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Introduction: As new computational tools for detecting phage in metagenomes

are being rapidly developed, a critical need has emerged to develop systematic

benchmarks.

Methods: In this study, we surveyed 19 metagenomic phage detection tools,

9 of which could be installed and run at scale. Those 9 tools were assessed

on several benchmark challenges. Fragmented reference genomes are used

to assess the effects of fragment length, low viral content, phage taxonomy,

robustness to eukaryotic contamination, and computational resource usage.

Simulated metagenomes are used to assess the effects of sequencing and assembly

quality on the tool performances. Finally, real human gut metagenomes and viromes

are used to assess the differences and similarities in the phage communities

predicted by the tools.

Results: We find that the various tools yield strikingly different results. Generally,

tools that use a homology approach (VirSorter, MARVEL, viralVerify, VIBRANT,

and VirSorter2) demonstrate low false positive rates and robustness to eukaryotic

contamination. Conversely, tools that use a sequence composition approach

(VirFinder, DeepVirFinder, Seeker), and MetaPhinder, have higher sensitivity, including

to phages with less representation in reference databases. These differences led to

widely differing predicted phage communities in human gut metagenomes, with

nearly 80% of contigs being marked as phage by at least one tool and a maximum

overlap of 38.8% between any two tools. While the results were more consistent

among the tools on viromes, the differences in results were still significant, with

a maximum overlap of 60.65%. Discussion: Importantly, the benchmark datasets

developed in this study are publicly available and reusable to enable the future

comparability of new tools developed.
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1. Introduction

Prokaryotic viruses called bacteriophages (phages) are the most abundant biological entity
in most ecosystems (Ofir and Sorek, 2018) and profoundly impact the ecology of natural
ecosystems (Breitbart and Rohwer, 2005; Blazanin and Turner, 2021). For example, marine
viruses have massive effects on ocean biochemistry, influencing nutrient cycling and carbon
sequestration by altering host-driven processes through controlling bacterial population growth
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and altering metabolic function (as reviewed in Fuhrman, 1999;
Hurwitz and U’Ren, 2016; Breitbart et al., 2018). Additionally, recent
studies have demonstrated the importance of phages in shaping the
human microbiota and interacting with human health (as reviewed
in Edlund et al., 2015; Manrique et al., 2017; Sharma et al., 2018;
Li et al., 2021). Next-generation sequencing techniques enable the
identification of an exponential number of novel phages but also
allow for a better understanding of phage populations in multiple
ecosystems (Breitbart et al., 2002).

Despite the increasing number of virome studies, identifying
viral sequences in metagenomic datasets is still computationally
challenging. Since viruses lack a universal gene marker (e.g., 16S
rRNA in prokaryotes), earlier bioinformatics methods to identify
viruses from metagenomes often relied on sequence alignment
methods against reference genome databases. Strikingly, in gut
viromes, 75–99% of viral reads do not produce significant alignments
to any known viral genome. This large range in alignable sequences
can be partially explained by the high diversity, fast phage evolution,
and their ability to integrate into their host genome and be
mistaken as bacterial. Indeed, an inherent limitation to genome
comparison approaches is the database completeness and clear
separation between host and viral DNA. Moreover, these reference-
based methods typically cannot identify novel phage sequences.
To address these limitations, several dedicated computational tools
and approaches were proposed. In 2015, the tool VirSorter (Roux
et al., 2015) was released, identifying phage sequences by enrichment
of viral hallmark genes, depletion of cellular genes indicated by
reduced Pfam hits, and strand shifts. In 2016, MetaPhinder took
into account the mosaicism of phage sequences by integrating
hits to multiple genomes to classify a sequence as host or viral
(Jurtz et al., 2016).

Recently, bioinformatic tools leverage machine learning
algorithms to identify features of viral origin, and typically allow for
a broader recall of previously unknown sequences than alignment-
based approaches. Chosen features are genes and gene density
(Amgarten et al., 2018; Antipov et al., 2020; Kieft et al., 2020; Tisza
et al., 2020; Guo et al., 2021) and protein families (Amgarten et al.,
2018) that are used to train classification models including random
forest (Amgarten et al., 2018; Guo et al., 2021), naive Bayes (Antipov
et al., 2020), and neural network (Kieft et al., 2020). Interestingly,
some authors also proposed using the differential k-mer (short
sequences of length k) frequencies between phages and prokaryotes
for sequence classification (Deaton et al., 2017; Ren et al., 2017).
These methods allow the detection of shorter phage sequences,
as they do not require multiple open reading frames (ORF) for
classification that are difficult to obtain in fragmentary metagenomic
data. However, the classification results and the rationale behind the
classification are typically difficult to interpret.

All in all, between 2015 and 2021, we identified 19 published
tools designed for detecting phage in metagenomes, making the
development of benchmarking datasets critical for exploring the
limitations and biases of the currently available tools but also
facilitating future tool development. Similar benchmark efforts are
currently available for other computational tasks such as metagenome
assembly, binning, and taxonomic profiling (Sczyrba et al., 2017;
Meyer et al., 2019). Recently, several efforts to benchmark phage
detection tools have been published, and explore the ability of
these tools to correctly identify and classify dsDNA viruses and
curate auxiliary metabolic genes (Pratama et al., 2021; Ho et al.,
2022). However, the potential impact of parameters such as the

sequence length, sequencing error, eukaryotic contamination, quality
of assembly, and phage taxonomy on the tool’s classification
performance is not explored.

In this study, we developed a series of benchmark datasets, each
aiming at assessing a precise classification challenge in detecting
phage in metagenomic datasets and evaluated phage metagenomic
detection tools published before July 2021. Notably, this work
only evaluated self-contained computational tools and did not
include more modular viral discovery pipelines such as the IMG/VR
viral discovery pipelines (Paez-Espino et al., 2017). Additionally,
this work does not include tools specifically intended to detect
integrated prophage in complete bacterial genomes, for which
prior benchmarking efforts are already available (Roach et al.,
2022). Importantly, we ensured the availability and reusability of
the developed benchmark datasets and described how researchers
could utilize them for benchmarking new phage detection tools
(doi.org/10.5281/zenodo.7194616).

2. Materials and methods

2.1. Phage detection tools

Tools were categorized into two broad groups. Homology-based
tools are those that utilize a reference database at the time of
classification to search for homologues. Sequence-based tools are
those that classify using a model trained on sequence features such
as k-mer frequencies.

Each of the evaluated tools included in this study was installed
from the recommended source following the authors’ instructions.
When tools were available from several sources, Bioconda was
preferred due to simplified dependency management. Tools that
could not be obtained through Bioconda were directly cloned from
GitHub or Sourceforge. Table 1 summarizes the tool and version
number when available, the category, classification method, training
of reference database, and how tools were obtained. Tools with
“-” under distribution were not used for further benchmarking, and
reasons for doing so are presented in Results.

2.2. Datasets

This study leverages 4 benchmark datasets: (1) genome fragment
set used for assessing the effect of contig length, low viral abundance,
eukaryotic contamination, and potential bias toward certain groups
of phages, (2) simulated phageome set used to explore the effect of
sequencing error on the classification, (3) simulated metagenome set,
used for exploring the effect of the quality of assembly, and viral
abundance in samples. The study also includes a real gut metagenome
dataset from colorectal cancer (CRC) patients compared to healthy
controls: (4) CRC dataset used to compare the results of the tools
on a real metagenomic dataset. Finally, this study includes real gut
viromes from children with Crohn’s disease, ulcerative colitis, and
healthy controls: (5) gut virome dataset.

2.2.1. Set 1: Genome fragment set
All complete bacterial, fungal, and viral genomes were

downloaded from the RefSeq database on 14 June 2021 (O’Leary
et al., 2016). These genomes were fragmented into non-overlapping
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TABLE 1 Overview of published metagenomic phage detection tools.

Tool and
version

Category Method Training set/Reference
database

Distribution References

DeepVirFinder (1.0) Sequence k-mer based deep learning neural net NCBI RefSeq genomes before May 2015 and
virome sequences

GitHub Ren et al., 2020

MARVEL (0.2) Homology Random forest utilizing gene density, strand
shifts, and proteins.

NCBI RefSeq genomes before 2016 GitHub Amgarten et al., 2018

MetaPhinder Homology Integrated analysis of BLASTn hits to a
phage database

Viral dataset from NCBI genomes, EMBL
EBI genomes, phageDB,

PhAnToMe/bacterial dataset from NCBI
genomes. Downloaded before August 2014

GitHub Jurtz et al., 2016

PhaMers Sequence k-Nearest neighbors and centroid proximity
metric of k mers

NCBI RefSeq genomes before October 2015 − Deaton et al., 2017

PPR-Meta Sequence Convolutional neural network (CNN) of
one-hot encodings of nucleobases and

codons

NCBI RefSeq genomes. Download date
unknown.

− Fang et al., 2019

RNN-VirSeeker Sequence Long short-term memory (LSTM) of
sequences

NCBI RefSeq genomes downloaded before
January 2014.

− Liu F. et al., 2022

Seeker Sequence LSTM of sequences NCBI genomes and EMBL EBI genomes.
Download date unknown.

PyPi Auslander et al., 2020

Unlimited
Breadsticks

Homology HMM of virus hallmark genes − GitHub Tisza et al., 2020

VIBRANT (1.0.1) Homology Neural network of protein signatures
including ratios of KEGG, VOG, and PFAM

hits, and presence of key viral-like genes.

NCBI RefSeq and Genbank before July 2019 Bioconda Kieft et al., 2020

viralVerify (1.1) Homology Naive Bayes classifier using an hmmsearch
of genes predicted with Prodigal

NCBI RefSeq genomes. Download date
unknown.

Bioconda Antipov et al., 2020

ViraMiner Sequence CNN of one-hot encoded nucleobases Sequences from 19 WGS metagenomes from
human microbiome samples.

− Tampuu et al., 2019

VirFinder (1.1) Sequence Logistic regression using k-mers NCBI RefSeq genomes downloaded before
January 2014.

Bioconda Ren et al., 2017

VirMine Homology BLAST search of ORFs against viral and
non-viral databases

Viral dataset: NCBI RefSeq viral genomes.
Bacterial dataset: Bacterial COGs. Download

date unknown.

− Garretto et al., 2019

VirMiner Homology Random forest (RF) based on functional
profiling and protein homology

Viral dataset NCBI genomes and ACLAME
database. Bacterial dataset: NCBI genomes.

Downloaded October 2016.

− Zheng et al., 2019

VirNet Sequence Deep attention model of sequences NCBI RefSeq genomes. Download date
unknown.

− Abdelkareem et al.,
2018

VIROME Homology Functional and taxonomic information
based on ORF homology

− − Wommack et al., 2012

VirSorter Homology Gene homology including enrichment of
viral-like and short genes, and depletion of

PFAM hits and strand shifts

NCBI RefSeq genomes before January 2014
and environmental viromes.

wget Roux et al., 2015

VirSorter2 (2.2) Homology Random forest classifiers using an
hmmsearch of genes predicted with Prodigal

NCBI RefSeq genomes before January 2020
and high-quality genomes from the

literature.

Bioconda Guo et al., 2021

VirusSeeker Homology BLAST search against virus database,
followed by search against full NCBI

database to remove false positives

Viral-only NCBI NT and NR database
before August 2016

− Zhao G. et al., 2017

adjacent fragments of lengths 500, 1,000, 3,000, and 5,000 nucleotides.
In total, 379 archaeal, 21,788 bacterial, 18 fungal, and 11,156 viral
genomes were obtained and fragmented, of which 1,483 were phage.
From those fragmented genomes, 10,000 fragments were randomly
selected from each length and each superkingdom. The resulting set
includes four subsets: 500, 1,000, 3,000, and 5,000 bp, each with 10k
fragments from the four superkingdoms for a total of 40k fragments

per length subset. This collection of unmodified fragmented reference
genomes is referred to as the genome fragment set.

2.2.2. Set 2: Simulated phageome set
InSilicoSeq v 1.5.4 (Gourlé et al., 2019) was used for creating

simulated reads from phage genomes. This tool creates an error
model of per-base quality (Phred) scores using Kernel Density
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Estimation, trained on real sequencing reads. InSilicoSeq was chosen
due to its computational efficiency (McElroy et al., 2012), simplicity
of use and documentation (Yu et al., 2020), and ability to simulate
Illumina sequencing instead of 454 technology (Richter et al., 2008;
Zhao M. et al., 2017). Additionally, this tool has been demonstrated
to generate reads with realistic quality score distributions for several
sequencing platforms, including MiSeq, HiSeq, and NovaSeq (Gourlé
et al., 2019; Yu et al., 2020).

Three “phageome” profiles were created by randomly selecting
500 phage genomes per profile from the downloaded RefSeq database.
Reads were simulated using InSilicoSeq, specifying 30x coverage
of all genomes. Reads simulated using each of the three built-in
error models were created for each profile. Simulated reads from
InSilicoSeq were assembled with MEGAHIT v1.2.9 (Li et al., 2015)
and binned with MetaBAT 2 v2:2.15 and using Bowtie2 v2.4.5 for
indexing (Langmead and Salzberg, 2012; Kang et al., 2019).

To determine the genomic origin of each contig, BLAST v2.12.0+
was used for alignment. Since the genomes used for read simulation
for each profile were known, a local BLAST database was created
using those same genomes for each simulated phageome, reducing
spurious hits. Alignment was done using the MEGABLAST mode
of BLASTn, with an e-value of 1e-20. Even with the limited BLAST
databases, it was common for contigs to have significant hits to
several genomes. To determine the “true” origin of the contigs, a basic
decision tree was used which is shown in Supplementary Figure 3.

In total, the simulated phageome set is comprised of nine
phageome assemblies and bin sets (3 profiles ∗ 3 error models).

2.2.3. Set 3: Simulated metagenome set
The same simulation and binning steps used in the Set 2

were used to generate a set of simulated metagenomes. Five
marine samples were used as the basis of this dataset. Three were
from the Hawaii Ocean Time-series (HOT) program (SRR5720259,
SRR5720320, SRR6507280) (Karl and Lukas, 1996), and two were
from the Amazon continuum dataset (SRR4831655, SRR4831664)
(Satinsky et al., 2014). Raw sequencing data were downloaded from
Sequence Read Archive (SRA), and processed using fastqc v0.11.9 and
trimGalore v0.6.6 (Andrews, 2010; Babraham Bioinformatics, 2022).
Briefly, reads with average base quality score below 20 were removed,
and those with adapters and poly-G sequences were trimmed. After
trimming, reads with a length < 20 bp were filtered out. After
quality control (QC), taxonomic abundance profiles of the bacterial
and phage population in each sample were obtained using Kraken2
(Wood et al., 2019) and Bracken (Lu et al., 2017) against the PlusPF
database (version 5/17/2021 available at https://benlangmead.github.
io/aws-indexes/k2). The abundance profiles were used as input for
InSilicoSeq, using reference genomes obtained from the RefSeq
database. Additionally, for any profile with a phage abundance below
5% of reads, the profile was supplemented with additional phages by
adding a minimum of 10 phages known to infect the top non-viral
organisms in the profile. 20M Simulated reads for each profile were
generated using the three built-in error models (HiSeq, MiSeq, and
NovaSeq). The 15 resulting assemblies and bins are referred to as the
simulated metagenome set.

2.2.4. Set 4: CRC dataset and Set 5: Gut virome
dataset

We also included a real-metagenomic dataset from a published
study that used fecal shotgun metagenomics to characterize stool
microbial populations from CRC patients compared to healthy

controls with a total of 198 samples (Zeller et al., 2014). This dataset is
referred to as the CRC dataset in this study. Additionally, we included
a real virome dataset from a previously published study that used viral
particle enrichment on fecal samples (Fernandes et al., 2019) from 24
healthy and IBD children. This second dataset is referred to as gut
virome dataset in this study.

Raw sequencing data were downloaded from SRA (PRJEB6070
and PRJNA391511) and were quality filtered using fastqc v0.11.9 and
trimGalore v0.6.6. Briefly, reads with an average base pair quality
score below 20 were removed, and adapters and poly-G sequences
were trimmed. After trimming, reads with a length < 20 bp were
filtered out. Quality-filtered sequences were screened to remove
human sequences using bowtie2 v2.4.2 against a non-redundant
version of the Genome Reference Consortium Human Build 38, patch
release 7 (available at PRJNA31257 in NCBI).

After QC and human read filtering, the reads were assembled
using Megahit v1.2.9. The code of the pipeline used for the assembly
is available on Github.1 Megahit was run on the paired-end reads
or single-end reads using the default parameters (referred to as the
simple assembly). Additionally, a co-assembly of the multiple runs
per BioSample was also performed (referred to as the co-assembly).
Assemblies were binned with MetaBAT 2 v2:2.15 and using Bowtie2
v2.4.5 for indexing. CheckV v1.0.1 was run on all assemblies to assess
viral and bacterial gene content.

2.3. Classification of the datasets

Snakemake was used as a workflow manager for running the tools
(Köster and Rahmann, 2012). This pipeline was implemented on the
Puma High-Performance Compute (HPC) cluster at the University
of Arizona using SLURM (Yoo et al., 2003). While running the tools,
the following metrics were collected by Snakemake: runtime and CPU
time, peak memory usage, and file write operations.

When running the tools, the default parameters, modes, and
databases were used to replicate those intended for use by the authors.
DeepVirFinder was run without a length cutoff. MetaPhinder
was run using the default database. Seeker was run using the
command-line executable binary instead of the Python package.
VIBRANT was run in standard (not virome) mode, with the
default minimum length (1,000 bp) and number of ORFs (4).
viralVerify utilized the default database. Virsorter was run using
the default (RefSeq) database, in non-virome mode, and BLASTP
as the default was used instead of DIAMOND. Virsorter2 was
run to identify only dsDNAphage and ssDNAphage, allowing for
proviruses by not using the “–no-pro-virus” flag and not limiting the
number of ORFs.

All of the tools classified the fragments in the genome fragment set
except for MARVEL, which requires bins as input. VIBRANT and
VirSorter do not classify fragments shorter than 1,000 nucleotides
(nt), so there is no data for these tools for the 500 nt fragments.
Default parameters were used for cutoff thresholds when the option
was provided. To simplify the comparison of the classification
performances, all predictions were binned into “phage” or “non-
phage” classes. VirFinder and DeepVirFinder return a prediction
score, and a score of 0.5 was used as a cutoff for classification.
VIBRANT predicts both prophage and lytic virus labels, both of

1 https://github.com/aponsero/Assembly_metagenomes
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which were considered to be classified as phage. VirSorter also
predicts prophage and lytic labels, and assigns a confidence category,
all of which were considered to be classified as phage.

The simulated datasets (simulated phageome set and simulated
metagenome set), and the CRC dataset, and the gut virome dataset
were classified by all tools. Assembled reads were classified by all
tools except MARVEL. MARVEL was given binned assemblies for
classification. Resource usage required for binning was included in
the resource usage benchmarking for MARVEL.

2.4. Performance assessment

Several performance metrics are assessed for each of the challenge
datasets. These are precision, sensitivity (recall), specificity, F1, and
AUPRC, as defined below. In these definitions, a “positive” is a phage
sequence, while a negative is anything that is not phage. Accordingly,
a true positive (TP) is a phage sequence that has been correctly labeled
as phage, a True Negative (TN) is a non-phage sequence correctly
labeled as such, a False Positive (FP) is a non-phage sequence labeled
as phage, and a False Negative (FN) is a phage sequence not labeled
as phage. Precision is the portion of all predicted phage sequences
that are indeed phage (Eq. 1). Sensitivity, also known as recall, is the
proportion of all true phage sequences that were correctly identified
(Eq. 2). Specificity is the proportion of all non-phage sequences that
were correctly labeled (Eq. 3). F1 score is the harmonic mean of
precision and sensitivity (Eq. 4). The area under the precision recall
curve (AUPRC) is a measure of precision over the sensitivity range,
given a varying classification threshold for a continuous predictive
output value (Eq. 5).

precision =
TP

TP + FP
(1)

sensitivity
(
recall

)
=

TP
TP + FN

(2)

specificity =
TN

TN + FP
(3)

F1 =
2× precision× sensitivity

precision+ sensitivity
(4)

AUPRC =
∫ 1

0
p dr; p = precision, r = recall (5)

3. Results

3.1. Installation of tools

A total of 19 tools were collected based on a survey of the
literature as of July 2021. However, several tools were omitted from
further investigation for the following reasons: (1) the creation of
runtime exceptions (PhaMers and VirMine), (2) tools with hard-
coded paths that require the user to modify source code (RNN-
VirSeeker and VirusSeeker), (3) lack of clear installation instructions
and documentation (ViraMiner and VirNet), (4) tools that are
unscalable due to web server usage (VirMiner and VIROME), and (5)
inability to run instances of the tool on different cores from the same
directory (PPR-Meta). Finally, Cenote Unlimited Breadsticks could
be installed and run but did not classify any of the genome fragments
as viral, and was excluded from the benchmark analysis, but included
in the resource usage comparison.

3.2. Resource usage

Computational resource usage was benchmarked using the
genome fragment set since the quantity and length of genomic
fragments were known and balanced. Pre- and post-processing
steps were excluded from these measurements. For tools that did
not allow the user to specify the output directory (MARVEL and
Seeker), we also included time to move output files to the correct
output directory.

The total time (in CPU time) for each tool included: (1) CPU
time to run the tool summed for user and system and (2) the
amount of time to read and write data while classifying the genome
fragment set (Figure 1). For some tools, CPU time was highly variable
(MetaPhinder, VIBRANT, viralVerify, and to a lesser extent for
VirSorter, VirSorter2, and Seeker). Seeker generally had the longest
CPU times, even for shorter fragments. While DeepVirFinder was
consistently fast, its real-world performance was hindered due to its
use of the Theano backend. While multiple jobs can be submitted
in parallel, the Theano backend can only process one dataset at
a time for serial processing. This led to long-running jobs for
DeepVirFinder, but deceptively low CPU time measures.

3.3. Benchmark challenge 1: Classification
of genome fragments

3.3.1. Effect of contig length
We first evaluated the effect of contig length on each tool’s

performance. To assess this effect, the genome fragment set (Set 1)
was used as input. Figure 2A shows F1 score for increasing fragment
lengths (500, 1,000, 3,000, and 5,000 nt). As expected, homology-
based tools such as VIBRANT, viralVerify, and VirSorter2 were
strongly affected by fragment length, with performance increasing
with length. VirSorter had the lowest F1 score for all lengths and
had only a marginal increase in F1 with increasing length. The
sequence-based tools (DeepVirFinder, VirFinder, and Seeker), as well
as MetaPhinder, were largely unaffected by fragment length.

While F1 score illustrates overall changes in classification
performance due to fragment length, each tool’s performance is
affected in different ways (Figure 2B). VIBRANT, viralVerify, and
VirSorter2 demonstrate fairly consistent and high precision but have
length-dependent sensitivity, whereas DeepVirFinder, MetaPhinder,
Seeker, and VirFinder demonstrate fairly consistent sensitivity and
precision. Generally, length-dependent sensitivity is a property
of homology-based tools where longer fragments are needed for
classification. Interestingly, MetaPhinder (a homology-based tool)
exhibits a pattern similar to the sequence-based tools for this
property.

Several tools output a continuous classification score metric.
For these tools (VirFinder, DeepVirFinder, Seeker, MetaPhinder, and
viralVerify), the threshold used will affect precision and sensitivity.
Although the default threshold was used, the effect of this threshold
can be seen in the precision-recall curves (Supplementary Figure 1)
and AUPRC (Supplementary Figure 2). These tools all showed lower
AUPRC for shorter contigs, with DeepVirFinder outperforming the
other tools even on shorter contigs.

3.3.2. Low viral content
In the above section, precision is computed based on a balanced

dataset (equal quantities of phage and bacteria). However, this
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FIGURE 1

Resource usage while classifying 10k genome fragments of various lengths (500, 1,000, 3,000, and 5,000 nt). (A) Read operations (MB), (B) write
operations (MB), and (C) CPU time (h) summed for user and system. Sequence-based tools are in blue, homology-based tools are in yellow.

FIGURE 2

Effect of fragment length on classification performance. Only phage and bacterial sequence fragments are included. (A) Balanced F1 score plotted
against fragment length (nt) and (B) balanced precision plotted against sensitivity for four fragment lengths. Top row of tools are sequence-based (in
blue), bottom two rows are homology-based (in yellow).

gives a highly optimistic estimate of precision. For a given false
positive rate (FPR), precision will drop significantly when phage
content is low. To illustrate this, the FPR (Eq. 6) was taken from
the classification of the genome fragment set, and precision was
extrapolated to hypothetical community compositions ranging from

0 to 100% non-viral fragments (Figure 3). 50% represents a balanced
dataset.

FPR =
FP

FP + TN
(6)
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FIGURE 3

Extrapolated precision calculated from FPR of each tool at four fragment lengths (500, 1,000, 3,000, and 5,000 nt). Precision is calculated for
communities composed of varying levels of non-viral fragments from 0% (all phage) to 100% (all non-phage). Top row of tools are sequence-based (in
blue), bottom two rows are homology-based (in yellow).

For communities with low viral content, precision decreases
for nearly all tools. Notably, viralVerify did not falsely classify
any 500 nt fragments as phage, thus its hypothetical precision
remains perfect for that fragment length. VIBRANT, viralVerify, and
VirSorter2 maintain fairly high precision but still drop below 0.5 for
communities with low viral content.

3.3.3. Effect of phage taxonomy
The lack of phage diversity and bias for certain phage groups

in reference databases leads to challenges in training models and
propensity for tools to retrieve fewer phages from less represented
phage groups. The majority (c.a. 93%) of phages in RefSeq belong to
the order Caudovirales (recently renamed as the class Caudoviricetes;
Turner et al., 2021). Importantly, all tools were shown to have
reduced sensitivity for non-caudovirales sequences. In particular
homology-based tools showed a drastically reduced sensitivity toward
these phages (Figure 4).

While the limitation of database composition is mitigated
by sequence-based compared to homology-based approaches, a
slightly lower sensitivity for non-caudoviral phages was nonetheless
observed.

Even within the caudoviral order, the three main families are
detected unequally by the tools. Siphoviridae constitutes the greatest
phage family represented in RefSeq (69.9%), followed by Myoviridae
(15.6%) and Podoviridae (7.28%). This is apparent in the fragmented
genomes set due to random sampling from the fragmented genomes;
of the caudoviruses, more fragments came from Siphoviridae and

Myoviridae than Podoviridae. Figure 4 demonstrates how sensitivity
is decreased for the retrieval of Siphoviridae and Podoviridae
sequences compared to Myoviridae in particular MetaPhinder,
VIBRANT, and VirSorter2.

3.3.4. Eukaryotic contamination
A concern for sequence-based tools is specificity when faced with

eukaryotic contamination, due to the lack of eukaryotic sequences
in the training sets (Ponsero and Hurwitz, 2019). As part of the
genome fragment set, the tools classified 10k eukaryotic genome
fragments of 4 lengths from fungi in the phyla Ascomycota and
Basidiomycota. The specificity on these eukaryotic fragments is
shown in Figure 5. All homology-based tools are extremely robust
to eukaryotic contamination even for short fragments. However,
sequence-based tools and Metaphinder show much lower specificity,
frequently misclassifying eukaryotic fragments as viral, with an FPR
around 0.5. Notably, Seeker shows a sensitivity that is worse than a
random chance binary classification, classifying nearly all eukaryotic
sequences as viral.

3.4. Benchmark challenge 2: Classification
of simulated metagenomic sequences

To compare the relative performance of the tools when
faced with read errors from different sequencing technologies and
potential assembly error, the simulated phageome set and simulated
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FIGURE 4

Effects of phage taxonomy on sensitivity. (A) Sensitivity plotted against fragment length, comparing bacteriophages in the order Caudovirales and those
in other orders. (B) Sensitivity plotted against fragment length, comparing bacteriophages in the top three families of the order Caudovirales. Top row of
tools are sequence-based (in blue), bottom two rows are homology-based (in yellow).

FIGURE 5

Classification specificity of eukaryotic genome fragments. Eukaryotic fragments were generated from the Ascomycota and Basidiomycota phyla
(n = 10k) at different length size. The specificity of each tool was measures for each sequence length. Top row of tools are sequence-based (in blue),
bottom two rows are homology-based (in yellow).
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metagenome set were created from simulated reads generated using
error models that represent 3 popular sequencing platforms: HiSeq,
MiSeq, and NovaSeq. Each technology has a unique per-base error
rate, as modeled by InSilicoSeq, as well as differing read lengths.
We aimed to assess how these differences affect assembly and
tool performance.

3.4.1. Simulated phageomes
To directly assess the effect of sequencing error and assembly on

classification sensitivity, the simulated phageome set was classified by
each tool. In this dataset, simulated reads were obtained from phage
genomes and assembled into contigs. The assembled contigs’ length
varied from 500 to 309,196 bp, with a median length of 949 bp. Unlike
in the genome fragment set, simulated contigs could be used to assess
MARVEL, which requires binned sequences for classification. Each
tool’s sensitivity was calculated using the assembled contigs grouped
by length (Figure 6).

The results are largely consistent with those obtained using
the genome fragment set. DeepVirFinder and MetaPhinder, followed
by VirFinder and Seeker, show the highest and most consistent
sensitivity across all contig lengths. VIBRANT, VirSorter, and
VirSorter2 performed well for longer contigs, but sensitivity suffers
as contig length decreases. VirSorter’s sensitivity begins to improve at
about 104 bp and increases greatly for 104.5 and 105 bp. MARVEL,
while better than VirSorter on short contigs, demonstrates the lowest
sensitivity for long contigs. Importantly, MARVEL shows more
variability in sensitivity for a given length. Indeed, the tool performs
classification of contigs after binning, and since contigs of various
lengths may be present in the same bin, we observe that the tool’s
performance is less tightly coupled to contig length.

The three error models produce reads of different lengths (HiSeq
125 bp, NovaSeq 150 bp, and MiSeq 300 bp). This led to a significant
difference in contig lengths between MiSeq and the other two
error models (based on Wilcoxon rank sum test with Bonferroni
adjusted p-value, p < 0.05). However, the sensitivity at a given length
was similar across error models, suggesting that the difference in
sequencing technologies is mitigated by the assembly process.

3.4.2. Simulated metagenomes
The simulated metagenome set was produced from the bacterial

and phage content of 5 metagenomic marine samples. This
method allowed us to generate simulated metagenomes that are
as close and possible to a real metagenome set while excluding
the unknown fraction of the microbial population. The distance
between the original taxonomic profile for the sample and the
profile used for simulation was calculated as Bray-Curtis dissimilarity
(Supplementary Figure 4). This computational method allowed us to
generate simulated metagenomes containing 5% of phage sequence
content and a realistic distribution of contigs length.

The precision and sensitivity of the tools on the simulated
metagenome set were assessed based on the contig length (Figure 7,
and F1 score in Supplementary Figure 4). The observed sensitivity
(Figure 7A) is consistent with the results from the simulated
phageome set, although MARVEL displays a large variance in
sensitivity across the different replicates, possibly reflecting the
quality of binning.

Importantly, using this benchmark set, a decrease in precision
due to low viral abundance is clearly seen for all tools (Figure 7B).
VirSorter, viralVerify, VIBRANT, and VirSorter2 perform slightly
better than VirFinder, Seeker, and MetaPhinder. viralVerify performs

exceptionally well for long contigs (≥105), followed closely by
VirFinder.

3.5. Benchmark challenge 3: Comparison
on a real-world dataset

We finally compared the tools on two real datasets, the CRC
dataset and the gut virome dataset, for which the true phage/bacterial
composition is unknown. We aimed here to assess the overlap in
phage identification of the different tools and estimate the number
of potential FP results.

3.5.1. CRC dataset
Importantly, when comparing the results obtained for tools on

the CRC dataset the proportions of contigs predicted to be phage vary
strongly by tool. VirSorter, MARVEL, viralVerify, VIBRANT, and
VirSorter2 detect fewer phages (median less than 2,200 contigs per
sample) than the sequence-based methods and MetaPhinder (median
greater than 33,000 contigs per sample). This result is consistent
with the high precision but lower sensitivity measured for homology-
based tools.

We next assessed the overlap of the different tools in predicting
the same sequence as phage (Figure 8). Strikingly, there was very little
overlap in phage communities predicted by the tools (Figure 8B).
The highest level of consistency between tools was seen for VirFinder
and DeepVirFinder (38.8% of contigs identified by either tool were
identified by both), and the highest level of consistency between
homology-based tools was with VirSorter and VIBRANT (26.6% of
predicted phages were in common). However, most contigs showed
different levels of consistency between tools, where on average, 55,320
contigs were predicted to be phage by only one tool, 62,400 were
predicted by 2 or more tools, and 29,900 by 3 or more tools.

CheckV (Nayfach et al., 2021a) was used to evaluate the predicted
phage contigs for viral genes. Potential viral contigs are categorized
as “Not Determined” (without any detectable viral genes), “Low
Quality,” “Medium Quality,” “High Quality,” or “Complete.” The
proportions of contigs predicted by the tools falling into each
category are shown in Figure 8C. As expected, the sequence-based
tools and MetaPhinder contain a low proportion of contigs with
Medium Quality or higher, suggesting a potential number of FPs
for these tools, while the other homology-based tools have higher
quality predictions. MARVEL predicted no contigs below Medium
Quality. Additionally, the number of predicted phages being labeled
as Medium Quality, High Quality, or Complete by CheckV are shown
in Figure 8D.

3.5.2. Gut virome dataset
When comparing the results obtained for each tool on the gut

virome dataset, we observe that, similarly to the CRC dataset, the
quantity of contigs predicted as viral varies strongly by tool. However,
we observe an increased consistency among the tools, and the phage
communities retrieved by the tools had a larger overlap (Figure 9A).
Similar to the CRC dataset, the highest level of consistency between
tools was seen for VirFinder and DeepVirFinder (60.5% of contigs
found in common), and the consistency between homology-based
tools remained low, with the greatest agreement found between
VIBRANT and viralVerify (22.8% of predicted phage sequences in
common).
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FIGURE 6

Tools performances on a simulated phageome dataset. (A) Length distributions, and number of, assembled contigs constituting the nine phageomes
generated using the three phageome profiles and three error models. (B) Sensitivity of classifying simulated phage contigs. Contigs were grouped by
length (x-axis) for computation of sensitivity. Error models are ordered by increasing read length. Top row of tools are sequence-based (in blue), bottom
two rows are homology-based (in yellow).

FIGURE 7

(A) Precision and (B) sensitivity on a simulated metagenome dataset. Each point represents the tool’s performance on contigs within a given length
group, assembled from reads from a specific abundance profile, using the indicated error model. Top row of tools are sequence-based (in blue), bottom
two rows are homology-based (in yellow).

Most sequences retrieved by sequence-based tools were still
classified as “Not determined” by CheckV, suggesting a potential
high number of FPs for these tools in these conditions (Figure 9B).
Interestingly, the number of contigs classified as “Medium quality”
or higher by CheckV was similar among tools, with the exception
of Metaphinder and VirSorter which retrieved fewer contigs
(Supplementary Figure 8).

3.6. Reusable benchmark dataset

The five benchmark datasets are available on Zenodo
(doi.org/10.5281/zenodo.7194616). Files for the genome fragment set
include a FASTA file of genome fragments, a CSV file of taxonomic

information of each fragment, and a compiled and cleaned file of
the classification results of the nine tools on the genome fragments.
Files for the simulated metagenome set and simulated phageome set
include the assembly files in FASTA format, the binned assemblies, a
CSV file of the contig taxonomic origins resulting from BLAST, and
a CSV file of the compiled contig classifications by the tools. For the
CRC dataset and gut virome dataset, the assemblies and bins, as well
as the compiled contig classifications, are available. For all datasets,
the resource usage as recorded by Snakemake is also included.

In addition to README files for each dataset, datasheets based on
Datasheets for Datasets (Gebru et al., 2021) are deposited in Zenodo.
These provide details about how the datasets were generated, their
composition, and the intended uses.
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FIGURE 8

Comparison of the tools’ classifications on a real-world metagenomic dataset. (A) Proportion of contigs predicted to be phage in each length group for
each sample. (B) Upset plot showing intersection size, with the x-axis in order of decreasing set size, top 51 intersections shown. (C) CheckV assessment
of predicted phage contigs from the CRC dataset. Predicted phage contigs from each tool are categorized by CheckV, and plotted as a stacked bar chart
of the portion of predicted phages in each category. (D) Total number of contigs predicted by CheckV to have quality Medium or greater.
Sequence-based tools are in blue, homology-based tools are in yellow.

4. Discussion

This study aims to gain a better understanding of how
metagenomic phage detection tools perform under a variety of
conditions. Previous studies have explored the detection and
classification of dsDNA viruses and auxiliary metabolic genes,
but the performance of these tools under a variety of challenges
remains. Given differences in metagenomes based on the taxonomic
composition, sequencing quality, and computational methods for
analyzing these metagenomes, we examined the effects of contig
length, phage taxonomy, and sequencing and assembly error. We
sought to address the robustness of tools to eukaryotic contamination
and low viral content. Finally, we wanted to address the different
phage communities predicted by the tools when classifying real gut
metagenomes and viromes.

4.1. Tools installation, reusability, and
computational requirements

One of the first barriers to the effectiveness of a phage detection
tool, and bioinformatics tools in general, is the ability to be installed
and scaled to real data. Of the 19 tools identified for this study, only
9 (47%) could be installed and run at scale. This is corroborated
by related studies, such as Pratama et al. (2021), which excluded
PHASTER and VirMiner, and Ho et al. (2021), which excluded
VIROME, VirMiner, ViraMiner, PhaMers, VirNet, and VirMine from
their benchmarking efforts. Tools that were available on Bioconda
and PyPi were easiest to install because the tool and all dependencies
could be installed simultaneously, while those on GitHub required
more effort. We acknowledge the extra effort required to develop
tools and create releases using Bioconda and PyPi.
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FIGURE 9

Comparison of the tools’ classification on real-world viromes. (A) Upset plot showing intersection size, with the x-axis in order of decreasing set size, top
51 intersections shown. (B) CheckV assessment of predicted phage contigs from the Gut Virome dataset. Predicted phage contigs from each tool are
categorized by CheckV, and plotted as a stacked bar chart of the portion of predicted phages in each category.

There have been efforts to make tools more accessible, even if
the original version is not so straightforward to install. One solution
is sharing containers, such as on DockerHub, Biocontainers on the
AWS ECR public gallery, or CyVerse (da Veiga Leprevost et al.,
2017; CyVerse, 2022; Docker Hub, 2022). One effort specific to
phage-finding tools is What the Phage, which developed a Nextflow-
based workflow for running several phage detection tools in a single
container (Marquet et al., 2022).

In addition to the ability to install and run a tool, scalability
and resource usage are significant factors considering the scale
of metagenomic data. While web services provide a convenient
interface, they are often not a viable option for classifying many
samples. Similarly, tools that do not allow several samples to be
processed at the same are impractical in most cases. For the tools
that could be installed and run at scale, computational resource
usage varied widely. Homology-based tool compute times generally
varied with contig length. Seeker had the most consistently high
compute times (greater than 30 h to classify 10k fragments). While
DeepVirFinder had the most consistently low compute times, its
inability to process several samples in parallel hindered its actual
runtimes. However, this may be circumvented by running each
process in its own container, each with its own Theano backend.

4.2. Performance on short sequences

In this study, we compared the tools on several challenges
to identify the current limitations and strengths of tools and
computational approaches. First, we evaluated the effect of sequence
length on classification performance. Unsurprisingly, sequence-
based tools were able to work with shorter contigs than homology-
based tools, as they did not require the presence of multiple genes
to classify a sequence. Similarly, the precision of homology-based
tools was largely independent of fragment length since shorter contigs
would not be expected to affect the FPR. Finally, the sensitivity of
sequence-based tools such as VirFinder, DeepVirFinder, and Seeker

were globally unaffected by the sequence length and allow the
retrieval of sequences as short as 500 bp. However, a decreased
precision for shorter contigs could be observed for these tools,
suggesting that a higher number of FPs should be expected when
using these tools on shorter contigs. On the other hand, homology-
based tools such as VirSorter2, Vibrant, and viralVerify, showed a
reduced sensitivity on short contigs but a consistent precision for
all lengths. Interestingly, Metaphinder, which leverages multiple hits
against a genome database, showed a similar effect for contig length as
the sequence-based tools, with an increased FPR for shorter contigs.
Metaphinder sums the regions of the fragment that have BLASTn
hits to phage genomes in a reference database, even if the hits are
from distinct phage groups. This, coupled with a fairly permissive
e-value of 0.05, leads to a sensitive but less precise classification for
short fragments.

The result of this reduced sensitivity on short contigs is seen
in both the simulated phageome set and simulated metagenome
set, where VirSorter, viralVerify, VIBRANT, and VirSorter2 recover
less than 75% of phage contigs between 1,000 and ∼3,200 bp
long. Considering the difficulty of assembling short reads in real
metagenomes, this poses a barrier to retrieving a large number of
phage sequences present only as short contigs. For perspective, 93%
of the contigs in the CRC dataset were shorter than 3 kbp.

4.3. Bias toward over-represented phage
groups

The ability of these tools to identify novel phages or phages
with lower database representation can be critical for exploring
many natural viral populations. We assessed this by comparing the
sensitivity of the tools on the well-represented Caudoviral group
and other phage groups. Importantly, all tools showed a decreased
sensitivity for non-caudoviral phages. This effect was also seen when
comparing the sensitivity of tools on the more abundant Myoviridae
phages compared to the Siphoviridae and Podoviridae phages. This
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result is particularly striking as it suggests a bias in sensitivity toward
the over-represented phage groups in databases. Of the tools included
in this benchmark, DeepVirFinder appears to be the most suited to
detecting a wider diversity of phages and showed the most consistent
sensitivity across phage groups. It is important to note here that
our benchmark dataset relied on RefSeq genome sequences and is
therefore limited to known phages.

4.4. Low viral content and eukaryotic
sequences

Real metagenomes typically contain low levels of viral content
and may also carry eukaryotic sequences from the host (e.g., human
gut microbiome) or from micro-eukaryotes. While sequences from
a eukaryotic host can typically be excluded from the metagenomic
dataset before viral detection, this is particularly difficult for micro-
eukaryotic sequences. Of the tools compared, none used eukaryotic
genomes in their training set, leading to concerns about specificity
when faced with eukaryotic contamination. In this benchmark, we
showed that sequence-based tools and Metaphinder exhibit low
specificity on fungal sequence fragments, while other homology-
based tools remain unscathed.

To understand how low viral content affects precision, the
precision of tools was extrapolated to the full range of possible phage
content. All tools had decreased precision when viral content is
low, dropping sharply when viral content is below 20%. viralVerify
was the most robust to low viral content, especially on shorter
contigs. The consequences of this were seen in the classification of
simulated metagenome set, each of which had 5% phage. All tools had
varying and often low (below 0.5) precision, although viralVerify and
VirFinder had good precision for the longest contigs.

4.5. Sequencing error and assembly
quality

Using simulated datasets, we next aimed to assess the effect of
sequencing error and assembly on each tool’s performance. This
method allowed us to develop more realistic benchmark sets while
retaining the possibility to assess the true composition of the set.

First, we evaluated the tools’ sensitivity on a simulated phageome
set composed of simulated phage contigs only and assessing the
potential effect of sequencing error and potential misassembly. We
showed the global sensitivity to be very similar to that obtained
when classifying unmodified genome fragments. This indicates
that sequencing error, sequencing technology, and misassembly
do not hinder sensitivity significantly, at least with sufficient
sequencing depth (simulated phageomes were simulated with
30x coverage).

The simulated metagenome set aimed to give the most realistic
estimate of real-world performance. The sensitivity of all tools again
closely reflected previous results. In particular, the contig length and
the low viral content were driving the observed tools’ performances.
DeepVirFinder, Seeker, and at shorter contig lengths Metaphinder,
had precision typically below 0.5. VirSorter, viralVerify, VIBRANT,
and VirSorter2 had slightly higher precision, although with high
variance, often falling below 0.5. viralVerify, however, was extremely
precise for long contigs. Once again, this result suggested a limited
effect of sequencing error on the tools’ performances.

4.6. Comparing overlap in viral predictions

The previous benchmark challenges suggested vastly different
properties that affect the final result obtained by users when using
on their real-world datasets. This was further demonstrated here on
the CRC dataset. The predicted phage quantity and composition is
strikingly different between tools. As expected from the previous
benchmarks, the homology-based tools, excluding MetaPhinder,
predict far fewer phages than sequence-based tools. But most
strikingly, the overlap of sequences found by several tools is
surprisingly low. Of all sequences predicted to be phage by at least
one tool, only 53% were predicted by two or more tools, and 25% were
found by three or more tools, on average. The dissimilarity of contigs
predicted as phage by the tools is so wide that approximately 80% of
contigs are predicted to be phage by at least one tool. Consequently,
when applying these tools to real datasets, the choice of tool would
strongly affect the predicted phage community.

The use of CheckV can help reach a larger level of agreement
between tools, when used to filter out potential FPs (Figure 8D and
Supplementary Figure 7). In CheckV, genes are first annotated as
either viral or microbial based on comparison to a large database of
hidden Markov models (HMMs), and the absence of detectable viral
genes in the sequence leads to a classification of the contig as “Not
determined.” Interestingly, when contigs with Low Quality or Not
Determined status are removed, then greater than 50% of contigs
from the CRC dataset found by at least one tool are found by 3 or
more tools; 26% of contigs found by at least one tool are found by 6
or more tools. However, CheckV is stringent, and additional contigs
can be recovered by supplementing the dataset with contigs that
lack genes of cellular origin, especially for metagenomes with highly
novel phage.

For viral-particles enriched metagenomes (gut virome dataset),
the results obtained from the different tools were more consistent.

FIGURE 10

Breakdown of each evaluated tool’s performance. Tools are colored
such that homology-based methods are yellow and sequence-based
tools are blue. Colors are scaled from the minimum to maximum
value in each column. Scales are linear, except for speed which is
scaled to log 10 of speed. Speed is the average number of genome
contigs from the simulated metagenome set classified per second.
Sensitivity and precision are averages from classifying the simulated
metagenomes set. Diverse phages is the average ratio of sensitivity on
non-caudoviral phages vs. caudoviral phages. Eukaryote specificity is
the average specificity when classifying eukaryotic genome fragments.
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With fewer non-viral sequences, the number of FPs should be
reduced in particular for the sequence-based tools, explaining a more
consistent results among the tools.

4.7. Toward a reusable benchmark dataset
for viral tool assessment

To facilitate further benchmarking of newer tools, we have made
all benchmark datasets available. This includes all input files, such as
the genome fragments and the assembled simulated metagenomes.
Files giving the taxonomic origins of all fragments and contigs are
also available, to serve as an answer key when benchmarking new
tools. The resulting classifications have been cleaned and compiled
into a consistent format, such that classification results can be
compared at the fragment/contig level without having to reclassify
the input data. Additionally, all code used to analyze the data and
generate figures is available for reference on GitHub,2 although
modifications would have to be made to incorporate new tools, due
to differences in output format, etc.

5. Conclusion and recommendations

We summarized each tool’s performances for each benchmark
challenge in Figure 10. Given these insights, the remaining
question is “What is the best solution to phage detection and
prediction?.” Unfortunately, answering this important question is not
straightforward, especially given the tradeoffs between precision and
sensitivity. However, some general guidelines can be used to decide
which tools to use. For physically purified viromes (viral particle
enriched metagenomes), precision is less of a concern, so one can
prioritize sensitivity, and may choose DeepVirFinder, which also
has the best sensitivity to non–caudoviral phages. For metagenomes
where phages are actively infecting their bacterial hosts, the research
question at hand should be the main driver in deciding. To identify
novel phages, DeepVirFinder or Metaphinder may be a good choice,
although the results should be further confirmed to avoid FPs, such
as through the use of CheckV (Nayfach et al., 2021a), and when
possible, host sequences should be removed prior to classification.
However, if one is wanting to study the dominant phages present
in an environment and maintain high confidence in phage calling,
VirSorter2 or viralVerify may be good choices.

Given the high FPR for sequence-based tools, using several
of these tools together to increase the sensitivity would lead to a
decreased precision. Instead, a more robust multi-tool approach
may combine sequence-based and homology based tools to find
consensus predictions.

5.1. Limitations and future directions

This study aimed to set the basis for the development of a
fair and reusable benchmark for viral detection tools. However, we
wanted to highlight some limitations to the current study. First,
we use the default parameters, reference databases, and trained

2 https://github.com/hurwitzlab/phage_detection_benchmarks

models for all tools. While admittedly these may not be optimal,
we believe that it is likely how a large proportion of researchers
would use the tools. In particular, some tools allow users to choose
a more stringent threshold to reduce false positives. The effect of
such change in parameters can be investigated in this study by
looking at the precision-recall curves provided in Supplementary
material. However, the effect of further parameter tuning and
database update was not evaluated in this benchmark and would be a
valuable future effort.

Additionally, this benchmark did not investigate the tools’ ability
to detect integrated prophage sequences nor plasmid sequences.
Indeed, several tools such as VirSorter, VirSorter2. and VIBRANT are
able to classify prophage sequences, and PPR-Meta is able to classify
plasmid sequences. Future works may in particular evaluate the tool
accuracy in detecting prophage boundaries and the effect of prophage
inactivation and genetic degradation.

Second, all genomes used in the genome fragment set and
simulated datasets were retrieved from RefSeq. This has a significant
overlap with the tools’ reference databases and training sets
(Table 1), therefore this study likely underrepresents the diminished
performance on broader phage diversity.

Despite these limitations, we hope the developed benchmark
may be informative to users and would be further developed to
include new computational challenges. It should be noted that the
results presented here are limited to those tools that could be
installed and run by July 2021, and since then many more tools
have been published [we are aware of 3CAC (Pu and Shamir, 2022),
DeepMicrobeFinder (Hou et al., 2021), INHERIT (Bai et al., 2022),
PHAMB (Johansen et al., 2022), PhaMer (Shang et al., 2022), VirMine
2.0 (Johnson and Putonti, 2022), and virSearcher (Liu Q. et al.,
2022)]. Additionally, modular pipelines such as the IMG/VR viral
discovery pipeline (Paez-Espino et al., 2017) and computational
pipelines combining several tools presented here, were not evaluated
in this work but could be assessed using the same benchmark
datasets developed here. Importantly, the combination of several
tools using different computational approaches could enable the
researchers to leverage the strength of each approach. This type of
hybrid pipeline has been in previously used by several large-scale
viral discovery studies for human-associated metagenomes (Gregory
et al., 2020; Camarillo-Guerrero et al., 2021; Nayfach et al., 2021b) and
environmental metagenomes (Jian et al., 2021; Hegarty et al., 2022).
With the potential that one of these tools or pipelines performs better
than those studied, it would be useful to benchmark them using the
data and methods developed here.
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