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Introduction: Intraspecific genomic variability affects a species’ adaptive potential 
toward climatic conditions. Variation in gene content across populations and 
environments may point at genomic adaptations to specific environments. The 
lichen symbiosis, a stable association of fungal and photobiont partners, offers an 
excellent system to study environmentally driven gene content variation. Many 
of these species have remarkable environmental tolerances, and often form 
populations across different climate zones. Here, we combine comparative and 
population genomics to assess the presence and absence of genes in high and 
low elevation genomes of two lichenized fungi of the genus Umbilicaria.

Methods: The two species have non-overlapping ranges, but occupy similar 
climatic niches in North America (U. phaea) and Europe (U. pustulata): high 
elevation populations are located in the cold temperate zone and low elevation 
populations in the Mediterranean zone. We assessed gene content variation along 
replicated elevation gradients in each of the two species, based on a total of 2050 
individuals across 26 populations. Specifically, we  assessed shared orthologs 
across species within the same climate zone, and tracked, which genes increase 
or decrease in abundance within populations along elevation.

Results: In total, we  found 16 orthogroups with shared orthologous genes in 
genomes at low elevation and 13 at high elevation. Coverage analysis revealed 
one ortholog that is exclusive to genomes at low elevation. Conserved domain 
search revealed domains common to the protein kinase superfamily. We traced 
the discovered ortholog in populations along five replicated elevation gradients 
on both continents and found that the number of this protein kinase gene linearly 
declined in abundance with increasing elevation, and was absent in the highest 
populations.

Discussion: We consider the parallel loss of an ortholog in two species and in 
two geographic settings a rare find, and a step forward in understanding the 
genomic underpinnings of climatic tolerances in lichenized fungi. In addition, the 
tracking of gene content variation provides a widely applicable framework for 
retrieving biogeographical determinants of gene presence/absence patterns. Our 
work provides insights into gene content variation of lichenized fungi in relation 
to climatic gradients, suggesting a new research direction with implications for 
understanding evolutionary trajectories of complex symbioses in relation to 
climatic change.
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Introduction

Intraspecific genomic variability substantially affects a species’ 
adaptive potential to ecological interactions and climatic conditions 
(Hirsch et al., 2014; Badet et al., 2020; Resl et al., 2022). Variation in 
genomic content at the gene-level, i.e., presence/absences of genes, 
within species are regularly found in bacteria, and are often associated 
with adaptations to specific environments and antibiotic resistances 
(Masignani et al., 2005; Heuer et al., 2011). Recent studies suggest that 
eukaryotic species, like bacterial ones, can have intraspecific variation 
in genomic content at the gene-level (Hirsch et al., 2014; Badet et al., 
2020; Gerdol et al., 2020). To this date, it is largely unknown how 
relevant such variation in gene content is for eukaryotes, and if it is 
ecologically important for adaptations to specific environments. 
Intraspecific variation in gene content contributes to the formation of 
genetically diverse populations, and therefore its characterization is 
vital to understand the mechanisms of adaptation to specific 
environments (Plissonneau et al., 2018; Drott et al., 2021; Merges 
et al., 2022).

The lichen symbiosis, a stable association of mainly fungal and 
photobiont partners as well as an associated microbiome, lends itself 
to the study of environmentally-driven gene content, because many 
species have remarkable environmental tolerances and maintain 
populations in different climate zones (Kappen, 2000; Werth and Sork, 
2014; Singh et  al., 2017; Grimm et  al., 2021; Jung et  al., 2021; 
Tanunchai et al., 2022). Previous studies showed that environmental 
differentiation in lichens can be found at the level of single nucleotide 
polymorphisms (SNPs), which often significantly correlate with 
differences in geography and ecology and may thus be involved in 
environmental specialization (Peksa and Skaloud, 2011; Castillo et al., 
2012; Hodkinson et al., 2012). Population genomic analyses based on 
SNPs suggest the presence of genome-wide differentiation between 
populations in different climate zones (Dal Grande et  al., 2017; 
Rolshausen et  al., 2022). To date, the only study which assesses 
variation in gene content associated with environmental adaptation in 
lichens is limited to a single species: Singh et al. (2021) show that some 
gene clusters associated with natural product biosynthesis in 
Umbilicaria pustulata have elevation-specific distributions. However, 
we currently lack information on the extent of parallel evolution in 
populations of different species that have independently evolved 
under similar environmental conditions. We do not know, e.g., (1) 
whether different species of lichen-forming fungi maintain 
homologous population-specific genes along comparable 
environmental gradients and (2) whether intraspecific variation in 
gene content (e.g., abundance patterns of genes) has independently 
converged on the same altitudinal patterns in different species, and 
can thus be linked to environmental preferences of lichens.

Modern evolutionary approaches leverage DNA sequencing to 
infer ecological and evolutionary processes that occur at the 
population level. Here we  combine comparative genomics and 
population genomics to assess the presence/absence of genes in high 

elevation and low elevation genomes of two lichenized fungi of the 
genus Umbilicaria (Umbilicaria phaea and U. pustulata). The two 
species have evolved on different continents under similar climatic 
selective pressures: U. pustulata in Europe and U. phaea in North 
America each occupy the cold temperate as well as the Mediterranean 
climate zone. We  tracked gene content variation along replicated 
elevation gradients in both species based on a total of 2050 individuals 
in 26 populations. Specifically, we addressed the following research 
questions: (a) Which genes are linked to environmental conditions at 
high elevation (cold temperate climate) and low elevation 
(Mediterranean climate) across species? To address this question, 
we  assessed which genes are exclusive to climate zones. (b) Do 
abundances of genes specific to a climate zone co-vary with elevation 
in populations of U. phaea and U. pustulata? To address the second 
question, we assessed which genes increase or decline in abundance 
with increasing elevation.

Materials and methods

Study site and sample collection

We sampled 15 U. pustulata populations along three elevational 
gradients in Spain and Italy and 11 U. phaea populations along two 
elevational gradients in California, United States (Merges et al., 2021; 
Singh et al., 2022). Our choice of gradients was based on the high 
abundance of U. pustulata and U. phaea in these respective areas, and 
because the gradients span two contrasting bioclimates, the 
Mediterranean and the cold temperate zones. A population of lichens 
is here defined as a group of individuals collected on rocks within an 
area of approximately 10 × 10 m. Detailed sampling procedures are 
described in Dal Grande et al. (2017) and Rolshausen et al. (2020). The 
altitudinal spacing of populations along the gradients can be seen in 
Supplementary Table S1. The studied Umbilicaria species entail 
foliose, monophyllous lichens, which are attached to rock surfaces 
with a central holdfast. This growth form facilitates the recognition of 
individuals. Details of the sampling of European material are 
described in Singh et al. (2022) and the details of sampling of the 
North American material in Dal Grande et al. (2017) and Merges et al. 
(2021). Briefly, two of the European gradients are located in Central 
Spain, Sierra de Gredos (40.2028, −5.2334 and 39.9946, −4.8679) and 
one on the island of Sardinia (40.7577, 9.0794). We collected fragments 
of 100 individuals each, at Mount Limbara (Sardinia, Italy; 6 
populations), Sierra de Gredos (Sistema Central, Spain; 6 populations) 
and Talavera-Puerto de Pico (Sistema Central, Spain; 3 populations), 
as described in Dal Grande et al. (2017). The Californian gradients are 
spatially separated by approx. 700 km. We collected fragments of 50 
individuals each, at four populations along the Sierra Nevada gradient 
(38.084, −120.484) and at seven population along the Mt. Jacinto 
gradient (33.435, −116.484). Schemes indicating the geographic 
location and sites of the sample collection are given in 
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Supplementary Table S1. We additionally collected four whole lichen 
thalli, one low-altitude individual from the Sierra Nevada population 
and one from the high-altitude population, as well as a low-altitude 
and a high-altitude individual from populations of the Sierra des 
Gredos gradient for the reconstruction of reference genomes using 
PacBio Sequel II data (Merges et  al., 2021; Singh et  al., 2022; 
Supplementary Table S2).

DNA extraction for population pooled 
sequencing

Genomic DNA was extracted separately from each fragment from 
all populations using a cetyltrimethylammonium bromide-based 
(CTAB) method (Cubero and Crespo, 2002; Dal Grande et al., 2017). 
Further, we created a pooled sample for each population containing 
equal amounts of DNA from each sample and Novogene Co., Ltd. 
(Cambridge, United Kingdom) performed the library preparation 
(200–300 bp insert size; Dal Grande et  al., 2017). Libraries were 
sequenced on an Illumina HiSeq2000 with 150 bp paired-end 
chemistry at ~90× coverage per population (i.e., Pool-seq; Dal Grande 
et al., 2017).

DNA extraction for genomic sequencing

Genomic DNA for genome sequencing was extracted from dry 
thallus material of two samples of the same species (i.e., U. phaea or 
U. pustulata) collected in different climatic zones (i.e., low elevation/
Mediterranean climate zone and high elevation/temperate climate 
zone). Lichen thalli were thoroughly washed with sterile water and 
checked under the stereomicroscope for the presence of possible 
contamination or other lichen thalli. DNA was extracted from all of 
the samples using CTAB-based method (Mayjonade et al., 2016) as 
presented in Merges et al. (2021).

PacBio library preparation and sequencing

For PacBio single-molecule real-time (SMRT) sequencing, 
SMRTbell libraries were constructed according to the 
manufacturer’s instructions of the SMRTbell Express Prep kit v2.0 
following the Low DNA Input Protocol (Pacific Biosciences, Menlo 
Park, CA, United States). Total input DNA was approximately 140 
and 800 ng, respectively. Ligation with T-overhang SMRTbell 
adapters was performed at 20°C overnight. Following ligation, the 
SMRTbell library was purified with an AMPure PB bead clean up 
step with 0.45X volume of AMPure PB beads. Subsequently a size-
selection step with AMPure PB Beads was performed to remove 
short SMRTbell templates <3 kb. For this purpose, the AMPure PB 
beads stock solution was diluted with elution buffer (40% volume/
volume) and then added to the DNA sample with 2.2X volume. The 
size and concentration of the final libraries were assessed using the 
TapeStation (Agilent Technologies) and the Qubit Fluorometer with 
Qubit dsDNA HS reagents Assay kit (Thermo Fisher Scientific, 
Waltham, MA, United States). Sequencing primer v4 and Sequel® 
II Polymerase 2.0 were annealed and bound, respectively, to each 

SMRTbell library. SMRT sequencing was performed on the Sequel 
System II with Sequel II Sequencing Kit 2.0 in “continuous long 
read” (i.e., CLR) mode, 30 h movie time with no pre-extension and 
Software SMRTLINK 8.0 (Pacific Biosciences of California, 2022). 
One SMRT Cell was run for each sample. A SMRT cell contains 
millions of wells called zero-mode waveguides (ZMWs; Pacific 
Biosciences of California, 2022). Within each ZMWs single 
molecules of DNA are immobilized and as the polymerase 
incorporates each nucleotide, light is emitted, and nucleotide 
incorporation is measured in real time (Pacific Biosciences of 
California, 2022).

De novo assembly of PacBio metagenomic 
sequence reads

We largely followed the pipeline described in Merges et  al. 
(2021). In summary, we  generated HiFi reads from the PacBio 
Sequel II run using the PacBio tool CCS v5.0.0 with default 
parameters, i.e., --min-passes 3, remove subreads with lengths 
<50% or > 200% of the median subread length, −-max-insertion-
size to 30 bp (Pacific Biosciences of California, 2022).1 Metagenomic 
sequence reads were assembled into contigs using the long-read 
based assembler metaFlye v2.7 (Kolmogorov et  al., 2019). The 
assembled contigs were scaffolded with LRScaf v1.1.12 (Qin et al., 
2019).2 To retrieve the mycobiont genome, the received scaffolds 
were taxonomically binned via blastx using DIAMOND (−-more-
sensitive --frameshift 15 –range-culling) on a custom database 
(Singh et  al., 2022) and the Metagenome Analyzer MEGAN6 
Community Edition pipeline (Huson et al., 2007; Buchfink et al., 
2014). The completeness of the genomes represented by the binned 
Ascomycota scaffolds was estimated using Benchmarking Universal 
Single-Copy Orthologs (BUSCO) analysis in BUSCO v4 using the 
Ascomycota dataset (Simão et al., 2015).

Pool-seq data processing

We filtered the pool-seq data for reads shorter than 80 bp, reads 
with N’s, and reads with average base quality scores less than 26 along 
with their pairs, and discarded them. We  mapped the trimmed 
paired-end reads of each pool to the database of the identified genes 
using bowtie2 v2.4.1 (Langmead and Salzberg, 2012), using the flags: 
--very-sensitive-local, −-no-mixed, −-no-unal, −-no-discordant.

Gene prediction and genome annotation

Functional annotation of genomes, including genes and proteins 
(antiSMASH; antibiotics and SM Analysis Shell, v5.0) was performed 
with scripts implemented in the funannotate pipeline (Blin et al., 2017; 
Palmer and Stajich, 2019). First, the genomes were masked for 

1 https://ccs.how

2 https://github.com/shingocat/lrscaf
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repetitive elements, and then the gene prediction was performed using 
BUSCO2 to train Augustus and self-training GeneMark-ES 
(Borodovsky and Lomsadze, 2011; Simão et al., 2015). Functional 
annotation was done with InterProScan (Quevillon et  al., 2005), 
egg-NOG-mapper (Huerta-Cepas et  al., 2017, 2019), and 
evolutionarily-informed expectations of gene content of near-
universal single-copy orthologs using BUSCO v 5.1.2 with included 
Ascomycota dataset (Simão et  al., 2015). Secreted proteins were 
predicted using SignalP (Armenteros et al., 2019) as implemented in 
the funannotate “annotate” command. Proteins where further 
characterized by NCBI conserved domain search (Lu et al., 2020).3

Assessing gene content variation in the 
assembled fungal genomes

To identify presence/absences patterns of genes, we  identified 
orthologs using orthoFinder (Emms and Kelly, 2015, 2019). 
OrthoFinder provides the most accurate ortholog inference method 
on the Quest for Orthologs benchmark test (Emms and Kelly, 2015, 
2019). In orthoFinder (v.2.5.4), we assigned all genes to orthogroups 
using protein homology and constructed a pangenome of all four 
complete genomes (Badet et al., 2020). Shared orthologs (i.e., members 
of the some orthogroup) of low elevation (warm adapted) and high 
elevational (cold adapted) genomes were extracted using R v3.6.1  
(R Core Team, 2019).

Validating presence/absence of genes at 
population level

To validate population-level gene presence or absence, 
we estimated the abundance of each ortholog in the low elevation 
(warm adapted) and high elevation (cold adapted) population based 

3 https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

on the median coverage of pool-seq reads associated to each ortholog 
contig. Specifically, we used samtools (v1.15) depth to estimate the 
coverage of each basepair within the contig (Danecek et al., 2021). 
We assessed and visualized the data in R v3.6.1 (R Core Team, 2019).

Gene distribution across Umbilicaria 
populations

Bowtie2 (v2.2.2) was used to map pool-seq reads to all ortholog 
contigs (using default settings). The number of mapped reads was 
counted per sample and normalized by dividing the number of 
mapped reads by the total read number of the respective sample to 
account for differences in sequencing depth. We  modeled gene 
abundance (i.e., normalized read count) as a function of elevation 
using linear models. Linear models were fitted and plotted in R v3.6.1 
(R Core Team, 2019).

Results

HiFi metagenomic sequencing reads of 
mycobiont

We reconstructed metagenomic sequences from a low-elevation 
and a high-elevation specimen of U. pustulata and U. phaea. Sequence 
output and quality for U. pustulata were summarized in Singh et al. 
(2022), for U. phaea in Merges et  al. (2021) and in 
Supplementary Table S2.

Altitude-specific genes in the de novo 
assembled genomes

We screened the de-novo assembled genomes of the low-and 
high-altitude samples for altitude-specific genes (Figure  1). 
Orthofinder revealed 16 orthogroups with shared orthologous genes 
(0.2% of the total orthogroups) in low-elevation genomes and 13 in 
high-elevational genomes (0.1% of the total orthogroups).

Presence/absence of genes at population 
level

To verify the presence/absence of detected orthologs, the coverage 
of each ortholog was calculated for the respective population at low 
and high elevation. The coverage analysis revealed one ortholog 
present in the genomes at low elevation to be consistently absent in 
populations at high elevation (Figure 2). The amino acid sequences of 
the ortholog could not be  functionally annotated using the 
funannotate pipeline and was classified as “hypothetical protein.” 
NCBI’s conserved domain search revealed an alignment with the 
catalytic domain of protein kinase superfamily member PKc cd00180 
(Position-specific scoring matrix (PSSM) accession cl214531, NCBI 
Conserved Domain Database) as well as seven Tetratricopeptide 
repeats (Tetratricopeptide-like helical domain superfamily, InterPro 
entry IPR011990), indicating putative protein binding surfaces 
(Supplementary Figure S1).

FIGURE 1

Venn diagram displaying orthogroups of U. phaea and U. pustulata. 
Red box highlights orthologs of the warm adapted (low elevation)  
U. phaea and U. pustulata genomes and the blue box of the cold 
adapted (high elevation) genomes.
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Gene abundance distributions along 
gradients

The normalized read number of the identified orthologs, 
annotated as members of the Protein Kinases superfamily, showed a 
decline with increasing elevation across all populations in both species 
(value of p = 0.00373, Figure 3).

Discussion

Although adaptations to environmental gradients may lead to 
variation in gene content, assessments of gene presence/absence 
patterns across populations and species of lichenized fungi are still 
missing. Here we assess signatures of parallel evolution at the level of 
gene presence and absence in lichenized fungi of the genus 

Umbilicaria, and trace the discovered genes in lichen populations 
along five replicated elevation gradients across two continents. While 
our whole genome comparison based on four de novo sequenced 
specimen (two per species) suggested up to 29 elevation-specific 
orthogroups (i.e., 16 low elevation-specific and 13 high elevation-
specific orthogroups, Figure  1), the population-level verification 
approach showed only one gene, putatively encoding a protein kinase 
(PK), which linearly declined in abundance with increasing elevation, 
and was truly absent in the highest population. This suggests either 
high strain-specificity of certain genes, or high false positive recovery 
of gene presence/absence patterns when relying on comparative 
genomics approaches based on only a few individuals. Thereby 
extrapolating the significance of gene content variation assessed only 
with comparative genomics approaches on a few individuals can 
be  potentially misleading when interpreting the evolutionary 
significance of the variation at population level. Regarding the PK 
gene consistently absent in high elevation genomes and populations, 
we  found that the discovered gene declines linearly across all 
populations, suggesting an evolutionary benefit only at lower altitudes. 
Alternatively, the loss of the gene at higher elevations might benefit 
individuals in cold climates. To our knowledge, we report for the first 
time parallel gene presence and absence patterns correlating with 
climatic niches in different species of lichenized fungi. However, it 
remains to be analyzed, if the identified molecular trait is associated 
to a particular phenotype that can be  associated with an 
adaptive function.

In bacteria variation in gene content is assumed to be driven by 
selection for environmental conditions that are relatively rare across 
the entire range of a species (Qi et  al., 2017). Recent evidence 
suggests that specific populations of lichenized fungi may contain 
unique biosynthetic gene clusters (Singh et  al., 2021), and our 
current findings show that also other genes can be  elevation-
specific. The gradual gene loss across populations with increasing 
elevation may suggests a decline of selective benefit and may 
indicate that certain variations in gene content could be  of 
functional importance for local adaptation and climatic tolerances 
in lichenized fungi. The conserved domain search revealed a 
catalytic domain of a PK, a common eukaryotic protein superfamily. 
PKs selectively modify other proteins by phosphorylation, changing 
their enzymatic activity, cellular location and association with other 
proteins (Cheng et  al., 2002; Hanks, 2003; Asano et  al., 2005; 
Heinisch and Rodicio, 2018). Within a genome, PKs are encoded by 
a large multigene family with genes being distributed among 
multiple chromosomes. Putatively, the high number of PK genes 
has arisen by genome segmental duplication events (Asano et al., 
2005; Heinisch and Rodicio, 2018). In our study, the presence/
absence of a single PK gene may suggest a climate-specific ancestral 
genome segmental duplication event. Across the tree of life, e.g., in 
bacteria (Christ and Chin, 2008), fungi (James et al., 2008) and 
plants (DeBolt, 2010; Prunier et al., 2019), organisms subjected to 
selection under high temperatures show higher probability for 
genome segmental duplications (Christ and Chin, 2008; James 
et  al., 2008; DeBolt, 2010; Kondrashov, 2012). For example, 
adaptation to heat stress through gene duplication of stress-related 
genes has been shown in Escherichia coli (Riehle et  al., 2001; 
Kondrashov, 2012), where an upregulation through gene duplication 
of genes may play a role in adaptation (Kondrashov, 2012; Kuzmin 
et al., 2022). However, due to the scarcity of functional annotation 

A B

FIGURE 2

Presence/absences of orthologs in four de novo sequenced 
genomes of U. phaea and U. pustulata were verified by assessing the 
scaffold coverage in the warm adapted (low elevation) and the cold 
adapted population (high elevation) respectively. (A) Coverage of 
ortholog in U. phaea: High coverage in warm adapted (low elevation) 
population and no coverage in high elevational population. 
(B) Coverage of ortholog in U. pustulata: High coverage in warm 
adapted (low elevation) population.

FIGURE 3

Read abundance of identified ortholog decreases significantly with 
increasing elevation across U. phaea (brown circles, lower regression 
line) and U. pustulata (blue circles, upper regression line) populations.
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of non-model organisms and the resulting lack of in-depth 
functional annotation of the gene in question, the mechanisms 
generating such population level diversification and the underlying 
molecular mechanisms behind such adaptations are yet to 
be understood.

While environmental adaptations are commonly highly 
polygenic (Rivas et  al., 2018; Barghi et  al., 2019; Hartke et  al., 
2021; Pfenninger et al., 2021), there is increasing evidence of the 
effect of single gene content variation (Liu et  al., 2021). For 
example, as has been recently shown in agave, where a single gene 
encoding a phosphoenolpyruvate carboxylase enhances the plant’s 
climate resilience (Liu et al., 2021). Not only the gain of genes, but 
also the loss of genes has been associated with adaptive traits, such 
as the evolution of particular diets in bats (Blumer et al., 2022). 
Therefore, we consider the parallel loss of a homologous gene in 
two species and two geographic settings a rare find, and a step 
forward in understanding the genomic underpinnings of climatic 
tolerances in lichenized fungi. Future research should address the 
functional importance of the gene present at low altitude in the 
Mediterranean climate zone, and specifically explore the effects of 
variation in gene abundances across populations. Additionally, 
future research should consider using heterologous expression 
approaches to reveal whether the gene presence could induce 
tolerances to warm conditions.

Conclusion

Our study demonstrates how comparative genomics in 
combination with population genomic data can reveal patterns of 
gene content variation across climatic gradients. In addition, the 
tracking of gene content variation across populations provides a 
widely applicable framework for retrieving meaningful 
biogeographical determinants of gene presence/absence patterns. 
We contribute to understanding convergence and parallel evolution 
at the genomic level, by providing insights into gene content 
variation of lichenized fungi in relation to climatic gradients. This 
suggests a promising new research direction with implications for 
understanding evolutionary trajectories in relation to 
climatic change.
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