2016). Interestingly, 
prior studies also showed that prebiotics or probiotics could 
be adopted in the management of lipid metabolites regulation 
(Barengolts, 2016). Furthermore, a recent MR study also showed 
a causal relationship between fecal microbiota and triglyceride 
(TAG) concentration, which strongly indicates that the levels of 
lipid metabolites, especially TAGs, are associated with gut 
microbiota composition (Liu et al., 2022). From the MR analysis 
in this study, a group of neurotransmitters, such as 
5-hydroxyindoleacetic acid (5-HIAA), inositol, sphingomyelin, 
and cyclic adenosine monophosphate, were observed to possibly 
act as protective factors in reducing the risk of POU or MCP. As 
the primary metabolite of serotonin, a higher level of 5-HIAA was 
observed to increase significantly after morphine treatment and 
had shown to be  associated with gut microbiota alteration in 
animal studies (Guzman et al., 2014; Yue et al., 2021). This may 
indicate the possible role of 5-HIAA in mediating the interaction 
between gut microbiota and POU. In this study, an elevated level 
of inositol was noticed to be potentially associated with a lower 
risk of MCP. This result coincided with a recent study showing 
that spliced inositol-requiring enzyme 1[α] (IRE1[α])-X-box-
binding protein (XBP1) is a mediator in the process of 
prostaglandin biosynthesis and plays a role in controlling pain 
(Chopra et al., 2019). In conclusion, from the perspective of the 
effects of metabolites on POU and MCP, we believe that lipid 
metabolites and neurotransmitters may be more worthy of our 
attention, which may also provide us with another possible way to 
reduce POU and MCP.

This study has several strengths. Firstly, this is a two-sample 
bi-directional designed MR analysis to assess the causality 
between gut microbiota and POU as well as gut microbiota and 
MCP. This design can minimize the potential bias due to 
confounding as well as reverse causality in traditional 
observational studies. Secondly, summary-level data on POU and 
gut microbiota are the largest GWASs to date and there were no 
overlapping samples in datasets between exposures and outcomes, 
which may avoid bias caused by the winner’s curse phenomenon 
(Bowden and Dudbridge, 2009). Thirdly, since the GWAS study of 
gut microbiota, POU, and MCP was the largest to date, this study 
thus has enough statistical power to detect causal effects. The 
statistical power to identify an odds ratio of 1.2 per 1 relative 
abundance increment in the gut microbiota on POU with p < 0.05 
was between 80 and 100%. Fourthly, evidence for causal inference 
was confirmed by the consistent direction and magnitude of effect 
estimates across three MR methods, including IVW, weighted 
median, and MR-Egger. Moreover, the horizontal pleiotropic test 
including the MR-PRESSO outlier test and MR-Egger intercept 
did not present any pleiotropy. Cochrane’s Q-test and leave-
one-out analysis showed no Heterogeneity. The results of 
sensitivity analyses provide us with strong evidence of the 
robustness of MR estimates.

Nevertheless, some limitations should be  noted when 
interpreting findings from this study. To start with, while 

we  leveraged summary statistics from the largest GWAS on 
POU, gut microbiota, and metabolites, limited SNPs meeting 
genome-wide significance were identified, which may result in 
weak genetic instruments. To solve this problem, the p value 
threshold for SNPs was relaxed to (p < 5 × 10−6) for POU, and 
(p < 1 × 10−5) for gut microbiota and metabolites, to include 
additional SNPs. The F-statistics were then calculated to 
quantify the strength of each SNP and only SNPs with 
F-statistics larger than 10 were enrolled for further analysis. 
Secondly, the biological actions of the selected SNPs were not 
fully studied, making it hard to identify all potential pleiotropy. 
However, we ruled out the possible affecting factor of chronic 
intestine disorders. Furthermore, sensitivity analyses including 
MRPRESSO and MR Egger intercept did not detect any 
horizontal pleiotropy in this study. Finally, although the gut 
microbiota GWAS adopted in this study is the largest at 
present, nevertheless, its sample size is still relatively small, and 
the loci studied are relatively limited. So, further studies should 
be  conducted to confirm our results when larger GWAS 
statistics are available.
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